		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 176, 1 (2021)	1-May-2021

 $Q(\beta^{-})=-318\ 29$; S(n)=7124 *15*; S(p)=4504 *15*; Q(α)=1284 *15* 2021Wa16 S(2n)=16340 *30*, S(2p)=11489 *15* (2021Wa16).

For a discussion of the systematic features of signature inversion in the $(\pi h_{11/2})(\nu i_{13/2})$ bands in nuclides in the mass region A \approx 160, see 2001Ri19. For other discussions, including theoretical calculations, see 1992Ja03, 1995Li40, 1996Zh22, 1997Zh13, 2000Lu07, 2000Xu01, 2001Zh16 and 2003Ya19.

¹⁶⁰Ho Levels

Cross Reference (XREF) Flags

1970ScZO have proposed a $J^{\pi}=1^+$ isomeric state at E \approx 70 keV with $T_{1/2}=7$ min and a $J^{\pi}=9^+$ isomeric state at E \geq 300 keV with $T_{1/2}\approx 1$ h, based upon measurements following α -particle bombardment of Tb. 1974Al27 could find no evidence of states at these energies.

E(level) [†]	J ^π ‡		XREF	A 160 Ho IT decay (5.02 h) B 160 Ho IT decay (3.2 s) C 160 Er ε decay D (HI,xn γ) Comments
0.0@	5+	25.6 min 3	ABCD	%ε+%β ⁺ =100 μ=+3.71 3; Q=+4.0 2 J ^π : atomic beam (1969Ek01,1970LiZL) and collinear fast-beam LASER spectroscopy (1988NeZZ). π=+, from log ft=4.69 for the ε+β ⁺ transition to the 4 ⁺ , 1694 level in ¹⁶⁰ Dy. This small log ft value indicates that this transition is allowed unhindered and, hence, that the odd proton in ¹⁶⁰ Ho occupies the 7/2[523] Nilsson state. The odd neutron is assigned the configuration=3/2[521], since the N=93 nuclides ¹⁵⁵ Sm, ¹⁵⁷ Gd, ¹⁵⁹ Dy and ¹⁶¹ Er all have this configuration in their ground states (1971Bu16). The K=5 coupling of these two orbitals is expected to lie below that with K=2. T _{1/2} : from γ(t) (1965St08). Other measurements: 22.5 min 5 (1950Wi13), 22 min (1954Ha19), 28 min 3 (1958To32), 25 min 1 (1966La11), 26 min (1969Ek01). μ: from 2014StZZ compilation (originally from 1989Al27, using laser resonance ionization mass spectroscopy, relative to ¹⁶⁵ Ho). Q: from 2016St14 compilation (originally from 1989Al27, using laser resonance ionization mass spectroscopy, relative to ¹⁶⁵ Ho). Δ <r<sup>2>(¹⁶⁰Ho-¹⁶⁵Ho)=-0.363 fm² 2, from measured hyperfine structure and isotope shift using resonance ionization spectroscopy (1989Al27). In an evaluation of nuclear rms</r<sup>
59.98 <i>3</i>	2-	5.02 h 5	A C	charge radii, 2013An02 report $\langle r^2 \rangle^{1/2} = 5.17$ fm 3. $\% \varepsilon + \% \beta^+ = 23.8 \ 20; \ \% \text{IT} = 76.2 \ 20$ $\mu = +2.52 \ 3; \ Q = +1.83 \ 17$ $\% \varepsilon + \% \beta^+, \% \text{IT}:$ weighted average of %IT values (measured by almost the same group of authors by varied methods): 73.6 52 (2002Ad34), 73.3 30 (2003KaZR), 77.9 20 (2006KaZX) (the smallest measured unc was adopted); other: 65 3 (1974A128). J ^{π} : collinear fast-beam LASER spectroscopy (1988NeZZ), atomic beam (1969Ek01), E3 transition to g.s. T _{1/2} : from γ (t) (1965St08). Other measurements: 5.0 h (1969Ek01), 4.6 h 3 (1966La11), 5.0 h 2 (1963Ra15), 4.76 h 10 (1960Gr15), 5.3 h 2 (1957Dz60), 5.6 h 7 (1957Dz58), 5.0 h (1955Ne03).

