		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 176, 1 (2021)	1-May-2021

 $Q(\beta^{-})=-105.6 \ 10; \ S(n)=7451.5 \ 7; \ S(p)=9188 \ 4; \ Q(\alpha)=-1006 \ 9 \ 2021Wa16$ $S(2n)=13394.7 \ 7, \ S(2p)=17268 \ 5 \ (2021Wa16).$

A number of studies, both experimental and theoretical, of double β-decay processes from the ¹⁶⁰Gd g.s. have been published. Some of the more recent experimental studies include those of 1995Ko14, 1995Bu18, 1996Da38, 1996De60, 1997Ge14, 2001BiZZ, and 2001Da22. The general trend with time of the results of these studies is to establish ever larger lower limits for the various processes involved (which have not yet been observed). Recent theoretical work is given by 2002Hi06, 2002Hi09, 2002Hi12, 2003Su34, 2004Ra13, 2011Ra41, 2011Ra26, 2011Fa02, 2012Ro44, 2012Ra07, 2012Ko10, 2012Fa11, 2012Fa01, 2012Ba30, 2013Da02, 2013Ba05, 2014Re05, 2015Ko15.

¹⁶⁰Gd Levels

Band structures are mostly from $(n,n'\gamma)$ dataset.

Cross Reference (XREF) Flags											
			A 160 B 160 C 252 D 158 E 160	^D Eu β^- decay (42.6 s) ^D Eu β^- decay (30.8 s) ² Cf SF decay ³ Gd(t,p) ^D Gd(γ, γ')	F G H I	$^{160}Gd(p,p'),(pol p,p')$ $^{160}Gd(n,n'\gamma)$ $^{160}Gd(d,d')$ Coulomb excitation					
E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$	XREF			Comments					
0.0#	0+	stable	ABCDEFGHI	Values for $\Delta < r^2 > (^{160})$ been reported. Son units of fm ²): 0.16 (1983La08); 0.164 isotope shifts (1990) transitions (1969BI (1987Bo58). 1990) from optical isotop e.g., 1976Ah04, 19 isotope-shift inform λ). 1995Fr22 repor and electromagneti they report $\Delta < r^2 > ($ rms charge radii, 2 $T_{1/2}$: $T_{1/2} > 1.3 \times 10^{21}$ from the survey by are quoted at the 9	Gd^{-1} ne of 1 1 12, 5, fro Du08 Ma25 e-shif 88Al4 nation t an a c inte 160 Gc 013An y for 2002 0% cc	⁵⁸ Gd) measured using a variety of techniques have these are as follows (the values being expressed in from muonic K- and L-x-ray measurements on LASER-spectroscopic measurements of optical 8); 0.154 <i>10</i> , from isotope shifts of electronic K-x-ray and 0.146 8, from optical isotope-shift measurements report λ (¹⁶⁰ Gd- ¹⁵⁸ Gd)=0.135 7 (where $\lambda \approx \Delta < r^2 >$) t measurements. Other measurements are reported by, 40, 1988Kr15. 1987Au06 give a compilation of optical (expressed, however, in terms of the nuclear parameter malysis of $\Delta < r^2 >$ values from optical, muonic-atom, ractions for a number of Gd-isotope pairs. For ¹⁶⁰ Gd, h^{-156} Gd)=0.335 fm ² 35. In an evaluation of nuclear n02 report $< r^2 > 1/2 = 5.1734$ fm <i>44</i> . $0\nu, 2\beta$ decay and $>1.9 \times 10^{19}$ y for $2\nu, 2\beta$ decay, TrO4 (these are the values reported by 2001Da22 and onfidence level).					
75.263 [#] 9	2+	2.72 ns <i>1</i>	ABCDEFGHI	μ =+0.72 4; Q=-2.08 J ^{π} : Coulomb excited; T _{1/2} : from Coulomb μ : from the compilati gas or vacuum met Q: from the compilat hyperfine structure	4 mem excita on of hod (i ion of methe	ber of g.s. band. tion. 2014StZZ (measured by 1974Ar23 by the recoil into reevaluated or adjusted by compiler)). 2016St14 (measured by 1983La08 by muonic X-ray od).					
248.502 [#] 18	4+		ABCD FGHI	μ =+1.6 2 M(E4; 0 ⁺ to 4 ⁺)=0.3	3 5 fr	om Coul. ex.					

Additional information 1.

Adopted Levels, Gammas (continued)

¹⁶⁰Gd Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XR	EF	Comments
					J^{π} : E2 γ to 2 ⁺ , E4 Coulomb excited, member of g.s. band. μ : from the compilation of 2014StZZ (from g-factor measured by 1991St01 by transient field integral perturbed angular correlation method).
514.81# 4	6+		A CD	FGHI	 μ=+2.4 3 J^π: E2 γ to 4⁺, member of g.s. band. μ: from the compilation of 2014StZZ (from g-factor measured by 1991St01 by transient field integral perturbed angular correlation method).
868.6 [#] 6 913? 7 946?	8+		C D	G I H	J^{π} : E2 γ to 6 ⁺ , member of g.s. band.
988.548 [@] 15	2+	1.40 ps 6	ΒD	FGHI	J^{π} : E2 γ 's to 0 ⁺ and 4 ⁺ . T _{1/2} : from B(E2) in Coul. ex.; other value: > 1.25 ps (2017Le04, (n,n' γ)).
1016?	2+	1505 6		Н	
1057.426 19	3'	>1525 fs	вр	FGI	J ^{π} : M1+E2 γ s to 2' and 4'.
$10/0.422^{\circ}$ 21	4+		A	GH	J^{n} : E2 γ to 2 ⁺ and γ to 6 ⁺ .
1147.985 21	4+	0.75 ps +51-22	D	FGHI	J [*] : E2 γ to 2 ⁺ and M1+E2 γ to 4 ⁺ . B(E4) \uparrow value, from (pol p,p') coupled-channel analysis, is suggestive of collective (γ -vibrational) character.
1173.09 ^{&} 4	(5)+		A	G	J ^{π} : 4 ⁺ ,5 ⁺ from M1+E2 γ to 4 ⁺ , γ to 6 ⁺ ; member of K^{π} =4 ⁺ band makes 4 ⁺ less likely.
1224.237 ^b 22	1(-)	14.2 fs <i>14</i>	ΒE	FGHI	J ^{π} : (E1) γ 's to 0 ⁺ and 2 ⁺ . Population of this level in (d,d') suggests natural parity, although level is only weakly excited there. Bandhead of K^{π} =0 ⁻ octupole vibration. T _{1/2} : other value calculated by evaluator from $\Gamma^2_{\gamma 0}/\Gamma$ =4.5 meV 12 in (γ , γ') (1989Pi05) and the adopted γ branching from this level: 15 fs 4.
1260.98 [@] 4	5+	243 fs +83-55	Α	G	J^{π} : M1+E2 γ 's to 4 ⁺ and 6 ⁺ .
1289.76 ^b 3	3-	23.6 fs 21	B D	FGHI	 B(E3)↑=0.118 7 XREF: D(1299). B(E3)↑: from Coul. Ex. (1981Mc06). J^π: E1+M2 γ to 4⁺ and (E1) γ to 2⁺; E3 excitation in Coul. ex. B(E3)↑ indicates collective excitation. T_{1/2}: other value: 51 fs 14 (1981Mc06, based on Doppler-broadened line shape in Coul. ex.).
1295.22 ^{&} 5	(6 ⁺)		A	G	J ^{π} : (4 ⁺ ,5,6 ⁺) from γ 's to 4 ⁺ and 6 ⁺ ; (6 ⁺) adopted by 2009Go33 in (n,n' γ) dataset as member of K^{π} =4 ⁺ band.
1301.3 [#] 9	10+			GΙ	$g(10^+)/g(2^+)=0.93$ 13 (1983Ha24). J ^{π} : Coulomb excited, with sole observed decay mode being a γ to the 8 ⁺ member of the g.s. band. This, together with the level energy indicates that this is the 10 ⁺ member of this band
1325.7 10	(2+)			G	J^{π} : previous (0 ⁺) assignment in (n,n' γ) by 1989Be48 rejected by 2015Le05 and 2009Go33 found this γ anisotropic; (2 ⁺) was tentatively assigned by 2015Le05 based on the observed anisotropy.
1351.188 ^e 20 1376.73 ^e 3	1^{-} 2^{-}	125 fs <i>14</i> >381 fs	B B	G G	J^{π} : E1 γ to 2 ⁺ and γ to 0 ⁺ ; K^{π} =1 ⁻ band head (2009Go33). J^{π} : 2 ⁻ ,3 ⁻ from E1+M2 γ to 2 ⁺ and γ to 3 ⁺ , of which 2 ⁻ is adopted
1379.54 [°] 4	0^{+}	>936 fs	D	G	by in $(n,n'\gamma)$ dataset (2009Go33) as second level in $K^n = 1^-$ band. XREF: D(1382). J^{π} : E2 γ to 2 ⁺ ; spin 0 ⁺ confirmed by isotropic pattern of 1304 γ (see $(n,n'\gamma)$ dataset)
1392.99 [@] 8	6+		A	GΙ	J^{π} : stretched E2 γ to 4 ⁺ and M1+E2 γ to 6 ⁺ . Energy spacing and

