Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 176, 1 (2021)	1-May-2021

 $Q(\beta^{-}) = -10120 \ 60; \ S(n) = 11157 \ 19; \ S(p) = 3520 \ 40; \ Q(\alpha) = 4901.9 \ 26 \ 2021 Wa16$

 $S(2n)=19979 \ 20, \ S(2p)=4507 \ 12, \ Q(\epsilon p)=2606 \ 20 \ (2021Wa16).$

Additional information 1.

All the data on the excited states are derived from the heavy-ion-induced reaction study of 2000Di18 and, to a lesser extent, that of 1990Mu14.

According to 2009Ha42 the nucleus ¹⁶⁰Hf is populated via ε decay of ¹⁶⁰Ta.

¹⁶⁰Hf Levels

Cross Reference (XREF) Flags

A 164 W α decay

 $(HI,xn\gamma)$

В

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments		
0.0#	0+	13.6 s 2	AB	$%ε + %β^+ = 99.3 2; %α = 0.7 2$ %α: from the evaluation of 1998Ak04, based on the relative intensity of gammas in $ε + β^+$ decay to α particles (1995Hi12). 1973To02 estimate %α=2.3 6 from parent-daughter α activity ratio. T _{1/2} : from 1995Hi12, 193.6γ(t). Others: 13.4 s 4 (1995Hi12) α(t); 13.0 s 15 (1992Ha10), γ(t).		
389.40 [#] 10	2+		В	J^{π} : E2 intraband γ to 0 ⁺ .		
898.26 [#] 15	4+		В	J^{π} : E2 intraband γ to 2 ⁺ .		
1493.35 [#] 18	6+		В	J^{π} : E2 intraband γ to 4 ⁺ .		
2147.48 [#] 20	8+		В	J^{π} : E2 intraband γ to 6 ⁺ .		
2255.32 ^{&} 22	$7^{(-)}$		В	J^{π} : (E1) interband γ to 6^+ .		
2713.81 ^{&} 22	9(-)		В	J^{π} : (E1) interband γ to 8 ⁺ .		
2747.86 23	9(-)		В	J^{π} : (E1) γ to 8^+ and γ from 11^- .		
2814.68 [#] 22	10^{+}		В	J^{π} : E2 intraband γ to 8^+ .		
2964.33 ^a 24	$10^{(-)}$		В	J^{π} : (M1) interband γ to $9^{(-)}$.		
3026.12 22	$11^{(-)}$		В	J^{π} : E2 intraband γ to $9^{(-)}$.		
3474.8 [@] 3	12+		В	J^{π} : E2 interband γ to 10^+ .		
3502.8 ^a 3	$12^{(-)}$		В	J^{π} : (E2) intraband γ to $10^{(-)}$.		
3529.61 24	$13^{(-)}$		В	J^{π} : E2 intraband γ to $11^{(-)}$.		
4076.3 [@] 6	(14^{+})		В	J^{π} : (E2) intraband γ to 12^+ .		
4107.8 ^{<i>a</i>} 4	(14 ⁻)		В	J^{π} : (E2) intraband γ to $12^{(-)}$.		
4120.4 ^{&} 3	$15^{(-)}$		В	J^{π} : E2 intraband γ to $13^{(-)}$.		
4735.0 [@] 8	(16^{+})		В	J^{π} : intraband γ to $14^{(+)}$.		
4747.0 ^{&} 3	(17^{-})		В	J^{π} : (E2) intraband γ to $15^{(-)}$.		
4761.7 ^{<i>a</i>} 5	(16^{-})		В	J^{π} : intraband γ to (14 ⁻).		
5351.4 ^a 5	(18 ⁻)		В	J^{π} : (E2) intraband γ to (16 ⁻).		
5415.4 8	(18+)		В			
5505.8°° 4	(19^{-})		B	J^{n} : (E2) intraband γ to (17 ⁻).		
(202.0%)	(20)		в	J ^T : E2 intraband γ to (18).		
6283.9°° 4	(21 ⁻)		В	J [*] : E2 intraband γ to (19 ⁻).		

Adopted Levels, Gammas (continued)

¹⁶⁰Hf Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
7000.3 ^{&} 5	(23-)	В	J^{π} : E2 intraband γ to (21 ⁻).
7747.5 <mark>&</mark> 5	(25 ⁻)	В	J^{π} : intraband γ to (23 ⁻).

[†] From a least-squares fit to the listed $E\gamma$ values.