Continued on next page (footnotes at end of table)

¹⁶⁰Ho Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
				 μ: from 2014StZZ compilation (originally from 1989Al27, using laser resonance ionization mass spectroscopy, relative to ¹⁶⁵Ho). Q: from 2016St14 compilation (originally from 1989Al27, using laser resonance ionization mass spectroscopy, relative to ¹⁶⁵Ho).
				from the hyperfine structure and isotope shifts measured using resonance ionization spectroscopy, 1989A127 report that the difference between the mean square charge radii of this state and the ¹⁶⁵ Ho g.s. is $-0.446 \text{ fm}^2 5$. 1995Ga38 report -0.083 fm^2 7 for the difference between the mean-square charge radii of this state and the ¹⁶⁰ Ho g.s.
67.11 ^h 3	1+	28 ns 2	С	J^{π} : log <i>ft</i> =4.73 of the ε transition from the ¹⁶⁰ Er g.s. $(J^{\pi}=0^+)$ requires $J^{\pi}=1^+$ and also establishes the two-nucleon configuration (π 7/2[523] – ν 5/2[523]) as being at least a major component of this level.
				$\Gamma_{1/2}$: from 2006KaZX (100 Er ε decay) by measuring the retarded KX(H0)- γ coincidences with respect to the time decrease in the 7.1 γ intensity. Other: 30 ns 8 (2005KaZY, obtained by the same group).
107.27 [@] 2	6+	48 ns 10	ΒD	J^{π} : M1+E2 to g.s. indicates $J^{\pi}=4^+,5^+$ or 6^+ . First excited member of the g.s. rotational band.
118.441 ^{<i>a</i>} 18	6-	56 ns 8	B D	J^{π} : E1 transitions to 5 ⁺ (g.s.) and 6 ⁺ states establish π =– and J=5 or 6. Calculations (1996Dr03) of bandhead energies of the low-lying two-nucleon configurations indicate that the lowest such negative-parity bands expected are those from the K^{π} =6 ⁻ and 1 ⁻ couplings of the orbitals π 7/2[523] and ν 5/2[642], with 6 ⁻ lying below 1 ⁻ . The lowest expected K^{π} =5 ⁻ band is expected higher in the level scheme. The hindrance factor of the E1 transition to the g.s. is consistent with that observed for E1 transitions between the same two (neutron) orbitals in several neighboring odd-A nuclides (1996Dr03), supporting the proposed configuration assignment and, hence, the J^{π} value.
169.56 ^b 7	7-		ΒD	J ^{π} : M1 to 6 ⁻ level indicates π = Energy consistent with that expected for the 7 ⁻ member of the proposed band.
169.56+x ^d	(9 ⁺)	3.2 s 2	ΒD	%IT=100 E(level): x<55, from absence of K x ray associated with the deexciting γ . 2004Es01 report the level energy as 176 keV, but give no basis for it. J ^{π} : 1988Bh05 give J>7, based on absence of direct γ to 118 level. Of the bandheads having K(=J) larger than 7, only two (having K^{π} =9 ⁻ and 9 ⁺) are expected at low energies. The configuration having 9 ⁺ agrees better with the information on this band than does that having 9 ⁻ , as discussed by 1996Dr03.
175.6? 10	(1 ⁻)		С	$\Gamma_{1/2}$: measured by 2005KaZX (¹⁶⁰ Ho IT decay (3.2 s)) by the decrease of the 118 γ . E(level),J ^{π} : level introduced by 2010VaZZ (¹⁶⁰ Er ε decay) based on γ assumed to decay to 67, 1 ⁺ level with J ^{π} value postulated by authors; because of the lack of evidence this level is questionable.
228.2	7+		D	
232.90 3	/ .		D	J^{-1} : M1+E2 γ to 6 ⁻¹ level indicates π =+. Energy consistent with that expected for the 7 ⁺ member of the proposed band.
242.55 ^a 4	8-		D	J^{π} : M1+E2 to 7 ⁻ indicates π = From expected band structure.
336.11 ⁰ 4	9-		D	J^{π} : M1+E2 to 8 ⁻ indicates π = From expected band structure.
376.47 ^w 3	8^+		D	J^{π} : γ' 's to 6 ⁺ and 7 ⁺ levels. From expected band structure.
$389.538 + X^{\circ}$	(10^{+}) 10^{-}		ע ת	I^{π} , M1+F2 to 0 ⁻ indicates π^{-} . From expected hand structure
$536.96 \frac{\&}{4}$	9 ⁺		ם ח	$3 \cdot 171 + 12 \cdot 10 = 1$ indicates $\pi = -1$ from expected band structure.
586 44 ^b 4	11-		ם ח	I^{π} · M1+E2 to 10 ⁻ indicates $\pi = -$ From expected hand structure
$629.22 + x^d$	(11^+)		л П	
$708.32^{\circ}4$	10+		л П	
738.2	10+		D	J^{π} : γ to 8^+ , fed by a γ from 12^+ .
746.20 ^{<i>a</i>} 4	12-		D	J ^{π} : M1+E2 to 11 ⁻ indicates π = From expected band structure.