¹⁶⁰Gd Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ‡	XR	EF	Comments			
					excitation in Coul. ex. (indicating collective character) support assignment of the state as the 6^+ member of the γ -vibrational band.			
1427.40 ^b 5	5-	35 fs 7		GHI	J ^{π} : E1+M2 γ to 4 ⁺ ; ratio of (d,d') cross sections at 90° and 125°, together with level energy, indicate that this is the 5 ⁻ member of the K^{π} =0 ⁻ octupole band.			
1436.27 ^C 3	2+	>236 fs	В	G	J^{π} : E2 γ 's to 0 ⁺ and 4 ⁺ .			
1437.40 ^{&} 19	(7^{+})		Α	G	J ^{π} : member of first K ^{π} =4 ⁺ band.			
1460.3 4	(3 ⁻)			FΗ	J^{π} : ratio of (d,d') cross sections at 90° and 125°. γ 's to 4 ⁺ and, possibly, 2 ⁺ states.			
1463.83 ^e 4	3-	5.0 fs 35	В	G	J^{π} : E1+M2 γ to 2 ⁺ .			
1483.084 7	(4^{+})	277 f-	A	C	J^{n} : γ' s to 2^{+} and 6^{+} and proposed bandhead configuration.			
1498.85° 5 1531.95 ⁸ 8	4 3 ⁻	>277 18		G	J [*] : E1(+M2) γ to 4 ⁺ , γ to 5 ⁺ , and member of K [*] =1 ⁻ band. J ^{π} : E1+M2 γ to 4 ⁺ , and γ 's to 2 ⁺ and 4 ⁺ . possibly the bandhead of first K^{π} =3 ⁻ band (2009Go33, (n n' γ))			
1548 18 [@] 9	(7^{+})		Α	G	I^{π} : γ 's to 6 ⁺ and expected band structure of γ -vibrational band			
$1558\ 35^{d}\ 8$	0+	>409 fs		G	I^{π} : stretched F2 γ to 2^+ : $\gamma(\theta)$ confirms I=0 assignment			
1561.45 ^c 5	4 ⁺	>222 fs		G	J^{π} : 4 ⁺ ,5 ⁺ from M1+E2 γ to 4 ⁺ and γ to 6 ⁺ ; 2009Go33 and 2017Le04 adopt 4 ⁺ as member of first excited K ^{π} =0 ⁺ band; the latter superseded 2015Le05 that from Alaga rules for γ -ray branching ratios concluded that this level is not a member of the that band.			
1568.67 ^f 4	1^{+}	0.7 ps +13-3		G	J^{π} : M1+E2 γ to 2 ⁺ and (M1) γ to 0 ⁺ states.			
1581.81 ^a 14	(5^+)		Α		J^{π} : M1 γ to (4 ⁺) and proposed band assignment.			
1583.59 14				G				
1586.56 4	2+	>347 fs		G	J ^{π} : M1+E2 γ to 2 ⁺ and γ to 0 ⁺ ; 2009Go33 adopt it as 2 ⁺ member in K^{π} =1 band.			
1597.3 ^{&} 10	(8^+)			G	J ^{π} : γ to (6 ⁺) and member of K ^{π} =4 ⁺ band.			
1598.82 ^d 5 1608.3 7	2+	0.56 ps +51-21	В	G	J^{π} : E2 γ to 0 ⁺ and M1+E2 γ to 3 ⁺ .			
1621.37 ^h 7	2-	0.2 ps +25-1		G	J ^{π} : E1 γ to 3 ⁺ and γ 2 ⁺ , bandhead of first $K^{\pi}=2^{-}$ band.			
1644.39 ^b 13	(7-)			GΙ	J^{π} : γ 's to 6 ⁺ and 8 ⁺ members of the g.s. band. Energy spacing and excitation in Coul. ex. suggest that this is the 7 ⁻ member of the 0 ⁻ octupole band.			
1647.95 8	4+	0.21 ps +18-7		G	J^{π} : E2 γ to 2^{+} and γ to 6^{+} .			
1653.26 ^e 8	5-	42 fs +14-10		G	J^{π} : E1+M2 γ 's to 4 ⁺ and 6 ⁺ .			
1657.2 5	(1 ⁻ ,2)		В		J^{π} : (1 ⁻ ,2,3 ⁻) from γ 's to (1 ⁻) and 3 ⁻ ; (1,2 ⁻) from possible β feeding from (1 ⁻) (2020Ha13).			
1661.76.5	(2',3,4')	0.6 ps $+11-3$		G	$J'': \gamma'$ s to 2' and 4'.			
1665.09 ^J 5	3^+			G	J^{n} : M1+E2 γ 's to 2 ⁺ and 4 ⁺ .			
1668.4° <i>10</i>	(6)		л	G	J ^{\wedge} : member of first K ^{\wedge} =1 band.			
1066	(3)		U	п	this level was related with 1687.9 in 2005Re18 evaluation based on 1989Be48; however neither of the γ 's depopulating 1687.9 level were confirmed by 2009Go33 and it was not adopted in this evaluation. J^{π} : ratio of the (d,d') cross sections at 90° and 125° suggests 3 ⁻ .			
1691.35 <mark>h</mark> 6	3-	0.15 ps +24-7		G	J^{π} : E1 γ to 4 ⁺ and (E1) γ to 2 ⁺ .			
1692.8? ^f 6	(4 ⁺)			G	E(level): very close lying to well defined 1691 level; according to 2012Gr22 (in $(n,n'\gamma)$ dataset) both these levels are deexcited by 1442.95 γ and 1443.0 γ (possibly of same intensities). J ^{π} : γ 's to 2 ⁺ and 4 ⁺ and member of first K ^{π} =1 ⁺ band.			

Adopted Levels, Gammas (continued)

¹⁶⁰Gd Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XREF		Comments			
1698.21 22	(5,6 ⁺)		A		J ^{π} : (5,6) adopted in β^- decay (42.6 s) based on direct feeding from (5 ⁻) parent; (4 ⁺ ,5,6 ⁺) from γ 's to (4 ⁺) and 6 ⁺ .			
1717.5 [@] 6	(8+)			GΙ	J^{π} : γ 's to 6 ⁺ and 8 ⁺ levels. Level energy consistent with that of the 8 ⁺ member of the γ -vibrational band			
1720.48 9	(2 ⁺)			G	J^{π} : 2 ⁻ ,3,4 ⁺ ruled out by $\gamma(\theta)$ (2009Go33, (n,n' γ)); (2 ⁺ ,3,4 ⁺) from γ 's to 2 ⁺ and 4 ⁺ .			
1731.93 7	NOT 1			G	J^{π} : 1 is ruled out by A ₂ =+0.25 in $\gamma(\theta)$ (2009Go33, (n,n' γ)).			
1748.55 ^C	(6 ⁺)			G	J^{π} : member of first excited $K^{\pi}=0^+$ band.			
1782.48 ^h 7	(4) ⁻			G	J^{π} : E1 γ to 4 ⁺ and member of first $K^{\pi}=2^{-}$ band.			
1804.97 6	2+	>208 fs		G	J^{π} : E2 γ to 0 ⁺ and γ to 4 ⁺ .			
1806.9# 11	12+			GΙ	J^{π} : γ to 10 ⁺ member of g.s. band. Level energy and population in Coulomb excitation indicate that this is the 12 ⁺ member of this band.			
1884.0 ^h 4	(5 ⁻)			G	J^{π} : member of first $K^{\pi}=2^{-}$ band.			
1886.8 7	(1,2)		В		J^{π} : γ to 2 ⁺ and possible β feeding from (1 ⁻) (2020Ha13).			
1910.7° 4	(7^{-})	0.5 . 12 . 2		G	J^{π} : member of first $K^{\pi} = 1^{-}$ band.			
1931.86 <i>10</i>	2'	0.5 ps $+12-2$	В	G	$J^*: MI + E2 \gamma$ to 2' and γ 's to 0' and 4'.			
1941.5° 10	(9)			GI	J^{n} : γ 's to 8' and 10' members of the g.s. band. Level energy consistent with assignment as the 9 ⁻ member of the 0 ⁻ octupole band.			
1966.51 10	(1 ⁻)	23 fs 8	BE	E G	J ^{π} : E1 γ 's to 0 ⁺ and 2 ⁺ , with both γ 's from all three datasets which observed this level. However this contradicts (2 ⁺ ,3,4 ⁺) from other γ 's coming exclusively from β^- decay (30.8 s) to 2 ⁺ and 4 ⁺ , which suggests that this level could be a doublet. See also comments on 908.2, 977.3 and 1717.0 γ transitions. T _{1/2} : mean value of 20 fs 5 from $\Gamma^2_{-\alpha}/\Gamma$ =3.9 meV 9 (1989Pi05,			
1969.67 <i>13</i> 1973	2+			G H C	(γ, γ') , assuming that the 1891 and 1967 γ' s are the only deexciting transitions) and 26 fs +6–5 from DSAM (2017Le04, (n,n' γ)) J ^{π} : M1+E2 γ to 2 ⁺ and γ' s to 0 ⁺ and 4 ⁺ . this level was related with 1971.5 in 2005Re18 evaluation based on 1989Be48; however neither of the γ' s depopulating 1971.5 level were confirmed by 2009Go33 and it was not adopted in this evaluation.			
1990.2015	(5^{-})		Α	G	I^{π} , γ' s to 4 ⁺ and 6 ⁺ and proposed configuration			
					Possible K^{π} =5 ⁻ bandhead. Proposed $\pi^2(5/2[413],5/2[532])$ configuration in β^- decay (42.6 s) (2018Ha19, 2020Ha13).			
2030.61 13	$2^{+},3^{+}$	150 6 . (2 35		G	J': M1+E2 γ to 2' and γ 's to 4'.			
2059.62 10	20,30	159 18 +62-35		GH	XREF: H(2063). J ^π : (E1+M2) γ to 4 ⁺ allows J=2,3,4 and tentative negative parity; 2009Go33 in (n,n' γ) dataset explicitly exclude 2 ⁺ , 4 ⁻ , and 6 ⁺ (from the A ₂ value of angular distribution coefficient).			
2109.33 9	$1^{(+)}$	229 fs +83-49		G	J^{π} : (M1) γ to 0 ⁺ .			
2118.6 [@] 8	(10 ⁺)			GΙ	J^{π} : γ 's to 8 ⁺ and 10 ⁺ states. Level energy consistent with assignment as the 10 ⁺ member of the γ -vibrational band.			
2118.90 <i>18</i> 2135.72 <i>10</i>	2+	0.29 ps +61-13		G G	J^{π} : E2 γ to 0 ⁺ .			
2139 7	1		D	Н	XREF: $H(2141)$.			
2102.09 12	(0^+)		יי ת	5 0	J . upote excitation in (γ, γ) . $I^{\pi} \cdot I = (0)$ in (t n) (1986I olds)			
2242.2 6	(1,2)		В		$\mathbf{v} \cdot \mathbf{\Sigma} (\mathbf{v}) \mathbf{m} (\mathbf{v}, \mathbf{p}) (\mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v}).$			
2252.7 3			A					
2277.4 5	1		BF	Ξ	J^{π} : stretched D γ to 0^+ in (γ, γ') .			