[‡] Spin-parity assignments reported in the heavy-ion-induced reaction studies and amended by evaluator based on re-evaluated γ multipolarities and the usual considerations of band structure (stretched transitions and increasing spin values with increasing excitation energy), theoretical arguments and systematics.

 $\gamma(^{160}\text{Hf})$

[#] Band(A): ground-state band.

[@] Band(B): aligned positive-parity band.

& Band(C): negative-parity band, signature=1.

^{*a*} Band(D): negative-parity band, signature=0.

α^{\ddagger} E_i (level) Mult. Comments 0.0 389.40 F2 0.0374 $\alpha(K)=0.0277 4; \alpha(L)=0.00742 11; \alpha(M)=0.001762$ 25 α (N)=0.000413 6; α (O)=5.76×10⁻⁵ 8; $\alpha(P)=2.07\times10^{-6}$ 3 $\alpha(K)=0.01440\ 21;\ \alpha(L)=0.00317\ 5;\ \alpha(M)=0.000742$ 898.26 4^{+} 508.86 10 100 389.40 2+ E2 0.0185 11 α (N)=0.0001746 25; α (O)=2.50×10⁻⁵ 4; $\alpha(P)=1.103\times10^{-6}$ 16 1493.35 595.09 10 100 898.26 4+ E2 0.01266 $\alpha(K)=0.01004 \ 14; \ \alpha(L)=0.00202 \ 3; \ \alpha(M)=0.000468$ 6^{+} 7 $\alpha(N)=0.0001103 \ 16; \ \alpha(O)=1.599\times 10^{-5} \ 23;$ $\alpha(P)=7.77\times10^{-7}$ 11 2147.48 8^{+} 654.13 10 100 1493.35 6+ E2 0.01016 $\alpha(K)=0.00814$ 12; $\alpha(L)=0.001557$ 22; $\alpha(M) = 0.0003605$ $\alpha(N)=8.48\times10^{-5}$ 12; $\alpha(O)=1.239\times10^{-5}$ 18; $\alpha(P) = 6.33 \times 10^{-7} \ 9$ 2255.32 $7^{(-)}$ 762.0 2 100 1493.35 6+ (E1) 0.00274 $\alpha(K)=0.00232$ 4; $\alpha(L)=0.000329$ 5; $\alpha(M) = 7.33 \times 10^{-5} 11$ $\alpha(N)=1.736\times10^{-5}\ 25;\ \alpha(O)=2.64\times10^{-6}\ 4;$ $\alpha(P)=1.716\times10^{-7}$ 24 9(-) 2255.32 7⁽⁻⁾ $\alpha(K)=0.0185$ 3; $\alpha(L)=0.00437$ 7; $\alpha(M)=0.001028$ 15 2713.81 (E2) 0.0241 458.47 13 39 8 $\alpha(N)=0.000241 4$; $\alpha(O)=3.42\times10^{-5} 5$; $\alpha(P)=1.402\times10^{-6}\ 20$ 566.24 12 100 18 2147.48 8+ (E1) 0.00503 $\alpha(K)=0.00424$ 6; $\alpha(L)=0.000611$ 9; $\alpha(M)=0.0001367\ 20$ $\alpha(N)=3.23\times10^{-5}$ 5; $\alpha(O)=4.89\times10^{-6}$ 7; $\alpha(P)=3.10\times10^{-7}$ 5 2747.86 9(-) 492.7 3 18 4 2255.32 7(-) [E2] 0.0201 α(K)=0.01554 22; α(L)=0.00350 5; α(M)=0.000819 12 $\alpha(N)=0.000193 3; \alpha(O)=2.75\times10^{-5} 4;$ $\alpha(P)=1.187\times10^{-6}$ 17 600.6 5 100 19 2147.48 8+ (E1) 0.00444 $\alpha(K)=0.00375$ 6; $\alpha(L)=0.000538$ 8; $\alpha(M) = 0.0001204 \ 17$ $\alpha(N)=2.85\times10^{-5}$ 4; $\alpha(O)=4.31\times10^{-6}$ 6;

Continued on next page (footnotes at end of table)

2

Adopted Levels, Gammas (continued)