Continued on next page (footnotes at end of table)

¹⁶⁰Ho Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
886.82+x ^C	(12^{+})	D	
920.9 <mark>&</mark>	11+	D	
924.54 ^b 5	13-	D	J^{π} : M1+E2 to 12 ⁻ indicates π = From expected band structure.
1061 ⁸		D	
1119.0 [@]	12+	D	
1128.00 ^{<i>a</i>} 5	14-	D	
1161.23+x ^d	(13^{+})	D	
1276.2		D	
1347.3 ^{&}	13+	D	
1352.88 ^b 5	15-	D	
1449.50+x ^c	(14^{+})	D	
1484.3 ⁸		D	
1548.3 [@]	14^{+}	D	
1594.71 ^{<i>a</i>} 5	16-	D	
1/14.5	(1 = +)	D	
1749.82+x ^a	(15')	D	
1822.8 ^{cc}	15+	D	
1868.570 5	17-	D	
1981.68	1.64	D	
2040.1°	10^{+} (16 ⁺)	ע ת	
$2039.9 + x^{-1}$ 2141 29 ^{<i>a</i>} 6	(10^{-}) 18^{-}	ע ת	
2253.7	10	D	
2333.7 <mark>&</mark>	17^{+}	D	
$2373.7 + x^{d}$	(17^{+})	D	
2448.5	()	D	
2464.67 ^b 6	19-	D	
2537.6 ⁸		D	
2595.5 [@]	18^{+}	D	
2687.9+x ^c	(18^{+})	D	
2761.01 ^{<i>a</i>} 7	20-	D	
2892.2 [°]	19+	D	
2993.7+x ^{<i>d</i>}	(19 ⁺)	D	
3117.7		D	
3133.130 9	21-	D	
3137?8	20+	D	
3218.1°	(20^{+})	D D	
$3293.2+x^{-1}$ 3445.73^{a} 10	(20)	ע ת	
3520	21+	ם ח	
$3505.0 \pm x^{d}$	(21^{+})	D D	
$3393.9 \pm x$ 2861 1 / 1	(21)	ע	
$3001.1^{\circ} 4$	23 22+	ע	
$3807 \pm v^{9}$	(22^+)	ע ת	
4184.6^{a} 3	24-	ם ח	
$4197 + x^{9d}$	(23^{+})	- ח	
42112	(23^+)	ے م	
4506+x ^c	(24^+)	D	
	. /		

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
4577? [@]	(24^{+})	D	289.71+y ^e 4	(8 ⁻)	D	$2050.7 + y^{f}$	(15 ⁻)	D
4589.6 <mark>b</mark>	25-	D	466.65+y f 5	(9 ⁻)	D	2384.4+y ^e	(16 ⁻)	D
4953.1 ^{<i>a</i>}	26-	D	683.00+y ^e 5	(10 ⁻)	D	2728.6+y f	(17-)	D
5377.1 ^b	27^{-}	D	907.90+y ^f 6	(11^{-})	D	3022.5+y ^e	(18 ⁻)	D
5770? ^a	(28^{-})	D	1172.05+y ^e 9	(12^{-})	D	3691.0+y ^e	(20^{-})	D
y ^e	(6 ⁻)	D	1440.9+y ^f	(13 ⁻)	D	4388.0+y ^e	(22 ⁻)	D
126.45+y ^f 3	(7 ⁻)	D	1744.9+y ^e	(14 ⁻)	D			

¹⁶⁰Ho Levels (continued)

[†] From least-squares fit to E γ data (reduced χ^2 =3.0 is greater than critical χ^2 =1.5).

[‡] For those levels populated only in the in-beam studies, these values are based to a considerable extent on the observed patterns of the γ decay and considerations of expected band structures. Additional reasoning for these values, in particular for the nucleon configurations assigned to the various bands, has been given by 1996Dr03, who present calculated bandhead energies, deduced K quantum numbers, alignments, and g factors for the bands. In addition to any specific arguments that are given for these levels, it is to be understood that the J^{π} values are based on these general considerations.

- [#] From (HI,xn γ), except where noted otherwise.
- ^(a) Band(A): g.s. band, signature=0 branch. Configuration= $(\pi 7/2[523] + \nu 3/2[521])$ A=8.90 keV, B=+1.4 eV (from 5⁺,6⁺, and 7⁺ levels).
- [&] Band(a): g.s. band, signature=1 branch. Configuration= $(\pi 7/2[523] + \nu 3/2[521])$ A=8.90 keV, B=+1.4 eV (from 5⁺,6⁺, and 7⁺ levels).

^{*a*} Band(B): Negative-parity yrast band, signature=0. Configuration= $(\pi 7/2[523] + \nu 5/2[642])$ The Nilsson-orbital composition is given here, although, at higher spins, the classification according to spherical shell-model structure, namely configuration= $((\pi h_{11/2})(\nu i_{13/2}))$, might be more appropriate.