¹⁶⁰Gd Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
2282 74 22	$(1^+ 2^+)$	R G	I^{π} : γ' s to 0^+ and 3^+
2301 54 16	2^+	G	I^{π} : F2 γ to 0 ⁺
2301.5110	(11=)	C T	
2313.30 13	(11)	GI	J^{-1} γ to the 10° member and possible γ to the 12° member of the g.s. band. Level
2215 9 10	(1, 2)	D	energy consistent with assignment as the 11 member of the 0 occupie band.
2315.8 10	(1,2)	В	J [*] : from possible β feeding from (1) (2020Halls).
2327.5 0	(1,2)	В	J^{*} : (1',2,3') from γ 's to 1' and 3' respectively; (1',2) from possible β feeding from (1')
0000 5 5	$(1, 0^{+})$		(2020 mais)
2333.5 5	$(1,2^{+})$	В	$J^{(1)}(0^{(1)}, 1, 2^{(1)})$ from γ s to 0° and 2° respectively; (1°, 2) from possible β feeding from
2211 5 1			(1)(2020Ha13).
2344.3 4	1+	A de C	VDEE: d(2250)
2347.4 4	1	ur G	AREF. $U(2530)$.
22(1.02.14	$(2^+, 2^-)$	D	J. WE EXchange in (γ, γ) .
2361.93 14	(2,3)	B G	J^{*} : γ s to 1 γ and 4 γ .
2377.9 ^m 15	14+	GI	J^{n} : sole observed decay mode is a γ to the 12 ⁺ member of the g.s. band. Level energy
			and population in Coulomb excitation indicate that this is the 14 ⁺ member of that band.
2383.6 6	$(2^+,3,4^+)$	G	J^{n} : γ 's to 2^{+} and 4^{+} .
2385.6 7	(1,2)	В	J^{π} : from possible β feeding from (1 ⁻) (2020Ha13).
2432.7 4	$(1^{-},2^{+})$	В	J^{π} : γ 's to 0 ⁺ and 3 ⁻ .
2444.8 <i>3</i>	$(2^+,3,4^+)$	G	J^{π} : γ 's to 2 ⁺ and 4 ⁺ .
2456.0 3	$(2^+, 3, 4^+)$	G	J^{π} : γ 's to 2 ⁺ and 4 ⁺ .
2464.41 10	(1^{-})	В	J^{π} : (1,2 ⁺) from γ' s to 0 ⁺ , 2 ⁺ and 2 ⁻ ; (1 ⁻) from possible β feeding from (1 ⁻) (2020Ha13).
2471.77 10	1-	BEG	J^{π} : E1 excitation in (γ, γ') .
			the large B(E1) value (3.1×10 ⁻⁵ 5) for exciting this level in ($\gamma \gamma'$) has been used as
			evidence for considering it to be a collective electric-dipole excitation arising from, for
			example, a reflection-asymmetric shape and/or a cluster configuration.
2489 60 13	$(5^+ 6^+)$	Α	π^{-} γ' s to (4^+) and (7^+)
2510.7.5	$(1, 2^{-})$	R	
2516.5.5	(1,2)	B	I^{π} : (2.3 ⁻) from α'_{S} to 1^{-} , 3^{+} and 3^{-} : (2) from possible β feeding from (1 ⁻) (2020Ha13)
2510.5 5	(2) (1-2)	D D	π_{1} (2,5) from γ 's to 1, γ and γ , (1, 2) from possible ρ fording from (1) (2020Ha13).
2529.9 5	(1,2) (0+1,2+)	Б	$J : (1, 2, 5)$ from γ s to 1 and 5; (1, 2) from possible p feeding from (1) (2020 hars).
2547.0 5	$(0^+, 1, 2^+)$		\mathbf{J}^{*} : $\gamma \in 10^{\circ}$ and \mathbf{Z}° .
2559.54 13	$(5^{+}, 6^{+})$	A	$J^*: \gamma$ s to (4^+) and (7^+) .
2582.9 ^{^w} 10	(12^{+})	GI	J^{π} : γ 's to 10 ⁺ and 12 ⁺ levels. Level energy consistent with assignment as the 12 ⁺
			member of the γ -vibrational band.
2670.2 7	1+	E	J^{n} : M1 excitation in (γ, γ') .
2761.2 7	1	E	J^{π} : dipole excitation in (γ, γ') .
2796.2 7	1+	E	J^{π} : M1 excitation in (γ, γ') .
2820.2 7	$1^{(+)}$	Е	J^{π} : dipole, $\Delta \pi = (no)$ excitation in (γ, γ') .
2999.2 7	1	Е	J^{π} : dipole excitation in (γ, γ') .
3008.7 [#] 18	16+	GΙ	J^{π} : sole observed mode of decay is a γ to the 14 ⁺ member of the g.s. band. Level energy
			and population in Coulomb excitation indicate that this is the 16^+ member of that band.
3032.2 7	1-	Е	J^{π} : E1 excitation in (γ, γ') .
3131.2 7	1-	Е	J^{π} : E1 excitation in (γ, γ') .
3166.2 7	1 ⁽⁻⁾	Е	J^{π} : dipole, $\Delta \pi = (\text{ves}) \exp(-i \alpha t r)$
3170.2.7	1+	F	$[\pi, M]$ excitation in (γ, γ')
3228.2.7	1	F	I^{π} , dipole excitation in (γ, γ')
3277 2 7	1+	н Т	I^{π} . M1 excitation in (γ, γ) .
3292 2 7	1	F	$\overline{\mathcal{I}}$, dipole excitation in (γ, γ) .
3292.27	1+ 1+	E F	$\overline{\mathcal{I}}$. M1 excitation in (y, y) .
3300.27	1	E F	J. WI Contation in (y, y) .
JJ20.2 / 2221 2 7	1 1+	E F	J. upote excitation in (y, y) .
3331.2 /	1	E	J : IVII excitation in (γ, γ) .
3340.2 /	1'	E	J': IVII excitation in (γ, γ') .
3357.27	1	E	J [*] : dipole excitation in (γ, γ') .
3376.2 7	1	E	J': dipole excitation in (γ, γ') .
3415.27	1-	E	J^{\prime} : El excitation in (γ, γ') .
3460.2 7	1^{-}	E	J': E1 excitation in (γ, γ') .

¹⁶⁰Gd Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
3477.2 7	$1^{(+)}$	E	J^{π} : dipole, $\Delta \pi = (no)$ excitation in (γ, γ') .
3537.2 7	1	E	J^{π} : dipole excitation in (γ, γ') .
3550.2 7	1	E	J^{π} : dipole excitation in (γ, γ') .

[†] Except for levels populated only in (γ, γ') , from a least-squares fit to the γ -ray energies with $\Delta E_{\gamma}=1$ keV for γ' s with no listed uncertainties. No unc is assigned to levels when no unc is assigned to the energy values of its decaying γ' s. Values from the dataset are adopted for transitions populated exclusively in (γ, γ') (see comment therein).

[‡] From $\gamma(\theta)$ and DSAM in (n,n' γ) dataset (2017Le04 and 2015Le05) unless noted otherwise.

[#] Band(A): $K^{\pi}=0^+$ ground-state rotational band. A=12.60 keV, B=-8.6 eV (from 0^+ , 2^+ , and 4^+ levels).

[@] Band(B): $K^{\pi}=2^{+} \gamma$ -vibrational band. A=11.54 keV, B=-7.9 eV, and A₄=-0.89 eV (from 2⁺, 3⁺, 4⁺, and 5⁺ levels).

[&] Band(C): First $K^{\pi}=4^+$ band, possible hexadecapole-vibrational band, A=11.85 keV (from 4⁺ and 6⁺ levels). A significant odd-even shift in the level energies renders extraction of additional band parameters from only two energy differences ambiguous. The quasiparticle-phonon model calculations of 1996So19 and 1997So26 indicate that this band is predominantly hexadecapole-vibrational in makeup. Dominant 2-qp $v^2(3/2[521],5/2[523])$ configuration (2018Ha19, 2020Ha13).

^{*a*} Band(c): Second $K^{\pi}=4^+$ band. Dominant 2-qp $\pi^2(3/2[411],5/2[413])$ configuration (2018Ha19, 2020Ha13).

^b Band(D): $K^{\pi}=0^{-}$ octupole-vibrational band. A=6.58 keV (from 1⁻ and 3⁻ levels). Small A-value and relatively large, positive, implied B-value probably reflects strong Coriolis mixing with other octupole bands.

^{*c*} Band(E): first excited $K^{\pi}=0^+$ band.

- ^{*d*} Band(F): second excited $K^{\pi}=0^+$ band.
- ^{*e*} Band(G): first $K^{\pi}=1^{-}$ band.
- ^{*f*} Band(H): first $K^{\pi} = 1^+$ band.
- ^{*g*} Band(a): first $K^{\pi}=3^{-}$ band ?
- ^{*h*} Band(b): first $K^{\pi}=2^{-}$ band.

	Adopted Levels, Gammas (continued)												
						$\gamma(^{160}$	Gd)						
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	$\delta^{\&h}$	α^{g}	Comments					
75.263	2+	75.26 1	100	0.0 0+	[E2]		7.33	$\begin{aligned} &\alpha(K)=2.26\ 4;\ \alpha(L)=3.91\ 6;\ \alpha(M)=0.925\ 13\\ &\alpha(N)=0.206\ 3;\ \alpha(O)=0.0267\ 4;\ \alpha(P)=0.0001124\ 16\\ &B(E2)(W.u.)=200.5\ +25-27 \end{aligned}$					
248.502	4+	173.24 3	100	75.263 2+	E2		0.361	E_{γ} : from curved crystal measurement in Coul. ex. $\alpha(K)=0.239 \ 4; \ \alpha(L)=0.0942 \ 14; \ \alpha(M)=0.0218 \ 3$ $\alpha(N)=0.00400 \ 7; \ \alpha(O)=0.000666 \ 10; \ \alpha(P)=1.326\times 10^{-5} \ 10$					
514.81	6+	266.31 4	100	248.502 4+	E2		0.0874	$\alpha(N)=0.00490^{-7}, \alpha(O)=0.000000^{-10}, \alpha(I)=1.520\times10^{-11}$ $\alpha(K)=0.0654^{-10}, \alpha(L)=0.01711^{-24}, \alpha(M)=0.00390^{-6}$ $\alpha(N)=0.000880^{-13}, \alpha(O)=0.0001237^{-18}, \alpha(P)=4.00\times10^{-6}$					
868.6	8+	353.19	100	514.81 64	E2		0.0368	$\alpha(K)=0.0289 4; \ \alpha(L)=0.00621 9; \ \alpha(M)=0.001397 20$ $\alpha(K)=0.000317 5; \ \alpha(O)=4.56\times10^{-5} 7; \ \alpha(P)=1.85\times10^{-6} 3$					
988.548	2+	739.96 10	4.7 4	248.502 4+	E2		0.00532	$\alpha(K) = 0.00444 \ 7; \ \alpha(L) = 0.000691 \ 10; \ \alpha(M) = 0.0001513 \ 22 \\ \alpha(N) = 3.46 \times 10^{-5} \ 5; \ \alpha(O) = 5.24 \times 10^{-6} \ 8; \ \alpha(P) = 3.05 \times 10^{-7} \ 5 \\ B(E2)(W.u.) = 0.85 \ 8 $					
		913.27 2	100.0 [@] 1	75.263 2+	M1+E2	-0.45 +4-5	0.00529 11	B(M1)(W.u.)=0.00884 +46-51; B(E2)(W.u.)=1.07 +21-16 α (K)=0.00450 9; α (L)=0.000618 12; α (M)=0.0001336 25 α (N)=3.07×10 ⁻⁵ 6; α (O)=4.78×10 ⁻⁶ 10; α (P)=3.24×10 ⁻⁷ 7 δ : from 2017Le04; other values: < -37 and -72 +35- ∞ (2009Go33).					
		988.56 2	88.7 [@] 1	0.0 0+	E2		0.00282	α (K)=0.00238 4; α (L)=0.000345 5; α (M)=7.50×10 ⁻⁵ 11 α (N)=1.721×10 ⁻⁵ 24; α (O)=2.63×10 ⁻⁶ 4; α (P)=1.647×10 ⁻⁷ 23 B(E2)(W.u.)=3.80 16					
1057.426	3+	808.94 <i>3</i>	20.6 [@] 2	248.502 4+	M1+E2	-11.7 +16-23	0.00437	$\alpha(K)=0.00366\ 6;\ \alpha(L)=0.000556\ 8;\ \alpha(M)=0.0001214\ 17$ $\alpha(N)=2.78\times10^{-5}\ 4;\ \alpha(O)=4.22\times10^{-6}\ 6;\ \alpha(P)=2.53\times10^{-7}\ 4$ B(M1)(W.u.)<4.6×10^{-5}; B(E2)(W.u.)<3.6 δ : from 2009Go33; other value: 0.11 3 (2017Le04).					
		982.16 2	100 [@] 1	75.263 2+	M1+E2	+47 +18-10	0.00286	$\alpha(K)=0.00241 4; \alpha(L)=0.000350 5; \alpha(M)=7.62\times10^{-5} 11$ $\alpha(N)=1.747\times10^{-5} 25; \alpha(O)=2.67\times10^{-6} 4; \alpha(P)=1.670\times10^{-7} 24$ B(M1)(W.u.)<9.2×10^{-6}; B(E2)(W.u.)<6.5 δ : from 2009Go33.					
1070.422	4+	555.6 5	$1.6^{\circ} l$	514.81 6 ⁺	M1+E2	0.71.2	0.00(20.11	(V) 0.00524.0. (I) 0.000746.12 (M) 0.000162.2					
		821.92 2	100 2	248.502 4	MI+E2	-0.71 3	0.00629 11	$\alpha(\text{K})=0.00534\ 9;\ \alpha(\text{L})=0.000746\ 12;\ \alpha(\text{M})=0.000162\ 3$ $\alpha(\text{N})=3.71\times10^{-5}\ 6;\ \alpha(\text{O})=5.75\times10^{-6}\ 10;\ \alpha(\text{P})=3.83\times10^{-7}\ 7$ $\delta:\ \text{from }\ 2009\text{Go}33.$					
		995.16 <i>3</i>	64.2 [@] 13	75.263 2+	E2		0.00278	α (K)=0.00235 4; α (L)=0.000340 5; α (M)=7.39×10 ⁻⁵ 11 α (N)=1.695×10 ⁻⁵ 24; α (O)=2.60×10 ⁻⁶ 4; α (P)=1.625×10 ⁻⁷ 23 δ : E2+M3 in (n,n' γ) with mixing ratio not given.					
1147.985	4+	899.47 2	100 [@] 1	248.502 4+	M1+E2	+21 +21-7	0.00345	$\alpha(K)=0.00290 5; \alpha(L)=0.000430 6; \alpha(M)=9.36\times10^{-5} 14$ $\alpha(N)=2.15\times10^{-5} 3; \alpha(O)=3.27\times10^{-6} 5; \alpha(P)=2.01\times10^{-7} 3$ B(M1)(W.u.)=6×10 ⁻⁵ +8-5; B(E2)(W.u.)=16 +7-6 δ : from 2009Go33.					