γ ⁽¹⁶⁰Hf) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	Comments
2814.68	10+	667.25 11	100	2147.48	8+	E2	0.00971	α (P)=2.75×10 ⁻⁷ 4 I _y : value includes contribution from the 601.5 γ . α (K)=0.00780 11; α (L)=0.001476 21; α (M)=0.000341 5
2964.33	10 ⁽⁻⁾	216.57 13	79 21	2747.86	9(-)	(M1)	0.452	$\begin{aligned} \alpha(N) &= 8.04 \times 10^{-5} \ 12; \ \alpha(O) &= 1.176 \times 10^{-5} \ 17; \\ \alpha(P) &= 6.06 \times 10^{-7} \ 9 \\ \alpha(K) &= 0.377 \ 6; \ \alpha(L) &= 0.0582 \ 9; \ \alpha(M) &= 0.01313 \ 19 \\ \alpha(N) &= 0.00312 \ 5; \ \alpha(O) &= 0.000479 \ 7; \\ \alpha(P) &= 3.19 \times 10^{-5} \ 5 \end{aligned}$
		250.42 13	100 25	2713.81	9(-)	(M1)	0.303	$\alpha(K)=0.253 \ 4; \ \alpha(L)=0.0389 \ 6; \ \alpha(M)=0.00878 \ 13 \ \alpha(N)=0.00209 \ 3; \ \alpha(O)=0.000320 \ 5; \ \alpha(D)=2.12\times10^{-5} \ 2$
3026.12	11 ⁽⁻⁾	211.48 10	89 17	2814.68	10+	(E1)	0.0511	$\alpha(\mathbf{F}) = 2.13 \times 10^{-5} \text{ s}$ $\alpha(\mathbf{K}) = 0.0426 \ 6; \ \alpha(\mathbf{L}) = 0.00660 \ 10;$ $\alpha(\mathbf{M}) = 0.001485 \ 21$ $\alpha(\mathbf{N}) = 0.000340 \ 5; \ \alpha(\mathbf{O}) = 5.13 \times 10^{-5} \ 8;$
		278.21 12	44 10	2747.86	9(-)	E2	0.0996	$\alpha(P)=2.87\times10^{-6} 4$ $\alpha(K)=0.0673 \ 10; \ \alpha(L)=0.0247 \ 4; \ \alpha(M)=0.00597$ 9
		312.30 <i>11</i>	100 <i>19</i>	2713.81	9(-)	E2	0.0703	α (N)=0.001396 20; α (O)=0.000188 3; α (P)=4.74×10 ⁻⁶ 7 α (K)=0.0493 7; α (L)=0.01608 23; α (M)=0.00386
3474.8	12+	660.12 <i>13</i>	100	2814.68	10+	E2	0.00995	α(N)=0.000904 I3; α(O)=0.0001234 I8; α(P)=3.55×10-6 5 α(K)=0.00798 I2; α(L)=0.001519 22; α(M)=0.000351 5
3502.8	12 ⁽⁻⁾	538.5 2	100	2964.33	10 ⁽⁻⁾	(E2)	0.01609	$\alpha(N)=8.28\times10^{-5} \ 12; \ \alpha(O)=1.210\times10^{-5} \ 17; \\ \alpha(P)=6.20\times10^{-7} \ 9 \\ \alpha(K)=0.01262 \ 18; \ \alpha(L)=0.00268 \ 4; \\ \alpha(M)=0.000626 \ 9 $
3529.61	13 ⁽⁻⁾	503.49 10	100	3026.12	11 ⁽⁻⁾	E2	0.0190	$\alpha(N)=0.0001473 \ 21; \ \alpha(O)=2.12\times10^{-5} \ 3; \alpha(P)=9.70\times10^{-7} \ 14 \alpha(K)=0.01476 \ 21; \ \alpha(L)=0.00327 \ 5; \alpha(M)=0.000767 \ 11$
4076.3	(14+)	601.5 5	100	3474.8	12+	(E2)	0.01234	$\alpha(N)=0.000180 \ 3; \ \alpha(O)=2.58\times10^{-5} \ 4; \\ \alpha(P)=1.130\times10^{-6} \ 16 \\ \alpha(K)=0.00981 \ 14; \ \alpha(L)=0.00196 \ 3; \\ \alpha(M)=0.000454 \ 7 \\ \alpha(N)=0.0001070 \ 16; \ \alpha(O)=1.553\times10^{-5} \ 22; $
4107.8	(14-)	605.0 2	100	3502.8	12 ⁽⁻⁾	(E2)	0.01217	$\alpha(P)=7.59\times10^{-7} \ II$ I_{γ} : value includes contribution from the 600.6 γ . $\alpha(K)=0.00968 \ I4; \ \alpha(L)=0.00193 \ 3;$ $\alpha(M)=0.000447 \ 7$ $\alpha(D)=0.001052 \ I5; \ \alpha(D)=1.528\times10^{-5} \ 22;$
4120.4	15(-)	590.76 12	100	3529.61	13(-)	E2	0.01288	$\begin{array}{l} \alpha(\mathbf{N})=0.0001052 \ 15; \ \alpha(\mathbf{O})=1.528\times10^{-7} \ 22; \\ \alpha(\mathbf{P})=7.49\times10^{-7} \ 11 \\ \alpha(\mathbf{K})=0.01021 \ 15; \ \alpha(\mathbf{L})=0.00206 \ 3; \\ \alpha(\mathbf{M})=0.000478 \ 7 \\ \alpha(\mathbf{M})=0.000478 \ 7 \\ \alpha(\mathbf{M})=0.0001478 \ 7 \\ \alpha(\mathbf{M})=0.0001$
4735.0	(16 ⁺)	658.7 5	100	4076.3	(14+)	(E2)		α (N)=0.0001126 <i>I</i> 6; α (O)=1.632×10 ⁵ 23; α (P)=7.90×10 ⁻⁷ <i>II</i> Mult.: assigned (E2) in 20008Di18 but no $\gamma(\theta)$
4747.0	(17 ⁻)	626.63 11	100	4120.4	15 ⁽⁻⁾	E2	0.01121	value. $\alpha(K)=0.00895 \ 13; \ \alpha(L)=0.001748 \ 25; \ \alpha(M)=0.000405 \ 6$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{160}\text{Hf})$ (continued)