^b Band(C): Negative-parity yrast band, signature=1. Configuration= $(\pi 7/2[523] + \nu 5/2[642])$ See comment on the signature=0 portion of this band.

^c Band(D): $K^{\pi} = (9^+)$ band, signature=0 branch. Probable configuration= $(\pi 7/2[523] + \nu 11/2[505])$ A=11.08 keV, B=-2.3 eV (from 9⁺, 10⁺, and 11⁺ members).

^d Band(d): $K^{\pi} = (9^+)$ band, signature=1 branch. Probable configuration= $(\pi 7/2[523] + \nu 11/2[505])$ A=11.08 keV, B=-2.3 eV (from 9⁺, 10⁺, and 11⁺ members).

^{*e*} Band(E): $K^{\pi} = (6^{-})$ band, signature=0 branch. Proposed configuration= $(\pi 7/2[404] + \nu 5/2[523])$. This is the dominant configuration at low spins. For additional comments, see the discussion of this assignment in the (HI,xn γ) Data Set.

^{*f*} Band(e): $K^{\pi} = (6^{-})$ band, signature=1 branch. Proposed configuration= $(\pi 7/2[404] + \nu 5/2[523])$. See the comments on the signature=0 branch of this band, as well as in the (HI,xn γ) dataset.

^g Band(F): suggested level sequence.

^{*h*} Band(G): $K^{\pi}=1^+$ bandhead. Dominant Configuration=(π 7/2[523] – ν 5/2[523]).

						Adopt	ed Levels, Gan	nmas (contin	ued)
							γ (¹⁶⁰ H	<u>(0)</u>	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\dagger \ddagger}$	α #	Comments
59.98	2-	59.98 <i>3</i>	100	0.0	5+	E3(+M4)	<0.017	930 16	B(E3)(W.u.)=1.30×10 ⁻⁵ 8; B(M4)(W.u.)<11 $\alpha(K)=1.97$ 7; $\alpha(L)=698$ 12; $\alpha(M)=184$ 4 $\alpha(N)=41.9$ 8; $\alpha(O)=4.75$ 9; $\alpha(P)=0.0035$ 7 E _y : from ¹⁶⁰ Ho IT decay (5.02 h). Mult.: deduced by 1966Av03 from measured subshell ratios in 5.02-h ¹⁶⁰ Ho IT decay. δ : %M4<0.03 (2010VaZZ, from $\alpha(K)$ exp, ¹⁶⁰ Ho IT decay (5.02
67.11	1+	7.133 10	100	59.98	2-	E1(+M2)	<0.0006	17.4 3	n)). $\alpha(M)=14.27\ 22$ $\alpha(N)=2.93\ 5;\ \alpha(O)=0.230\ 4;\ \alpha(P)=0.00379\ 8$ B(E1)(W.u.)=0.00124 <i>11</i> E _{γ} : from ¹⁶⁰ Er ε decay. δ : from 1990Go02 in ¹⁶⁰ Er ε decay. These authors conclude that, at the 99% confidence level, %M2<0.0006 in the 7.133 γ .