From ENSDF

 $^{160}_{64}{
m Gd}_{96}$ -7

 $^{160}_{64}{
m Gd}_{96}$ -7

					Adopte	ed Levels, Gam	nas (continued	1)
						$\gamma(^{160}\text{Gd})$ (con	tinued)	
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	$\delta^{\&h}$	α^{g}	Comments
1147.985	4+	1072.74 3	58.5 [@] 9	75.263 2+	E2		0.00238	$\alpha(K)=0.00201 \ 3; \ \alpha(L)=0.000288 \ 4; \\ \alpha(M)=6.24\times10^{-5} \ 9 \\ \alpha(N)=1.432\times10^{-5} \ 20; \ \alpha(O)=2.20\times10^{-6} \ 3; \\ \alpha(P)=1.395\times10^{-7} \ 20$
1173.09	(5)+	102.7 ^e 3	30.2 ^e 19	1070.422 4+	M1		1.87	B(E2)(W.u.)=3.8 +16-15 α (K)=1.58 3; α (L)=0.227 4; α (M)=0.0494 8 α (N)=0.01137 19; α (O)=0.00176 3; α (P)=0.0001175 20
		658.20 <i>12</i> 924.59 <i>3</i>	13.4 9 100 <i>3</i>	514.81 6 ⁺ 248.502 4 ⁺	M1+E2	+40 +23-11	0.00325	E _γ , I _γ , Mult.: from β ⁻ decay (42.6 s). I _γ : from β ⁻ decay (42.6 s). α(K)=0.00274 4; α(L)=0.000403 6; α(M)=8.77×10 ⁻⁵ 13 α(N)=2.01×10 ⁻⁵ 3; α(O)=3.07×10 ⁻⁶ 5; α(P)=1.89×10 ⁻⁷ 3
1224.237	1(-)	235.8 ^{fj} 10	2.3 ^{<i>f</i>} 3	988.548 2+	[E1]		0.0295 6	δ: from 2009Go33. $\alpha(K)=0.0250 5; \alpha(L)=0.00351 7; \alpha(M)=0.000758 14$ $\alpha(N)=0.000173 4; \alpha(O)=2.61\times10^{-5} 5;$ $\alpha(P)=1.56\times10^{-6} 3$ B(E1)(Wu) = 0.0167 + 30-26 exceeds PLU = 0.01
		1148.98 <i>3</i>	100 [@] I	75.263 2+	(E1)		8.88×10 ⁻⁴	$\alpha(K)=0.00755 \ 11; \ \alpha(L)=9.81\times10^{-5} \ 14; \alpha(M)=2.10\times10^{-5} \ 3 \alpha(N)=4.83\times10^{-6} \ 7; \ \alpha(O)=7.50\times10^{-7} \ 11; \alpha(P)=5.09\times10^{-8} \ 8; \ \alpha(IPF)=8.44\times10^{-6} \ 12 B(E1)(W.u.)=0.0063 \ +7-6$
		1224.21 3	67.5 [@] 8	0.0 0+	(E1)		8.21×10 ⁻⁴	Mult.: pure dipole in Coul. ex. does not exclude M1. $\alpha(K)=0.000674 \ 10; \ \alpha(L)=8.74\times10^{-5} \ 13;$ $\alpha(M)=1.87\times10^{-5} \ 3$ $\alpha(N)=4.30\times10^{-6} \ 6; \ \alpha(O)=6.68\times10^{-7} \ 10;$ $\alpha(P)=4.54\times10^{-8} \ 7; \ \alpha(IPF)=3.53\times10^{-5} \ 5$ B(E1)(W.u.)=0.00350 +40-32 Mult.: gura diagonic Coul. ex. does not evolve M1.
1260.98	5+	203.2 ^{<i>j</i>} 4	4.5 13	1057.426 3+	[E2]		0.211 4	Mult.: pure dipole in Coul. ex. does not exclude M1. $\alpha(K)=0.1474\ 23;\ \alpha(L)=0.0490\ 8;\ \alpha(M)=0.01129\ 19$ $\alpha(N)=0.00254\ 4;\ \alpha(O)=0.000349\ 6;\ \alpha(P)=8.50\times10^{-6}$ 13 $E_{\gamma}:$ uncertain placement: B(E2)(W.u.)=4.7E3\ +19-18 exceeds BUI
		746.21 8	19.6 [@] 9	514.81 6+	M1+E2	+8 +13-4	0.00528 20	Additional information 2. $\alpha(K)=0.00441 \ 17; \ \alpha(L)=0.000682 \ 21; \ \alpha(M)=0.000149 \ 5 \ \alpha(N)=3.42 \times 10^{-5} \ 10; \ \alpha(O)=5.18 \times 10^{-6} \ 16;$

 ∞

						Adopte	ed Levels, Gam	mas (continue	ed)
							$\gamma(^{160}\text{Gd})$ (cor	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	I_{γ} #	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	_δ &h	α^{g}	Comments
									$\begin{aligned} &\alpha(P)=3.04\times10^{-7} \ 13\\ B(M1)(W.u.)=0.0005 \ +15-5; \ B(E2)(W.u.)=30 \ 8\\ &\delta: \ from \ 2017Le04; \ other \ values: \ +0.03 \ 3 \ or \ -22 \ +11-800\\ &(2009Go33); \ 0.24 \ 10 \ (2017Le04, \ higher \ \chi^2 \ than \ for \ adopted \ value). \end{aligned}$
1260.98	5+	1012.46 3	100 [@] 1	248.502	4+	M1+E2	+15 +17-6	0.00269	$\alpha(K)=0.00227 \ 4; \ \alpha(L)=0.000328 \ 5; \ \alpha(M)=7.12\times10^{-5} \ 11 \\ \alpha(N)=1.634\times10^{-5} \ 24; \ \alpha(O)=2.50\times10^{-6} \ 4; \\ \alpha(P)=1.574\times10^{-7} \ 23 \\ B(E2)(W.u.)<45 \\ S_{1} \ S_{1} \ c_{1} \ c_{1} \ c_{1} \ c_{1} \ c_{1} \ c_{1} \ c_{2} \ c_{$
1289.76	3-	1041.27 <i>3</i>	54.6 [@] 7	248.502	4+	E1		1.05×10 ⁻³	b: from 2017Le04; other value: +49 +34-14 (2009C055). B(E1)(W.u.)=0.00304 +30-25 α (K)=0.000904 13; α (L)=0.0001178 17; α (M)=2.53×10 ⁻⁵ 4
									α (N)=5.81×10 ⁻⁶ 9; α (O)=9.00×10 ⁻⁷ 13; α (P)=6.08×10 ⁻⁸ 9 Mult., δ : E1+M2, δ =+0.10 2 (2009Go33); M2 mixing not adopted becasue B(M2)(W.u.) exceeds RUL.
		1214.43 5	100 [@] I	75.263	2+	(E1)		8.28×10 ⁻⁴	$\alpha(K)=0.000684 \ 10; \ \alpha(L)=8.86\times10^{-5} \ 13; \ \alpha(M)=1.90\times10^{-5} \ 3 \ \alpha(N)=4.37\times10^{-6} \ 7; \ \alpha(O)=6.78\times10^{-7} \ 10; \ \alpha(P)=4.61\times10^{-8} \ 7; \ \alpha(IPF)=3.09\times10^{-5} \ 5 \ B(E1)(W.u.)=0.00351 \ +34-28 \ Mult : from Coul. ex.$
1295.22	(6+)	123 ^{<i>j</i>} 1 224.96 12 780.66 13 1046.62 ^{<i>i</i>} 5	<11 53 4 35 3 100 ⁱ 4	1173.09 1070.422 514.81 248.502	$(5)^+$ 4^+ 6^+ 4^+				E_{γ},I_{γ} : from 2020Ha13 (β^- decay (4.6 s)).
1301.3	10+	432.7 ^b	100	868.6	8+	[E2]		0.0206	$\alpha(K)=0.01654\ 24;\ \alpha(L)=0.00318\ 5;\ \alpha(M)=0.000709\ 10$ $\alpha(N)=0.0001612\ 23;\ \alpha(O)=2.36\times10^{-5}\ 4;\ \alpha(P)=1.093\times10^{-6}$
1325.7	(2+)	1250.42	100	75.263	2+				γ ray initially considered isotropic by 1989Be48 was proved unisotropic by 2009Go33 and 2015Le05. Moreover 2009Go33 replaced it uniquely at 1499, while 2015Le05 found it as doublet placed at 1499 and 1326 respectively.
1351.188	1-	1275.90 2	100 [@] 2	75.263	2+	E1		7.90×10 ⁻⁴	$\alpha(K)=0.000627 \ 9; \ \alpha(L)=8.11\times10^{-5} \ 12; \ \alpha(M)=1.739\times10^{-5} \ 25 \ \alpha(N)=4.00\times10^{-6} \ 6; \ \alpha(O)=6.20\times10^{-7} \ 9; \ \alpha(P)=4.23\times10^{-8} \ 6; \ \alpha(IPF)=5.99\times10^{-5} \ 9 \ B(E1)(W.u.)=7.4\times10^{-4} \ +9-8 \ Mult., \delta: \ E1+M2, \ \delta=+0.14 \ 5 \ (2009Go33); \ M2 \ mixing \ not \ adopted \ becasue \ B(M2)(W.u.) \ exceeds \ RUL.$
		1351.30 5	20.0 [@] 4	0.0	0^+	E1		7.62×10^{-4}	$\alpha(K)=0.000567 \ 8; \ \alpha(L)=7.32\times 10^{-5} \ 11; \ \alpha(M)=1.570\times 10^{-5} \ 22$

 $^{160}_{64}{
m Gd}_{96}$ -9

				ued)					
							$\gamma(^{160}\text{Gd})$ (co	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	δ ^{&h}	a ^g	Comments
									$\begin{aligned} &\alpha(\text{N})=3.61\times10^{-6} 5; \ \alpha(\text{O})=5.60\times10^{-7} 8; \ \alpha(\text{P})=3.83\times10^{-8} \\ & 6; \ \alpha(\text{IPF})=0.0001019 \ 15 \\ & \text{B(E1)(W.u.)}=1.24\times10^{-4} +16-13 \end{aligned}$

