¹⁶⁰Ho IT decay (3.2 s) 1988Bh05

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 176, 1 (2021)	1-May-2021

Parent: ¹⁶⁰Ho: E=169.56+x; $J^{\pi}=(9^+)$; $T_{1/2}=3.2$ s 2; %IT decay=100.0 1988Bh05: ¹⁶⁰Ho is obtained from ¹⁵⁹Tb(α ,3n). E(α) from 29 to 45 MeV; reaction products transported using gas-jet recoil

transport system. LEPS detector (0.2 cm³, having 620-eV resolution (FWHM) at 50 keV) and 30% GMX detector. Measured T_{1/2}, γ , I(K x ray). Deduced transition multipolarities.

Others: 2005KaZX (measured $T_{1/2}$), 2010VaZZ (I γ).

¹⁶⁰Ho Levels

E(level) [†]	J ^{π‡}	T _{1/2}	Comments
0.0	5+	25.6 min 3	$T_{1/2}$, J^{π} : from the adopted values.
107.28 5	6+		
118.41 5	6-		
169.56 7	7^{-}		
169.56+x	(9+)	3.2 s 2	E(level): x<55, from absence of K x ray associated with deexciting γ .
			$T_{1/2}$: measured by 2005KaZX by the decrease of the 118 γ .
			J^{π} : adopted value. 1988Bh05 give J>7, based on the absence of a direct γ to the 118 level.
			However, this lower limit seems overly conservative in view of the quite small transition
			probabilities that would be implied for the isomeric transition if its mult were E2 or less. Based

[†] From a least-squares fit to the γ -ray energies.

[‡] From Adopted Levels.

$\gamma(^{160}{\rm Ho})$

on this observation, J^{π} would be expected to be 9⁺ (but not 9⁻) or larger.

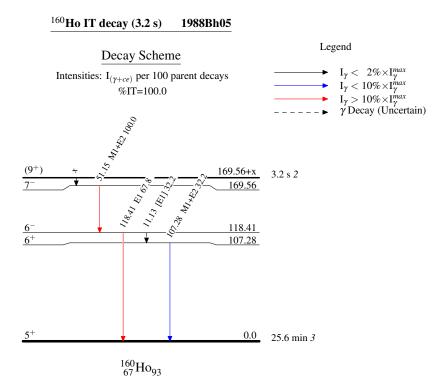
I v normalization: Transitions to g.s. $I(\gamma+ce)(107\gamma)+I(\gamma+ce)(118\gamma)$ will sum to 100%. %I(Ho K x rays)=28.8 40, from I(Ho K x rays)=51 7, weighted average of measured values 50 10 (1988Bh05) and 52 10 (2010VaZZ).

Eγ	Ι _γ &	E_i (level)	$\frac{\mathbf{J}_i^{\pi}}{\mathbf{J}_i^{(0+1)}}$	$\frac{E_f}{160.56} \frac{J_f^{\pi}}{7^{-1}}$	Mult. [†]	α #	$I_{(\gamma+ce)}^{a}$	Comments
x (11.13 7)	2.39 12	169.56+x 118.41	(9 ⁺) 6 ⁻	169.56 7 ⁻ 107.28 6 ⁺	[E1]	22.9 5	32.2 16	%Iy=1.35 5 ce(L)/(γ+ce)=0.742 11; ce(M)/(γ+ce)=0.175 5 ce(N)/(γ+ce)=0.0372 12; ce(O)/(γ+ce)=0.00349 11; ce(P)/(γ+ce)=6.88×10 ⁻⁵ 20 α (L)=17.8 4; α (M)=4.20 10 α (N)=0.890 20; α (O)=0.0836 17; α (P)=0.00165 3 E _γ : from level-energy difference. I _γ : from level-energy difference. I _γ : from level-energy difference. I _γ : from level scheme, $\Delta \pi$ =yes. From RUL (applied to the (HI,xnγ) data), %M2 must be less than 0.0001. α : value for a pure E1 transition. I _(γ+ce) : from intensity balance at 107 level.

¹⁶⁰₆₇Ho₉₃-2

				¹⁶⁰ Ho I	T decay (3.	2 s) 1988B	h05 (con	tinued)	
γ ⁽¹⁶⁰ Ho) (continued)									
Eγ	Ιγ ^{&}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	$\delta^{\dagger \ddagger @}$	α #	$I_{(\gamma+ce)}^{a}$	Comments
51.15 5	41.1 39	169.56	7-	118.41 6-	M1+E2	0.10 +4-6	3.3 4	100	%Iγ=23.2 20 ce(L)/(γ+ce)=0.60 5; ce(M)/(γ+ce)=0.134 18 ce(N)/(γ+ce)=0.031 5; ce(O)/(γ+ce)=0.0044 6; ce(P)/(γ+ce)=0.000219 19 α (L)=2.6 3; α (M)=0.58 7 α (N)=0.134 16; α (O)=0.0189 18; α (P)=0.000948 16 I _(γ+ce) : from decay scheme. I _γ : weighted average of 38 4 (1988Bh05) and 46 5 (2010VaZZ). α (exp): 3.8 4 (1988Bh05); 3.3 4 is deduced by evaluator from I _{γ+ce} =100%, calculated normalization and I _γ =41.1 39. Mult.,δ: from M1 from 1988Bh05 and δ calculated by evaluator from α =3.3 4.
107.28 5	18.2 8	107.28	6+	0.0 5+	M1+E2	0.25 4	2.14		%Iy=10.3 4 $\alpha(K)=1.74$ 3; $\alpha(L)=0.307$ 14; $\alpha(M)=0.069$ 4 $\alpha(N)=0.0159$ 8; $\alpha(O)=0.00223$ 9; $\alpha(P)=0.0001069$ 21 Iy: weighted average of 18 1 (1988Bh05) and 18.5 15 (2010VaZZ). $\alpha(K)$ exp: $\alpha(K)$ exp=2.0 6, from measured I(K x ray) and Iy values, after removal of the contribution to the K x-ray peak from the 118 γ (assumed to be pure E1); $\alpha(K)$ exp=1.8 3 (1988Bh05).
118.41 5	100	118.41	6-	0.0 5+	E1		0.202		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

[†] From Adopted Gammas (some values are deduced in this dataset as commented).
[‡] Additional information 1.
[#] Additional information 2.
[@] Additional information 3.


Continued on next page (footnotes at end of table)

¹⁶⁰Ho IT decay (3.2 s) **1988Bh05** (continued)

$\gamma(^{160}\text{Ho})$ (continued)

& For absolute intensity per 100 decays, multiply by 0.564 9.

^{*a*} Absolute intensity per 100 decays.