107.27	6+	107.28 2	100	0.0	5+	M1+E2	0.25 4	2.14	α : calculated value for pure E1 transition. $\alpha(K)=1.74 \ 3; \ \alpha(L)=0.307 \ 14; \ \alpha(M)=0.069 \ 4$ $\alpha(N)=0.0159 \ 8; \ \alpha(O)=0.00223 \ 9; \ \alpha(P)=0.0001069 \ 21$ $P(M1)(W_{12})=1.11\times 10^{-4} + 30 \ 20; \ P(F2)(W_{12})=0.20 + 13 \ 10$
118.441	6-	(11.13 7)	2.39 12	107.27	6+	[E1]		22.9 5	B(M1)(W.u.)=1.11×10 $\pm 50-20$, B(E2)(W.u.)=0.50 $\pm 15-10$ α (L)=17.8 4; α (M)=4.20 10 α (N)=0.890 20; α (O)=0.0836 17; α (P)=0.00165 3 B(E1)(W.u.)=4.0×10 ⁻⁵ $\pm 7-5$ Mult.: from level scheme, $\Delta \pi$ =yes. From RUL, δ (M2/E1)<0.001
		118.44 2	100 <i>I</i>	0.0	5+	E1		0.202	$\alpha(K)=0.1687\ 24;\ \alpha(L)=0.0260\ 4;\ \alpha(M)=0.00572\ 8$ $\alpha(N)=0.001306\ 19;\ \alpha(O)=0.0001781\ 25;\ \alpha(P)=7.88\times10^{-6}\ 11$ $B(E1)(Wu)=1\ 39\times10^{-6}+24\ 17$
169.56	7-	51.17 2	100	118.441	6-	M1+E2	0.10 +4-6	3.3 4	$\begin{array}{l} \alpha(\text{L})=2.6 \ 3; \ \alpha(\text{M})=0.58 \ 7 \\ \alpha(\text{N})=0.134 \ 16; \ \alpha(\text{O})=0.0189 \ 18; \ \alpha(\text{P})=0.000947 \ 15 \\ \end{array}$
169.56+x 175.6?	(9 ⁺) (1 ⁻)	x 108.5 ^{&} 10	100	169.56 67.11	7- 1 ⁺	[E1,M2]		0.43 18	$\alpha(K)=0.35 \ 14; \ \alpha(L)=0.069 \ 36; \ \alpha(M)=0.0157 \ 84$
228.2		109.8	100	118 441	6-				$a_{(17)}=0.0050\ 20$; $a_{(07)}=5.0\times10^{-2.25}$; $a_{(17)}=2.5\times10^{-2.14}$ $E_{\gamma},I_{\gamma}: \gamma$ ray postulated by 2010VaZZ (¹⁶⁰ Er ε decay) as observed in a "fresh" spectrum of ¹⁶⁰ Er source with no evidence, reason for which its existence is questionable ($\Delta E\gamma$ is adopted by evaluator).
232.90	7+	125.67 4	100 10	107.27	6 ⁺	M1+E2	0.33 3	1.346	α (K)=1.090 <i>18</i> ; α (L)=0.199 <i>6</i> ; α (M)=0.0448 <i>14</i> α (N)=0.0103 <i>4</i> ; α (O)=0.00144 <i>4</i> ; α (P)=6.64×10 ⁻⁵ <i>12</i>
		232.85 5	67 8	0.0	5+				