	Adopted Levels, Gammas (continued)												
	γ ⁽¹⁶⁰ Gd) (continued)												
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.&	$\delta^{\&h}$	α ^g	Comments					
1376.73	2-	319.2 6	1.8 [@] 1	1057.426 3+	E1		0.01364	$\begin{aligned} &\alpha(K) = 0.01160 \ I8; \ \alpha(L) = 0.001602 \ 24; \ \alpha(M) = 0.000346 \ 6 \\ &\alpha(N) = 7.90 \times 10^{-5} \ I2; \ \alpha(O) = 1.202 \times 10^{-5} \ I8; \\ &\alpha(P) = 7.42 \times 10^{-7} \ I1 \\ &B(E1)(W.u.) < 3.5 \times 10^{-4} \end{aligned}$					
		1128.3 ^j 10	≤1	248.502 4+				E_{γ} : from β- decay (30.8 s), not confirmed by other studies (if placed here it would be a M2 γ which is less likely).					
		1301.46 3	100 [@] 1	75.263 2+	E1(+M2)	-0.08 +5-4	0.00081 4	$\alpha(K)=0.0063 4; \alpha(L)=8.2\times10^{-5} 5; \alpha(M)=1.76\times10^{-5} 11$ $\alpha(N)=4.05\times10^{-6} 25; \alpha(O)=6.3\times10^{-7} 4; \alpha(P)=4.3\times10^{-8}$ $3; \alpha(IPF)=7.25\times10^{-5} 12$ $B(E1)(W.u.)<2.7\times10^{-4}$					
1379.54	0^{+}	1304.27 4	100	75.263 2+	E2		1.63×10^{-3}	B(M2)(W.u.)<10 exceeds RUL=1. α (K)=0.001366 20; α (L)=0.000189 3; α (M)=4.09×10 ⁻⁵ 6 α (N)=9.40×10 ⁻⁶ 14; α (O)=1.450×10 ⁻⁶ 21;					
1392.99	6+	878.17 8	100 6	514.81 6+	M1+E2	+14 16	0.0036 6	$\alpha(P)=9.48\times10^{-8} \ 14; \ \alpha(IPF)=2.08\times10^{-5} \ 3$ B(E2)(W.u.)<3.1 $\alpha(K)=0.0031 \ 5; \ \alpha(L)=0.00046 \ 6; \ \alpha(M)=9.9\times10^{-5} \ 12$ $\alpha(N)=2.3\times10^{-5} \ 3; \ \alpha(O)=3.5\times10^{-6} \ 5; \ \alpha(P)=2.1\times10^{-7} \ 4$ $\delta: \ from \ 2009G033; \ other \ value: \ +30<\delta < -1.5$					
		1144.63 25	58 4	248.502 4+	E2		0.00209	$\alpha(K)=0.001767\ 25;\ \alpha(L)=0.000250\ 4;\ \alpha(M)=5.41\times10^{-5}$					
1427.40	5-	1178.90 <i>4</i>	100	248.502 4+	E1		8.57×10 ⁻⁴	$\alpha(N)=1.242 \times 10^{-5} \ 18; \ \alpha(O)=1.91 \times 10^{-6} \ 3;$ $\alpha(P)=1.225 \times 10^{-7} \ 18; \ \alpha(IPF)=1.412 \times 10^{-6} \ 23$ $\alpha(K)=0.000721 \ 10; \ \alpha(L)=9.36 \times 10^{-5} \ 13;$ $\alpha(M)=2.01 \times 10^{-5} \ 3$ $\alpha(N)=4.61 \times 10^{-6} \ 7; \ \alpha(O)=7.15 \times 10^{-7} \ 10;$ $\alpha(P)=4.86 \times 10^{-8} \ 7; \ \alpha(IPF)=1.681 \times 10^{-5} \ 24$ B(E1)(W.u.)=0.0040 + 10-7 Mult., δ : E1+M2, δ =-0.03 2 (2009Go33); M2 mixing not adopted becasue B(M2)(Wu) exceeds BUI					

From ENSDF

$\gamma(^{160}\text{Gd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f J	f^{π} Mult. $\&$	α^{g}	Comments
1436.27	2+	288.21 ^{<i>ij</i>} 25	8.4 ^{<i>i</i>} 12	1147.985 4+	[E2]	0.0682	α (K)=0.0518 8; α (L)=0.01277 19; α (M)=0.00290 5 α (N)=0.000655 10; α (O)=9.27×10 ⁻⁵ 14; α (P)=3.21×10 ⁻⁶ 5 E_{γ} : uncertain placement: B(E2)(W.u.)<1419 exceeds RUL=1000. Additional information 3.
		1187.76 4	100 [@] 1	248.502 4+	E2	0.00194	$\begin{aligned} &\alpha(\text{K}) = 0.001642\ 23;\ \alpha(\text{L}) = 0.000231\ 4;\ \alpha(\text{M}) = 4.99 \times 10^{-5}\ 7\\ &\alpha(\text{N}) = 1.146 \times 10^{-5}\ 16;\ \alpha(\text{O}) = 1.764 \times 10^{-6}\ 25;\ \alpha(\text{P}) = 1.138 \times 10^{-7}\ 16;\\ &\alpha(\text{IPF}) = 4.30 \times 10^{-6}\ 6\\ &\text{B}(\text{E2})(\text{W.u.}) < 13 \end{aligned}$
		1361.06 5	36.4 [@] 4	75.263 2+	M1+E2	0.0019 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0016 \ 4; \ \alpha(\mathbf{L}) = 0.00021 \ 4; \ \alpha(\mathbf{M}) = 4.6 \times 10^{-5} \ 9 \\ &\alpha(\mathbf{N}) = 1.06 \times 10^{-5} \ 20; \ \alpha(\mathbf{O}) = 1.6 \times 10^{-6} \ 4; \ \alpha(\mathbf{P}) = 1.11 \times 10^{-7} \ 25; \\ &\alpha(\mathbf{IPF}) = 3.51 \times 10^{-5} \ 20 \\ &\delta: \ -0.02 \ 4 \ \text{or} \ +2.46 \ +30 - 25 \ (2009\text{Go33}, \ (\mathbf{n},\mathbf{n}'\gamma)). \end{aligned}$
		1436.16 7	13.5 [@] 2	0.0 0+	E2	1.39×10 ⁻³	$\begin{aligned} &\alpha(\text{K}) = 0.001135 \ 16; \ \alpha(\text{L}) = 0.0001553 \ 22; \ \alpha(\text{M}) = 3.36 \times 10^{-5} \ 5 \\ &\alpha(\text{N}) = 7.71 \times 10^{-6} \ 11; \ \alpha(\text{O}) = 1.191 \times 10^{-6} \ 17; \ \alpha(\text{P}) = 7.87 \times 10^{-8} \ 11; \\ &\alpha(\text{IPF}) = 5.39 \times 10^{-5} \ 8 \\ &\text{B}(\text{E2})(\text{W.u.}) < 0.67 \end{aligned}$
1437.40 1460.3	(7 ⁺) (3 ⁻)	264.5 ^e 3 1385.0 4 1461 7 ^j 6	100 100 <i>14</i> 64 7	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$)+		
1463.83	3-	1215.3 ^{<i>f</i>} 8	100 ^f 5	248.502 4 ⁺	[E1]	8.27×10 ⁻⁴	α (K)=0.000683 <i>10</i> ; α (L)=8.85×10 ⁻⁵ <i>13</i> ; α (M)=1.90×10 ⁻⁵ <i>3</i> α (N)=4.36×10 ⁻⁶ <i>7</i> ; α (O)=6.77×10 ⁻⁷ <i>10</i> ; α (P)=4.60×10 ⁻⁸ <i>7</i> ; α (IPF)=3.13×10 ⁻⁵ <i>6</i> B(E1)(W.u.)=0.016 + <i>18</i> -7
		1388.56 4	64.1 ^{<i>f</i>} 14	75.263 2+	E1	7.56×10 ⁻⁴	$\alpha(K)=0.000541 \ 8; \ \alpha(L)=6.98\times10^{-5} \ 10; \ \alpha(M)=1.496\times10^{-5} \ 21$ $\alpha(N)=3.44\times10^{-6} \ 5; \ \alpha(O)=5.34\times10^{-7} \ 8; \ \alpha(P)=3.65\times10^{-8} \ 6; \ \alpha(PF)=0.0001263 \ 18$ B(E1)(W.u.)=0.007 + 7-3 Mult., δ : E1+M2, δ =-0.050 20 (2009Go33); M2 mixing not adopted because B(M2)(W.u.) exceeds RUL.
1483.08	(4+)	187.5 ^e 3 310.0 ^e 2 412.7 ^e 1 968.4 ^e 3 1234.6 ^e 2 1408.1 ^e 3	$2.0^{e} 7$ 7.6 ^e 5 100 ^e 5 4.6 ^e 6 13.4 ^e 7 1.3 ^e 5	$\begin{array}{c} 1295.22 & (6)\\ 1173.09 & (5)\\ 1070.422 & 4^{+}\\ 514.81 & 6^{+}\\ 248.502 & 4^{+}\\ 75.263 & 2^{+} \end{array}$	+))+		
1498.85	4-	441.51 22	7.8 12	1057.426 3+	[E1]	0.00626	α (K)=0.00534 8; α (L)=0.000725 11; α (M)=0.0001562 22 α (N)=3.58×10 ⁻⁵ 5; α (O)=5.48×10 ⁻⁶ 8; α (P)=3.49×10 ⁻⁷ 5 B(E1)(W.u.)<8.2×10 ⁻⁴

12

					Adopted	Levels, Gammas	(continued)	
						$\gamma(^{160}\text{Gd})$ (continue	ed)	
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	$\delta^{\&h}$	α^{g}	Comments
1498.85	4-	1250.34 4	100 3	248.502 4+	E1(+M2)	+0.05 6	0.00082 6	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00066 \ 5; \ \alpha(\mathbf{L}) = 8.6 \times 10^{-5} \ 7; \\ &\alpha(\mathbf{M}) = 1.84 \times 10^{-5} \ 15 \\ &\alpha(\mathbf{N}) = 4.2 \times 10^{-6} \ 4; \ \alpha(\mathbf{O}) = 6.6 \times 10^{-7} \ 6; \\ &\alpha(\mathbf{P}) = 4.5 \times 10^{-8} \ 4; \ \alpha(\mathbf{IPF}) = 4.74 \times 10^{-5} \ 8 \\ &\mathbf{B}(\mathbf{E1})(\mathbf{W}.\mathbf{u}.) < 4.0 \times 10^{-4} \\ &\delta: \ \text{from } 2009\text{Go33.} \end{aligned}$
1531.95	3-	384.02 10	100 6	1147.985 4+	E1+M2	-0.14 5	0.012 3	B(M2)(W.u.)<14 exceeds RUL=1. $\alpha(K)=0.0101 \ 23; \ \alpha(L)=0.00148 \ 38; \ \alpha(M)=3.22\times10^{-4} \ 85$ $\alpha(N)=7.4\times10^{-5} \ 20; \ \alpha(O)=1.13\times10^{-5} \ 30; \ \alpha(P)=7.2\times10^{-7} \ 20$ δ : from 2009Go33.
1548.18	(7+)	543.37 ^{<i>i</i>} 11 1283.1 3 286.9 ^{<i>e</i>} 3 1033 40 8	$62^{i} 5$ 6 3 20 ^e 10	988.548 2 ⁺ 248.502 4 ⁺ 1260.98 5 ⁺ 514.81 6 ⁺				
1558.35	0+	1483.08 8	100	75.263 2+	E2		1.32×10 ⁻³	α (K)=0.001068 <i>15</i> ; α (L)=0.0001456 <i>21</i> ; α (M)=3.14×10 ⁻⁵ <i>5</i> α (N)=7.22×10 ⁻⁶ <i>11</i> ; α (O)=1.117×10 ⁻⁶ <i>16</i> ; α (P)=7.41×10 ⁻⁸ <i>11</i> ; α (IPF)=6.86×10 ⁻⁵ <i>10</i> B(F2)(W u)<3.7
1561.45	4+	1046.62 ^{<i>i</i>} 5	100 ^{i@} 1	514.81 6+	[E2]		0.00250	$\alpha(K)=0.00212 \ 3; \ \alpha(L)=0.000304 \ 5; \alpha(M)=6.59\times10^{-5} \ 10 \alpha(N)=1.512\times10^{-5} \ 22; \ \alpha(O)=2.32\times10^{-6} \ 4; \alpha(P)=1.466\times10^{-7} \ 21 B(E2)(Wu)>23$
		1312.99 7	74.8 [@] 3	248.502 4+	M1+E2	+0.28 +34-12	0.00237 17	B(M1)(W.u.)<0.018; B(E2)(W.u.)<1.5 α (K)=0.00200 15; α (L)=0.000269 19; α (M)=5.8×10 ⁻⁵ 4 α (N)=1.34×10 ⁻⁵ 10; α (O)=2.08×10 ⁻⁶ 15; α (P)=1.43×10 ⁻⁷ 12; α (IPF)=2.48×10 ⁻⁵ 7 δ : from 2017Le04; other value: +0.57 +17-44 (2009Go33).
1568.67	1+	217.4 ^{<i>i</i>} 3	8.8 ^{i@} 15	1351.188 1-	E1		0.0364	$\alpha(K)=0.0309 5; \alpha(L)=0.00436 7; \alpha(M)=0.000941 14 \alpha(N)=0.000215 4; \alpha(O)=3.23\times10^{-5} 5; \alpha(P)=1.91\times10^{-6} 3 P(E1)(W,u)=0.0010+8.5 Comparison of the second sec$
		580.11 7	89.2 [@] 16	988.548 2+	M1+E2	+0.28 +25-18	0.0168 12	B(E1)(W.U.)=0.0010 +8-3 α (K)=0.0143 11; α (L)=0.00199 11; α (M)=0.000431 23 α (N)=9.9×10 ⁻⁵ 6; α (O)=1.54×10 ⁻⁵ 9;