E _i (level)	J_i^π	Eγ	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	α^{\ddagger}	Comments
							α (N)=9.54×10 ⁻⁵ 14; α (O)=1.390×10 ⁻⁵ 20; α (P)=6.94×10 ⁻⁷ 10
4761.7	(16^{-})	653.9 2	100	4107.8 (14 ⁻))		
5351.4	(18 ⁻)	589.7 2	100	4761.7 (16 ⁻)) (E2)	0.01293	α (K)=0.01025 <i>15</i> ; α (L)=0.00207 <i>3</i> ; α (M)=0.000480 <i>7</i> α (N)=0.0001132 <i>16</i> ; α (O)=1.640×10 ⁻⁵ <i>23</i> ; α (P)=7.93×10 ⁻⁷ <i>12</i>
5415.4	(18^{+})	680.4 2	100	4735.0 (16 ⁺))		
5505.8	(19-)	758.8 2	100	4747.0 (17-)) (E2)	0.00729	α (K)=0.00592 9; α (L)=0.001059 15; α (M)=0.000243 4
							α (N)=5.74×10 ⁻⁵ 8; α (O)=8.48×10 ⁻⁶ 12; α (P)=4.62×10 ⁻⁷ 7
6087.0	(20 ⁻)	735.58 15	100	5351.4 (18-)) E2	0.00781	α (K)=0.00633 9; α (L)=0.001146 <i>16</i> ; α (M)=0.000263 4
							α (N)=6.22×10 ⁻⁵ 9; α (O)=9.16×10 ⁻⁶ 13; α (P)=4.93×10 ⁻⁷ 7
6283.9	(21 ⁻)	778.10 <i>13</i>	100	5505.8 (19-)) E2	0.00691	$\alpha(K)=0.00562 \ 8; \ \alpha(L)=0.000995 \ 14; \ \alpha(M)=0.000228 \ 4$
							$\alpha(N)=5.39\times10^{-5} 8; \alpha(O)=7.97\times10^{-6} 12; \alpha(P)=4.39\times10^{-7} 7$
7000.3	(23 ⁻)	716.4 2	100	6283.9 (21-)) E2	0.00828	$\alpha(K)=0.00669 \ I0; \ \alpha(L)=0.001226 \ I8; \ \alpha(M)=0.000282 \ 4$
							α (N)=6.66×10 ⁻⁵ <i>10</i> ; α (O)=9.80×10 ⁻⁶ <i>14</i> ; α (P)=5.21×10 ⁻⁷ 8
7747.5	(25 ⁻)	747.2 2	100	7000.3 (23-))		

[†] Re-evaluated from (HI,xn γ) dataset that measured dipole or quadrupole transition types based on $\gamma(\theta)$ or DCO but did not measure the electric or magnetic character. The dipole assignments are adopted as tentative while for the quadrupole transitions the assignments of the authors are adopted (all electric – see (HI,xn γ) dataset). All transitions are stretched.

[‡] Additional information 2.

 $^{160}_{72}\mathrm{Hf}_{88}$

5

Adopted Levels, Gammas

 $^{160}_{72}\mathrm{Hf}_{88}$