S

From ENSDF

¹⁶⁰₆₇Ho₉₃-5

¹⁶⁰₆₇Ho₉₃-5

					A	Adopted Le	evels, Gamm	as (continue	ed)
						$\gamma(^1$	⁶⁰ Ho) (conti	nued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\dagger\ddagger}$	$\alpha^{\#}$	Comments
242.55	8-	72.95 2	100	169.56	7-	M1+E2	0.09 8	6.50 11	α (K)=5.41 <i>11</i> ; α (L)=0.85 <i>10</i> ; α (M)=0.189 <i>25</i> α (N)=0.044 <i>6</i> ; α (O)=0.0063 <i>7</i> ; α (P)=0.000337 <i>7</i>
336.11	9-	(124.11 <i>4</i>) 93.56 2	100 2	118.441 242.55	6 ⁻ 8 ⁻	M1+E2	0.13 5	3.17	$\alpha(K)=2.63 \ 5; \ \alpha(L)=0.418 \ 22; \ \alpha(M)=0.093 \ 6$ $\alpha(N)=0.0215 \ 12; \ \alpha(O)=0.00309 \ 14; \ \alpha(P)=0.000163 \ 3$
376.47	8+	166.47 <i>4</i> 143.65 <i>3</i> 269.19 <i>2</i>	19.8 <i>15</i> 98 6 100 <i>21</i>	169.56 232.90 107.27	7 ⁻ 7 ⁺ 6 ⁺				
389.538+x 451.54	(10 ⁺) 10 ⁻	219.93 2 115.43 2	100 100 <i>3</i>	169.56+x 336.11	(9 ⁺) 9 ⁻	M1+E2	0.141 12	1.730	α (K)=1.442 21; α (L)=0.225 4; α (M)=0.0499 8 α (N)=0.01158 19; α (O)=0.00167 3; α (P)=8.90×10 ⁻⁵ 13
536.96	9+	208.98 <i>3</i> 160.46 <i>3</i>	18.8 <i>15</i> 81 9	242.55 376.47	8 ⁻ 8 ⁺	M1+E2	0.45 5	0.654 11	α (K)=0.528 <i>12</i> ; α (L)=0.098 <i>3</i> ; α (M)=0.0220 <i>7</i> α (N)=0.00507 <i>16</i> ; α (O)=0.000705 <i>17</i> ; α (P)=3.18×10 ⁻⁵ <i>9</i>
586.44	11-	303.85 <i>5</i> 134.94 <i>2</i>	100 <i>18</i> 100.0 <i>19</i>	232.90 451.54	7 ⁺ 10 ⁻	M1+E2	0.157 20	1.107	$\alpha(K)=0.924 \ 14; \ \alpha(L)=0.1431 \ 24; \ \alpha(M)=0.0318 \ 6 \ \alpha(N)=0.00736 \ 13; \ \alpha(O)=0.001060 \ 17; \ \alpha(P)=5.69\times10^{-5} \ 9$
		250.33 2	32.4 17	336.11	9-	E2		0.1173	$\alpha(K) = 0.0832 \ 12; \ \alpha(L) = 0.0264 \ 4; \ \alpha(M) = 0.00618 \ 9 \ \alpha(N) = 0.001405 \ 20; \ \alpha(O) = 0.000179 \ 3; \ \alpha(P) = 4.15 \times 10^{-6} \ 6$
629.22+x	(11 ⁺)	239.67 <i>4</i> 459.69 <i>6</i>	61 5 100 <i>10</i>	389.538+x 169.56+x	(10 ⁺) (9 ⁺)				
708.32	10+	171.17 <i>4</i> 332.05 <i>4</i>	47 <i>4</i> 100 7	536.96 376.47	9+ 8+				
738.2	10+	371 201 362 401		336.11 536.96 376.47 336.11	9 ⁻ 9 ⁺ 8 ⁺ 9 ⁻				
746.20	12-	159.80 2	100 4	586.44	9 11 ⁻	M1+E2	0.155 25	0.686	α (K)=0.574 9; α (L)=0.0875 14; α (M)=0.0194 4 α (N)=0.00450 8; α (O)=0.000649 10; α (P)=3.54×10 ⁻⁵ 6
886.82+x	(12 ⁺)	294.57 <i>3</i> 257.65 <i>4</i> 497.25 <i>5</i>	48.0 <i>16</i> 38 5 100 8	451.54 629.22+x 389.538+x	10 ⁻ (11 ⁺) (10 ⁺)				
920.9	11+	182 212.3		738.2 708.32	10^+ 10^+ 0^+				
924.54	13-	178.35 2	100.0 17	530.90 746.20	9 12 ⁻	M1+E2	0.105 20	0.506 8	$\alpha(K)=0.425\ 6;\ \alpha(L)=0.0634\ 9;\ \alpha(M)=0.01400\ 21$ $\alpha(N)=0.00325\ 5;\ \alpha(Q)=0.000472\ 7;\ \alpha(P)=2.62\times10^{-5}\ 4$
		338.12 <i>3</i>	76.3 20	586.44	11-	E2		0.0466	$\alpha(K) = 0.0354 5; \ \alpha(L) = 0.00873 \ 13; \ \alpha(M) = 0.00201 \ 3$ $\alpha(N) = 0.000460 \ 7; \ \alpha(O) = 6.06 \times 10^{-5} \ 9; \ \alpha(P) = 1.87 \times 10^{-6} \ 3$
1061 1119.0	12+	475 198.7 380 411.0	100	586.44 920.9 738.2 708.32	11 ⁻ 11 ⁺ 10 ⁺ 10 ⁺				