						Adopte	d Levels, Gamm	as (continued))
							γ (¹⁶⁰ Gd) (conti	nued)	
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.&	$\delta^{\&h}$	α ^g	Comments
					<u> </u>				α (P)=1.04×10 ⁻⁶ 9 B(M1)(W.u.)=0.045 +33-25; B(E2)(W.u.)=5 +13-4 δ : from 2017Le04; other values: +0.45 +50-24 or +2< δ < -11 (2009Go33).
1568.67	1^{+}	1493.39 7	94.4 [@] 16	75.263	2^{+}	M1+E2	+1.34 +16-6	0.00151 4	$\alpha(K)=0.00122$ 3; $\alpha(L)=0.000165$ 4; $\alpha(M)=3.56\times10^{-5}$
									α (N)=8.19×10 ⁻⁶ <i>19</i> ; α (O)=1.27×10 ⁻⁶ <i>3</i> ; α (P)=8.60×10 ⁻⁸ <i>22</i> ; α (IPF)=7.52×10 ⁻⁵ <i>12</i> B(M1)(W.u.)=0.0011 +8-7; B(E2)(W.u.)=0.43 +36-24 δ : from 2017Le04; other values: +12.5 <i>122</i> and +0.3< δ <+24.6 (2009Go33).
		1568.70 7	100 [@] 2	0.0	0+	(M1)		1.70×10 ⁻³	$\alpha(K)=0.001359 \ 19; \ \alpha(L)=0.000182 \ 3;$ $\alpha(M)=3.91\times10^{-5} \ 6$ $\alpha(N)=9.01\times10^{-6} \ 13; \ \alpha(O)=1.407\times10^{-6} \ 20;$ $\alpha(P)=9.74\times10^{-8} \ 14; \ \alpha(IPF)=0.0001115 \ 16$ B(M1)(W.u.)=0.0028 +22-15 Mult.: pure dipole in (n,n' γ) (2009Go33) does not exclude E1
1581.81	(5+)	98.8 ^e 3	8.9 ^e 22	1483.08	(4+)	M1		2.08 4	$\alpha(K)=1.76 \ 3; \ \alpha(L)=0.254 \ 5; \ \alpha(M)=0.0552 \ 10$ $\alpha(N)=0.01271 \ 21; \ \alpha(O)=0.00197 \ 4; \ \alpha(P)=0.0001313$ 22 Mult : from β^- decay (42.6 s)
1583.59		286 ^e j 408.9 ^e 2 293.76.17	$< 1.4^{e}$ 100 ^e 5	1295.22 1173.09 1289.76	(6^+) (5) ⁺ 3 ⁻				$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$
1586.56	2+	1511.40 7	33.0 15	75.263	2+	M1+E2	-0.24 5	0.00179	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001455\ 23;\ \alpha(\mathbf{L}) = 0.000195\ 3;\\ &\alpha(\mathbf{M}) = 4.20 \times 10^{-5}\ 7\\ &\alpha(\mathbf{N}) = 9.67 \times 10^{-6}\ 15;\ \alpha(\mathbf{O}) = 1.509 \times 10^{-6}\ 24;\\ &\alpha(\mathbf{P}) = 1.043 \times 10^{-7}\ 17;\ \alpha(\mathbf{IPF}) = 8.75 \times 10^{-5}\ 13\\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) < 0.0047;\ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) < 0.082\\ &\delta:\ from\ 2017 \mathbf{L}e04;\ other\ values:\ -0.24\ 5\ or\ +5.8\\ &+24-13\ (2009 \mathbf{G}o33). \end{aligned}$
		1586.50 ⁱ 5	100 ^{<i>i</i>} 4	0.0	0+	[E2]		1.21×10 ⁻³	$\alpha(K) = 0.000940 \ I4; \ \alpha(L) = 0.0001273 \ I8; \alpha(M) = 2.75 \times 10^{-5} \ 4 \alpha(N) = 6.31 \times 10^{-6} \ 9; \ \alpha(O) = 9.77 \times 10^{-7} \ I4; \alpha(P) = 6.52 \times 10^{-8} \ I0; \ \alpha(IPF) = 0.0001051 \ I5 B(E2)(W.u.) < 2.4$
1597.3	(8+)	302.1 729.8 ^j		1295.22 868.6	(6 ⁺) 8 ⁺				E_{γ} : from 2012Gr22 in $(n,n'\gamma)$ dataset where is unclear if this placement or that at 1437.2 level is valid (the latter would populate an ineviting level)
1598.82	2+	309.0 5	8.9 [@] 4	1289.76	3-	E1		0.01479	$\alpha(K)=0.01258 \ 19; \ \alpha(L)=0.00174 \ 3; \ \alpha(M)=0.000375 \ 6$

						Adopt	ed Levels, Gam	mas (continue	<u>(d)</u>
							$\gamma(^{160}\text{Gd})$ (co	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.&	$\delta^{\&h}$	α^{g}	Comments
									$\alpha(N) = 8.58 \times 10^{-5} \ 13; \ \alpha(O) = 1.304 \times 10^{-5} \ 19; \alpha(P) = 8.03 \times 10^{-7} \ 12 B(E1)(W.u.) = 0.00051 + 31 - 25$
1598.82	2+	374.6 4	14.8 [@] 3	1224.237	1 ⁽⁻⁾	E1		0.00923	α (K)=0.00786 <i>12</i> ; α (L)=0.001076 <i>16</i> ; α (M)=0.000232 <i>4</i> α (N)=5.31×10 ⁻⁵ <i>8</i> ; α (O)=8.10×10 ⁻⁶ <i>12</i> ; α (P)=5.09×10 ⁻⁷ <i>8</i> B(E1)(W,u)=0.00048 +29-22
		541.40 12	36.8 [@] 3	1057.426	3+	M1		0.0207	$\begin{aligned} \alpha(K) = 0.01757 \ 25; \ \alpha(L) = 0.00243 \ 4; \ \alpha(M) = 0.000527 \ 8 \\ \alpha(N) = 0.0001212 \ 17; \ \alpha(O) = 1.89 \times 10^{-5} \ 3; \\ \alpha(P) = 1.284 \times 10^{-6} \ 18 \\ B(M1)(W.u.) = 0.038 \ +23 - 18 \\ \delta: \ -0.06 \ 10 \ \text{or} \ -4.3 \ +13 - 29 \ (2009\text{Go33}); \ -0.01 \ 9 \ \text{or} \ -5.6 \\ +19 - 50 \ (2017\text{LeO4}). \end{aligned}$
		1523.54 6	100 [@] I	75.263	2+	M1+E2	-1.0 +2-21	0.00153 22	α (K)=0.00123 <i>18</i> ; α (L)=0.000166 <i>23</i> ; α (M)=3.6×10 ⁻⁵ <i>5</i> α (N)=8.2×10 ⁻⁶ <i>12</i> ; α (O)=1.28×10 ⁻⁶ <i>19</i> ; α (P)=8.7×10 ⁻⁸ <i>14</i> ; α (IPF)=8.8×10 ⁻⁵ <i>5</i> B(M1)(W.u.)=0.0023 + <i>16</i> - <i>15</i> ; B(E2)(W.u.)=0.50 + <i>36</i> - <i>25</i> δ : from 2017Le04; other values: -0.83 + <i>10</i> - <i>15</i> or -3.4 +8- <i>11</i> (2009Go33).
		1598.81 7	78.7 [@] 1	0.0	0+	E2		1.20×10 ⁻³	$\alpha(K)=0.000927 \ 13; \ \alpha(L)=0.0001254 \ 18; \alpha(M)=2.70\times10^{-5} \ 4 \alpha(N)=6.21\times10^{-6} \ 9; \ \alpha(O)=9.63\times10^{-7} \ 14; \alpha(P)=6.43\times10^{-8} \ 9; \ \alpha(IPF)=0.0001098 \ 16 B(E2)(W,u)=0.61 \ +37-28$
1608.3		384.1 ^{<i>f</i>} 10	100 f	1224.237	$1^{(-)}$				
1621.37	2-	397.10 <i>17</i>	16.4 15	1224.237	1(-)	[M1]		0.0457	α (K)=0.0388 6; α (L)=0.00543 8; α (M)=0.001177 17 α (N)=0.000271 4; α (O)=4.21×10 ⁻⁵ 6; α (P)=2.85×10 ⁻⁶ 4 B(M1)(W.u.)=0.20 +22-11
		563.99 15	29.0 [@] 7	1057.426	3+	E1		0.00361	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.00308 \ 5; \ \alpha(\mathrm{L}) = 0.000413 \ 6; \ \alpha(\mathrm{M}) = 8.90 \times 10^{-5} \ 13 \\ \alpha(\mathrm{N}) = 2.04 \times 10^{-5} \ 3; \ \alpha(\mathrm{O}) = 3.14 \times 10^{-6} \ 5; \ \alpha(\mathrm{P}) = 2.04 \times 10^{-7} \\ 3 \end{array} $
		632.82 8	100 [@] 2	988.548	2+	E1		0.00282	B(E1)(W.u.)=0.0013 +14-7 α (K)=0.00241 4; α (L)=0.000321 5; α (M)=6.92×10 ⁻⁵ 10 α (N)=1.586×10 ⁻⁵ 23; α (O)=2.44×10 ⁻⁶ 4; α (P)=1.602×10 ⁻⁷ 23 B(E1)(W.u.)=0.0031 +33-17
1644.39	(7 ⁻)	217.4 ^{<i>i</i>} 3 775 1129 51 73	35 ⁱ 11	1427.40 868.6 514.81	5^{-} 8 ⁺ 6 ⁺				observed only in $(n,n'\gamma)$. observed only in Coul. ex.
1647.95	4+	1129.51 15	3.9 15	514.81	6 ⁺	[E2]		0.00213	$\alpha(K)=0.00180 \ 3; \ \alpha(L)=0.000255 \ 4; \ \alpha(M)=5.54\times10^{-5} \ 8$

 $^{160}_{64}\mathrm{Gd}_{96}$ -15

					Adopted Lo	evels, Gamm	as (continued)	
					$\gamma(1)$	¹⁶⁰ Gd) (conti	nued)	
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger \ddagger}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f = \mathbf{J}_j^r$	Mult.&	_δ &h	α^{g}	Comments
1647.95	4+	1399.4 4	7.5 23	248.502 4+	[M1,E2]		0.0018 4	$\alpha(N)=1.270\times10^{-5} \ 18; \ \alpha(O)=1.95\times10^{-6} \ 3; \\ \alpha(P)=1.251\times10^{-7} \ 18; \ \alpha(IPF)=9.7\times10^{-7} \ 3 \\ B(E2)(W.u.)=1.0 \ +7-6 \\ \alpha(K)=0.0015 \ 3; \ \alpha(L)=0.00020 \ 4; \ \alpha(M)=4.3\times10^{-5} \ 8 \\ \alpha(N)=9.9\times10^{-6} \ 19; \ \alpha(O)=1.5\times10^{-6} \ 3; $
		1572.68 8	100 5	75.263 2+	E2		1.22×10 ⁻³	$\alpha(P)=1.05\times10^{-7} \ 23; \ \alpha(IPF)=4.6\times10^{-5} \ 3$ $\alpha(K)=0.000956 \ 14; \ \alpha(L)=0.0001295 \ 19; $ $\alpha(M)=2.79\times10^{-5} \ 4$ $\alpha(N)=6 \ 42\times10^{-6} \ 9; \ \alpha(O)=9 \ 94\times10^{-7} \ 14;$
1653.26	5-	1138.44 <i>16</i>	100 7	514.81 6+	E1(+M2)) -0.06 5	0.00093 7	$\begin{aligned} \alpha(\mathrm{N}) = 0.42 \times 10^{-5}, \ \alpha(\mathrm{O}) = 2.54 \times 10^{-14}, \\ \alpha(\mathrm{P}) = 6.63 \times 10^{-8}, \ log(\mathrm{IPF}) = 0.0001000, 14 \\ \mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) = 4.9 + 25 - 21 \\ \alpha(\mathrm{K}) = 0.00079, \ 6; \ \alpha(\mathrm{L}) = 0.000103, \ 8; \\ \alpha(\mathrm{M}) = 2.21 \times 10^{-5}, 17 \\ \alpha(\mathrm{N}) = 5.1 \times 10^{-6}, \ 4; \ \alpha(\mathrm{O}) = 7.9 \times 10^{-7}, 6; \end{aligned}$
		1404.75 8	100 5	248.502 4+	E1		7.55×10 ⁻⁴	$\alpha(P)=5.3\times10^{-8} 4; \ \alpha(IPF)=6.34\times10^{-6} 11$ B(E1)(W.u.)=0.0018 +6-5 δ : from 2009Go33. B(M2)(W.u.)=23 +63-19 exceeds RUL=1. $\alpha(K)=0.000530 8; \ \alpha(L)=6.84\times10^{-5} 10;$ $\alpha(M)=1.466\times10^{-5} 21$
								$\alpha(N)=3.37\times10^{-6} 5; \alpha(O)=5.24\times10^{-7} 8; \alpha(P)=3.58\times10^{-8} 5; \alpha(IPF)=0.0001372 20$ B(E1)(W.u.)=0.00098 +31-25 Mult., δ : E1+M2, δ =-0.08 4 (2009Go33); M2 mixing not adopted becasue B(M2)(W.u.) exceeds RUL.
1657.2	(1 ⁻ ,2)	367.4 ^f 10	$95^{f}_{f} 4$	1289.76 3-	、 、			
1771 77	(0+ 2, 4+)	433.2 ^J 10	100^{J} 7	1224.237 1(-	-)			
1661.76	(2+,3,4+)	1412.95 25 1586 50 ⁱ 5	$5.6 \overset{\circ}{=} 2$	248.502 4				
1665.09	3+	288.21^{i} 25	$43^{i} 6$	$1376.73 2^{-1}$				
		1416.66 6	100 6	248.502 4+	M1+E2	+1.5 10	0.0016 4	$\alpha(K)=0.0013 \ 3; \ \alpha(L)=0.00018 \ 4; \ \alpha(M)=3.9\times10^{-5} \ 8$ $\alpha(N)=9.0\times10^{-6} \ 18; \ \alpha(O)=1.4\times10^{-6} \ 3;$ $\alpha(P)=9.4\times10^{-8} \ 21; \ \alpha(IPF)=5.0\times10^{-5} \ 3$
		1589.69 8	98 <i>5</i>	75.263 2+	M1+E2	-0.9 5	0.00146 15	δ: from 2009Go33. α (K)=0.00115 <i>12</i> ; α (L)=0.000154 <i>16</i> ; α (M)=3.3×10 ⁻⁵ <i>4</i> α (N)=7.6×10 ⁻⁶ <i>8</i> ; α (O)=1.19×10 ⁻⁶ <i>13</i> ;
1668.4	(6 ⁻)	1153.54	100	514.81 6+				α (P)=8.1×10 ⁻⁸ <i>10</i> ; α (IPF)=0.000114 <i>5</i> δ : from 2009Go33.

					A	dopted Le	vels, Gamma	s (continued)
						$\gamma(1)$	⁶⁰ Gd) (contin	ued)
E_i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	J_f^{π}	Mult.&	a ^g	Comments
1691.35	3-	466.95 12	37 4	1224.237	1(-)	[E2]	0.01674	α (K)=0.01353 <i>19</i> ; α (L)=0.00250 <i>4</i> ; α (M)=0.000557 <i>8</i> α (N)=0.0001268 <i>18</i> ; α (O)=1.87×10 ⁻⁵ <i>3</i> ; α (P)=9.01×10 ⁻⁷ <i>13</i> B(E2)(W.u.)=4.0×10 ² +36-22
		543.37 ⁱ 11	60.8 ^{i@} 15	1147.985	4+	E1	0.00392	α (K)=0.00334 5; α (L)=0.000449 7; α (M)=9.68×10 ⁻⁵ 14 α (N)=2.22×10 ⁻⁵ 4; α (O)=3.41×10 ⁻⁶ 5; α (P)=2.21×10 ⁻⁷ 3 B(E1)(W.u.)=0.0019 +17-10
		634.18 ^{<i>i</i>} 20	99.5 ^{i@} 25	1057.426	3+	E1	0.00281	α (K)=0.00240 4; α (L)=0.000320 5; α (M)=6.88×10 ⁻⁵ 10 α (N)=1.578×10 ⁻⁵ 23; α (O)=2.43×10 ⁻⁶ 4; α (P)=1.595×10 ⁻⁷ 23 B(E1)(W.u.)=0.0019 +18-11
		702.82 8	100 [@] 2	988.548	2+	(E1)	0.00227	α(K)=0.00194 3; α(L)=0.000257 4; α(M)=5.53×10-5 8 α(N)=1.269×10-5 18; α(O)=1.96×10-6 3; α(P)=1.293×10-7 19 B(E1)(W.u.)=0.0014 +13-8 Mult.,δ: E1+M2, δ=+0.06 4 (2009Go33); M2 mixing not adopted becasue B(M2)(W.u.) exceeds RUL.
		1443.0 <i>3</i>	8.6 [@] 6	248.502	4+	E1	7.53×10 ⁻⁴	$\alpha(K)=0.000507\ 7;\ \alpha(L)=6.53\times10^{-5}\ 10;\ \alpha(M)=1.399\times10^{-5}\ 20$ $\alpha(N)=3.21\times10^{-6}\ 5;\ \alpha(O)=5.00\times10^{-7}\ 7;\ \alpha(P)=3.42\times10^{-8}\ 5;$ $\alpha(IPF)=0.0001638\ 23$ $B(E1)(Wu)=1.4\times10^{-5}\ +13-8$
1692.8?	(4+)	1442.95 ^j 1617.5 6	<86 100 <i>21</i>	248.502 75.263	$4^+ 2^+$			E_{γ} , I_{γ} : almost identical with 1443.0 γ from 1691 level (in (n,n' γ)).
1698.21	(5,6 ⁺)	215 ^{ej} 1183.5 ^e 3	41 ^e 9 100 ^e 27	1483.08 514.81	(4 ⁺) 6 ⁺			
1717.5	(8+)	325 849 1202		1392.99 868.6 514.81	6+ 8+ 6+			
1720.48	(2+)	663.4 6 731.93 9 1471.9 3	95 1007 83	1057.426 988.548 248.502	3 ⁺ 2 ⁺ 4 ⁺			δ : -0.67 +15-24 or -6 +3-11 for J(1720)=2.
1731.93	NOT 1	743.39 7 1656.4 <i>4</i>	100 6 12.7 <i>19</i>	988.548 75.263	2^+ 2^+			
1782.48	$(4)^{-}$	521.44 17	19 <i>3</i>	1260.98	5+			E_{γ} , I_{γ} : from (n,n' γ) (2012Gr22).
		634.18 ⁱ 20	100 ^{<i>i</i>}	1147.985	4+	E1	0.00281	α (K)=0.00240 4; α (L)=0.000320 5; α (M)=6.88×10 ⁻⁵ 10 α (N)=1.578×10 ⁻⁵ 23; α (O)=2.43×10 ⁻⁶ 4; α (P)=1.595×10 ⁻⁷ 23 E _{γ} ,I _{γ} : from (n,n' γ) (2012Gr22).
		725.12 8	69 5	1057.426	3+			E_{γ} , I_{γ} : from (n,n' γ) (2012Gr22).
1804.97	2+	734.50 13	44.3 [@] 14	1070.422	4+	E2	0.00541	α (K)=0.00451 7; α (L)=0.000704 10; α (M)=0.0001542 22 α (N)=3.53×10 ⁻⁵ 5; α (O)=5.33×10 ⁻⁶ 8; α (P)=3.10×10 ⁻⁷ 5 B(E2)(W.u.)<54
		747.8 3	25 4	1057.426	3+	[M1]	0.00925	α (K)=0.00788 <i>11</i> ; α (L)=0.001078 <i>16</i> ; α (M)=0.000233 <i>4</i> α (N)=5.36×10 ⁻⁵ <i>8</i> ; α (O)=8.36×10 ⁻⁶ <i>12</i> ; α (P)=5.72×10 ⁻⁷ <i>8</i> B(M1)(W.u.)<0.034