6

From ENSDF

¹⁶⁰₆₇Ho₉₃-6

¹⁶⁰₆₇Ho₉₃-6

$\frac{E_{\gamma}^{\dagger}}{203.48} \frac{2}{381.77} \frac{2}{3}$	$\frac{I_{\gamma}^{\dagger}}{78.4}$	E _f	Iπ	$\frac{\gamma(1)}{\gamma(1)}$	¹⁶⁰ Ho) (cont	inued)	
	$\frac{I_{\gamma}^{\dagger}}{78 4}$	E_f	Iπ				
203.48 2 381.77 <i>3</i> 274 48 7	78 4		• <i>f</i>	Mult. [†]	$\delta^{\dagger\ddagger}$	α #	Comments
274 48 7	100 3	924.54 746.20	13 ⁻ 12 ⁻	E2		0.0328	$\alpha(K)=0.0254 \ 4; \ \alpha(L)=0.00576 \ 8; \ \alpha(M)=0.001321 \ 19 \ \alpha(N)=0.000302 \ 5; \ \alpha(Q)=4.03\times10^{-5} \ 6; \ \alpha(P)=1.369\times10^{-6} \ 20$
531.94 7	27 <i>10</i> 100 <i>14</i>	886.82+x 629.22+x	(12^+) (11^+)				
530.0 228.2 426.8	100	746.20 1119.0 920.9	12 12 ⁺ 11 ⁺				
224.89 [@] 2	82 [@] 8	1128.00	14-	M1+E2	0.164 <i>3</i>	0.265	α (K)=0.222 4; α (L)=0.0332 5; α (M)=0.00734 11 α (N)=0.001704 24; α (O)=0.000247 4; α (P)=1.367×10 ⁻⁵ 20
428.33 2 289.3 562.54	100 8	924.54 1161.23+x 886.82+x	13^{-} (13 ⁺) (12 ⁺)				
423 559.5 201.1		924.54 1347.3	13 ⁻ 13 ⁺				
429.3 241.87 <i>3</i>	59 <i>3</i>	1119.0 1352.88	12+ 15 ⁻	M1+E2	0.126 15	0.218	α (K)=0.183 3; α (L)=0.0271 4; α (M)=0.00598 9 α (N)=0.001389 20; α (O)=0.000202 3; α (P)=1.127×10 ⁻⁵ 16
466.68 <i>3</i> 586.5 300.4 <i>2</i>	100 <i>3</i> 100 ≤32	1128.00 1128.00 1449.50+x	14 ⁻ 14 ⁻ (14 ⁺)				
588.57 <i>12</i> 475.5 273 84 3	100 <i>20</i> 100 84 <i>4</i>	1161.23+x 1347.3 1594 71	(13 ⁺) 13 ⁺ 16 ⁻	M1+F2	0 095 23	0 1562 23	$\alpha(K) = 0.1315.19$; $\alpha(L) = 0.0193.3$; $\alpha(M) = 0.00425.6$
515.68 4	100 12	1352.88	15-	WII L2	0.095 25	0.1502 25	$\alpha(N)=0.000987 \ 14; \ \alpha(O)=0.0001436 \ 21; \ \alpha(P)=8.07\times10^{-6} \ 12$
497 629.0 217		1484.3 1352.88 1822.8	15 ⁻ 15 ⁺				
491.9 310.8		1548.3 1749.82+x	14^+ (15 ⁺)				
272.71 <i>4</i> 546.63 <i>5</i>	76 8 100 <i>15</i>	1868.57 1594.71	(14 ⁻) 17 ⁻ 16 ⁻	E2		0.01258	$\alpha(K)=0.01016\ 15;\ \alpha(L)=0.00188\ 3;\ \alpha(M)=0.000425\ 6$
659.0 511.1 313.4 624.3 580.2 323.37 <i>4</i>	100 100 100 77 <i>11</i>	1594.71 1822.8 2059.9+x 1749.82+x 1868.57 2141.29	16 ⁻ 15 ⁺ (16 ⁺) (15 ⁺) 17 ⁻ 18 ⁻				$\alpha(N)=9.77\times10^{-3}$ 14; $\alpha(O)=1.345\times10^{-3}$ 19; $\alpha(P)=5.69\times10^{-7}$ 8
	531.947 530.0 228.2 426.8 224.89 2 428.332 289.3 562.54 423 559.5 201.1 429.3 241.873 466.683 586.5 300.42 588.5712 475.5 273.843 515.684 497 629.0 217 491.9 310.8 610.3415 272.714 546.635 659.0 511.1 313.4 624.3 580.2 323.374 596.084	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	531.947 100.14 $629.22+x$ 530.0 100 746.20 228.2 1119.0 426.8 920.9 224.89 2 82 8 1128.00 428.33 2 82 8 1128.00 428.33 100.8 924.54 289.3 $1161.23+x$ 562.54 $886.82+x$ 423 1061 559.5 924.54 201.1 1347.3 429.3 1119.0 $241.87.3$ 59.3 1352.88 $466.68.3$ 100.3 128.00 $300.4.2$ ≤ 32 $1449.50+x$ 586.5 100 128.00 $300.4.2$ ≤ 32 $1449.50+x$ $773.84.3$ 84.4 1594.71 $515.68.4$ 100.12 1352.88 497 1484.3 629.0 1352.88 217 1822.8 491.9 1548.3 310.8 $1749.82+x$ $610.34.15$ $149.50+x$ $272.71.4$ 76.8 1868.57 $546.63.5$ 100.15 1594.71 659.0 100 1594.71 511.1 100 1822.8 313.4 $2059.9+x$ 624.3 $1749.82+x$ 580.2 100 1868.57 $32.37.4$ 77.11 2141.29 $596.08.4$ 100.24 1868.57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

From ENSDF

						Adopted	l Levels, G	ammas (continued)
							<u>γ(¹⁶⁰Ho)</u>	(continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [†]	α #	Comments
2537.6		556	100	1981.6				
2595.5	18^{+}	262		2333.7	17+			
2687 0±v	(18^{+})	555.2 628.0	100	2040.1 2059 9±x	(16^+)			
2007.9+x 2761.01	20^{-}	296 33 4	70.4	2059.9+x 2464 67	19-			
2701.01	20	619.78 7	100 8	2141.29	18-			
2892.2	19+	558.5	100	2333.7	17^{+}			
2993.7+x	(19 ⁺)	620.0	100	2373.7+x	(17^{+})			
3117.7		652.8		2464.67	19-			
		669.5		2448.5	•		0.060.0	
3133.13	21-	372.13 7	72-12	2761.01	20-	M1	0.0693	$\alpha(K)=0.0585 \ 9; \ \alpha(L)=0.00845 \ 12; \ \alpha(M)=0.00186 \ 3$ $\alpha(N)=0.000432 \ 6; \ \alpha(O)=6.30\times10^{-5} \ 9; \ \alpha(P)=3.57\times10^{-6} \ 5$
		668.0 <i>3</i>	100 21	2464.67	19-			
3137?		599 <mark>&</mark>	100	2537.6				
3218.1	20^{+}	622.6	100	2595.5	18+			
3295.2+x	(20^{+})	607.3	100	2687.9+x	(18^{+})			
3445.73	22-	312.60 <i>4</i> 684.78 <i>14</i>	53 <i>12</i> 100 <i>21</i>	3133.13 2761.01	21 ⁻ 20 ⁻			
3529	21^{+}	637	100	2892.2	19+			
3595.9+x	(21^{+})	602.2	100	2993.7+x	(19^+)			
3861.1	23	414.6		3445.73	22			
3881	22+	128.24	100	3133.13	$21 \\ 20^{+}$			
2807 + 22	(22+)	601 &	100	2205.2 + **	(20^{+})			
5897+X7 4184.6	(22) 24^{-}	738.8.3	100	3293.2+x 3445.73	(20)			
4107 + x2	(23^{+})	601&	100	3505.0 L v	(21^{+})			
42112	(23^{+})	601	100	2520	(21)			
4211?	(23^{+})	681	100	3529	21.			
4506+x	(24+)	609 C	100	3897+x?	(22+)			
4577?	(24^+)	695 °	100	3881	22+			
4589.6	25	404.5		4184.6	24			
4953 1	26-	729.0	100	4184 6	$23 \\ 24^{-}$			
5377 1	20^{-20}	787.5	100	4589.6	2^{-1}			
57702	(28^{-})	817 <mark>&</mark>	100	1969.0	26-			
126.45+v	(20) (7^{-})	126.44.3	100	4955.1 V	(6^{-})			
289.71+v	(8-)	163.24 3	100 5	126.45+v	(7^{-})			
	(-)	289.75 6	31 6	y	(6 ⁻)			
466.65+y	(9 ⁻)	177.05 5	100 9	289.71+y	(8 ⁻)			
		340.28 8	67 11	126.45+y	(7-)			
683.00+y	(10^{-})	216.37 3	100 8	466.65+y	(9 ⁻)			
		393.08 6	94 10	289.71+y	(8 ⁻)			

 ∞

¹⁶⁰Ho₉₃-8

From ENSDF

¹⁶⁰₆₇Ho₉₃-8

γ (¹⁶⁰Ho) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f} .	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$
907.90+y	(11^{-})	224.89 [@] 2	65 [@] 17	683.00+y (1	.0-)	2050.7+y	(15 ⁻)	610.1		1440.9+y	(13 ⁻)
		441.44 7	100 11	466.65+y (9)-)	2384.4+y	(16 ⁻)	334.0		2050.7+y	(15^{-})
1172.05+y	(12^{-})	264.53 11	43 8	907.90+y (1	1-)			639.0		1744.9+y	(14^{-})
-		488.84 8	100 11	683.00+y (1	(0^{-})	2728.6+y	(17^{-})	344.0		2384.4+y	(16^{-})
1440.9+y	(13^{-})	268.7		1172.05+y (1	2^{-})	-		678.0		2050.7+y	(15^{-})
		533.5		907.90+y (1	1-)	3022.5+y	(18^{-})	294.0		2728.6+y	(17^{-})
1744.9+y	(14^{-})	304.0		1440.9+y (1	3-)	-		638.0		2384.4+y	(16 ⁻)
		572.6		1172.05+y (1	2^{-})	3691.0+y	(20^{-})	668.5	100	3022.5+y	(18^{-})
2050.7+y	(15 ⁻)	306.0		1744.9+y (1	4-)	4388.0+y	(22-)	697.0	100	3691.0+y	(20-)

[†] From (HI,xnγ), except where noted otherwise.
[‡] Additional information 1.
[#] Additional information 2.
[@] Multiply placed with intensity suitably divided.
[&] Placement of transition in the level scheme is uncertain.

¹⁶⁰₆₇Ho₉₃

Level Scheme	(continued))
--------------	-------------	---

@

Intensities: Type not specified
Multiply placed: intensity suitably divided

$I_{\gamma} < 2\% \times I_{\gamma}^{max}$
$I_{\gamma} < 10\% \times I_{\gamma}^{max}$
$I_{\gamma} > 10\% \times I_{\gamma}^{max}$
$\dot{\gamma}$ Decay (Uncertain)

Legend

¹⁶⁰₆₇Ho₉₃

Level Scheme (continued)	Legend
Intensities: Type not specified @ Multiply placed: intensity suitably divided	$\begin{array}{c c} & & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$

¹⁶⁰₆₇Ho₉₃

Intensities: Type not specified @ Multiply placed: intensity suitably divided

¹⁶⁰₆₇Ho₉₃

¹⁶⁰₆₇Ho₉₃

¹⁶⁰₆₇Ho₉₃