						Adopted	Levels, Gammas	(continued)	
							$\gamma(^{160}\text{Gd})$ (continu	ued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger \ddagger}$	Iγ [#]	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	$\delta^{\&h}$	α^{g}	Comments
1804.97	2+	816.43 7	100 [@] 2	988.548	2+	M1+E2	-1.8 +9-8	0.0050 11	$\alpha(K)=0.0042 \ 9; \ \alpha(L)=0.00062 \ 11; \ \alpha(M)=0.000134 \ 22 \ \alpha(N)=3.1\times10^{-5} \ 6; \ \alpha(O)=4.7\times10^{-6} \ 9; \ \alpha(P)=3.0\times10^{-7} \ 7 \ B(M1)(W.u.)<0.052; \ B(E2)(W.u.)<61 \ \delta: \ from \ 2009Go33; \ other \ values: \ -0.76 \ +10-13 \ or \ 200\times07 \ -134 \ (2017) \ 2017 \ -134 \ (2017) \ -134$
		1729.2 4	20 4	75.263	2+	[M1,E2]		0.00128 18	$\alpha(K) = 0.00094 \ 15; \ \alpha(L) = 0.000126 \ 19; \alpha(M) = 2.7 \times 10^{-5} \ 4 \alpha(N) = 6.3 \times 10^{-6} \ 10; \ \alpha(O) = 9.7 \times 10^{-7} \ 15; \alpha(P) = 6.7 \times 10^{-8} \ 12; \ \alpha(IPF) = 0.000175 \ 12$
		1805.51 ^j 25	33 4	0.0	0+	E2		1.06×10 ⁻³	$\alpha(K)=0.000739 \ 11; \ \alpha(L)=9.89\times10^{-5} \ 14; \\ \alpha(M)=2.13\times10^{-5} \ 3 \\ \alpha(N)=4.89\times10^{-6} \ 7; \ \alpha(O)=7.60\times10^{-7} \ 11; \\ \alpha(P)=5.13\times10^{-8} \ 8; \ \alpha(IPF)=0.000197 \ 3 \\ B(E2)(W.u.)<0.47$
1806.9	12+	505.5 ^b	100	1301.3	10+	[E2]		0.01356	α (K)=0.01104 <i>16</i> ; α (L)=0.00197 <i>3</i> ; α (M)=0.000437 <i>7</i> α (N)=9.95×10 ⁻⁵ <i>14</i> ; α (O)=1.472×10 ⁻⁵ <i>21</i> ; α (P)=7.41×10 ⁻⁷ <i>11</i>
1884.0	(5 ⁻)	622.3 8	47 24	1260.98	5 ⁺				
1886.8	(1,2)	736.24 898.2^{f} 10 1811.6^{f} 8 1305.94	$6.9^{f} 6$ $100.0^{f} 18$	988.548 75.263	4 ⁺ 2 ⁺ 2 ⁺ 6 ⁺				
1931.86	(7) 2 ⁺	874.4 3	$50^f 3$	1057.426	3+	M1+E2		0.0050 14	α (K)=0.0042 <i>12</i> ; α (L)=0.00060 <i>14</i> ; α (M)=0.00013 <i>3</i> α (N)=3.0×10 ⁻⁵ <i>7</i> ; α (O)=4.6×10 ⁻⁶ <i>11</i> ; α (P)=3.01×10 ⁻⁷ <i>89</i>
		943.7 ^f 10	24.9 ^{<i>f</i>} 22	988.548	2^{+}				
		1683.22 <i>21</i>	65 ^{<i>f</i>} 3	248.502	4+	E2		1.13×10 ⁻³	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000842 \ 12; \ \alpha(\mathbf{L}) = 0.0001133 \ 16; \\ &\alpha(\mathbf{M}) = 2.44 \times 10^{-5} \ 4 \\ &\alpha(\mathbf{N}) = 5.61 \times 10^{-6} \ 8; \ \alpha(\mathbf{O}) = 8.70 \times 10^{-7} \ 13; \\ &\alpha(\mathbf{P}) = 5.84 \times 10^{-8} \ 9; \ \alpha(\mathbf{IPF}) = 0.0001438 \ 21 \\ &\mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}.) = 0.38 \ + 27 - 20 \end{aligned}$
		1856.63 <i>13</i>	100 ^{<i>f</i>} 3	75.263	2+	M1+E2	+0.92 +41-64	0.00120 12	$\alpha(K)=0.00082 \ 9; \ \alpha(L)=0.000110 \ 12; \alpha(M)=2.36\times10^{-5} \ 25 \alpha(N)=5.4\times10^{-6} \ 6; \ \alpha(O)=8.5\times10^{-7} \ 9; \alpha(P)=5.8\times10^{-8} \ 7; \ \alpha(IPF)=0.000237 \ 13$

From ENSDF

						Adopted L	evels, Gammas (o	continued)	
						<u> </u>	(¹⁶⁰ Gd) (continued	1)	
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger \ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	$\delta^{\&h}$	α^{g}	Comments
									B(M1)(W.u.)=0.0013 +12-8; B(E2)(W.u.)=0.16 +15-13 δ: from 2017Le04; other values: +0.50 +87-24 (2017Le04); +0.16 +18-13 or +1.5 5 (2009Go33).
1931.86	2+	1931.9 <i>3</i>	36.2 ^{<i>f</i>} 22	0.0	0+	E2		1.02×10 ⁻³	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000653 \ 10; \ \alpha(\mathbf{L}) = 8.68 \times 10^{-5} \ 13; \\ &\alpha(\mathbf{M}) = 1.87 \times 10^{-5} \ 3 \\ &\alpha(\mathbf{N}) = 4.30 \times 10^{-6} \ 6; \ \alpha(\mathbf{O}) = 6.68 \times 10^{-7} \ 10; \\ &\alpha(\mathbf{P}) = 4.53 \times 10^{-8} \ 7; \ \alpha(\mathbf{IPF}) = 0.000255 \ 4 \\ &\mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}.) = 0.11 \ +8-6 \end{aligned}$
1941.5	(9 ⁻)	640 1073		1301.3 868.6	$ 10^+ 8^+ $				
1966.51	(1 ⁻)	908.2 ^{<i>f j</i>} 10	62 ^{<i>f</i>} 6	1057.426	3+				E _γ : uncertain placement. If this γ originates from (1 ⁻), 1966.5 level it would be M2, but B(M2)(W.u.)=1.7E4 +9–5 exceeds RUL=1, so M2 is very unlikely. Consequently most likely this γ originates from a close lying (2 ⁺ ,3,4 ⁺) level (see J^{π} comment on 1966 level). Additional information 4.
		977.3 <i>f j</i> 10	34 <i>f</i> 3	988.548	2+				E_{γ} : uncertain placement. This transition is part of the group of three γ 's that more likely originate from a $(2^+,3,4^+)$ level, which makes unlikely its placement to this (1^-) level.
		1717.0 ^{<i>f j</i>} 10	32 ^f 3	248.502	4+				E _{γ} : uncertain placement. If this γ originates from (1 ⁻), 1966.5 level it would be E3, but B(E3)(W.u.)=1.0E5 +5-3 exceeds RUL=100, so E3 is very unlikely. Consequently most likely this γ originates from a close lying (2 ⁺ ,3,4 ⁺) level (see J^{π} comment on 1966 level).
		1891.26 <i>12</i>	35 <i>f</i> 3	75.263	2+	(E1(+M2))	-0.03 +25-31	0.00087 16	$\alpha(K)=3.3\times10^{-4} \ 17; \ \alpha(L)=4.2\times10^{-5} \ 24; \alpha(M)=8.9\times10^{-6} \ 51 \alpha(N)=2.0\times10^{-6} \ 12; \ \alpha(O)=3.2\times10^{-7} \ 19; \alpha(P)=2.2\times10^{-8} \ 13; \ \alpha(IPF)=0.00050 \ 4 B(E1)(W.u.)=0.00020 \ +15-8 Mult.: relatively pure dipole was adopted as E1(+M2), however M1(+E2) cannot be excluded. \delta: from 2009Go33.$
		1966.52 <i>15</i>	100 ^{<i>f</i>} 5	0.0	0+	E1		9.04×10 ⁻⁴	α (K)=0.000304 5; α (L)=3.88×10 ⁻⁵ 6; α (M)=8.31×10 ⁻⁶ 12 α (N)=1.91×10 ⁻⁶ 3; α (O)=2.98×10 ⁻⁷ 5;

$^{160}_{64}{ m Gd}_{96}$ -19

From ENSDF

					Ad	opted Levels	s, Gammas	(continued)	
						γ (¹⁶⁰ C	d) (continu	led)	
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger \ddagger}$	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.&	_δ &h	α^{g}	Comments
10(0)(7	2+	1721.2.0	12.5	248 502	4+				α (P)=2.06×10 ⁻⁸ <i>3</i> ; α (IPF)=0.000551 <i>8</i> B(E1)(W.u.)=0.00050 +26-13 Mult.: from (γ , γ').
1909.07	2	1721.2 9 1894.39 <i>16</i>	13 5 98 9	75.263	2 ⁺	M1+E2		0.00117 <i>14</i>	$\alpha(K)=0.00078 \ 11; \ \alpha(L)=0.000104 \ 14; \alpha(M)=2.2\times10^{-5} \ 3 \alpha(N)=5.1\times10^{-6} \ 7; \ \alpha(O)=8.0\times10^{-7} \ 11; \alpha(P)=5.5\times10^{-8} \ 9; \ \alpha(IPF)=0.000255 \ 18 \delta; \ >+5 \ or \ -0 \ 33 \ +11-13 \ (2009Go33 \ (n \ n'x))$
1996.26		1969.65 20 412.66 7 560.0 7 1007 86 24	100 9 100.0 19 4.7 19 11 2 19	0.0 1583.59 1436.27 988 548	0 ⁺ 2 ⁺ 2 ⁺				0. 2 + 5 61 0.55 + 11 15 (20050655, (ii,ii 7)).
1998.71	(5 ⁻)	$\begin{array}{c} 1007.86\ 24\\ 300.6^{e}\ 3\\ 417.1^{e}\ 2\\ 450.7^{e}\ 3\\ 515.7^{e}\ 1\\ 605.7^{e}\ 3\\ 737.6^{e}\ 2\\ 825.6^{e}\ 3\\ 928.0^{e}\ 3\\ 1483.6^{e}\ 3\\ 14750.2^{e}\ 2\\ \end{array}$	$\begin{array}{c} 11.2 \ 19\\ 0.56^{e} \ 23\\ 17.2^{e} \ 9\\ 2.3^{e} \ 5\\ 100^{e} \ 5\\ 2.5^{e} \ 6\\ 16.4^{e} \ 9\\ 2.2^{e} \ 2\\ 2.1^{e} \ 7\\ 0.64^{e} \ 30\\ 1.2^{e} \ 5\end{array}$	1698.21 1581.81 1548.18 1483.08 1392.99 1260.98 1173.09 1070.422 514.81 248.502	$ \begin{array}{c} 2 \\ (5,6^{+}) \\ (5^{+}) \\ (7^{+}) \\ (4^{+}) \\ 6^{+} \\ 5^{+} \\ (5)^{+} \\ 4^{+} \\ 6^{+} \\ 4^{+} \end{array} $				
2030.61	2+,3+	1750.2° 3 973.4 3 1782.1 4	1.3° 5 45 6 16.1 [@] 22	248.502 1057.426 248.502	4 ⁺ 3 ⁺ 4 ⁺				
2050 (2	$2^{(-)} 2^{(-)}$	1955.28 14	100 3	75.263	2+	M1+E2	.0.07 (0.00114 13	$\alpha(K)=0.00073 \ 10; \ \alpha(L)=9.7\times10^{-5} \ 13; \alpha(M)=2.1\times10^{-5} \ 3 \alpha(N)=4.8\times10^{-6} \ 7; \ \alpha(O)=7.5\times10^{-7} \ 10; \alpha(P)=5.2\times10^{-8} \ 8; \ \alpha(IPF)=0.000285 \ 20 \delta: \ -0.03 \ +12 \ -11 \ or \ +2.4 \ +11 \ -6 \ (2009Go33). (K) \ 0.00025 \ 22 \ ab \ (Ab) \ (Ab)$
2059.62	2(-),3(-)	1811.11 9	100	248.502	4	(E1+M2)	+0.07 6	8.49×10 ⁻⁴ 25	$\alpha(K)=0.000356\ 22;\ \alpha(L)=4.6\times10^{-5}\ 3;\alpha(M)=9.8\times10^{-6}\ 7\alpha(N)=2.25\times10^{-6}\ 16;\ \alpha(O)=3.50\times10^{-7}\ 24;\alpha(P)=2.41\times10^{-8}\ 17;\ \alpha(IPF)=0.000435\ 8B(E1)(W.u.)=2.4\times10^{-4}\ 7Mult.: rather pure dipole in (n,n'\gamma) does notexclude (M1+E2).$
2109.33	1 ⁽⁺⁾	1051.72 20	47.4 [@] 18	1057.426	3+	E2		0.00248	α (K)=0.00210 3; α (L)=0.000300 5; α (M)=6.52×10 ⁻⁵ 10

From ENSDF

						$\gamma(^1$	⁶⁰ Gd) (continu	ed)
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.&	α ^g	Comments
								α (N)=1.496×10 ⁻⁵ 21; α (O)=2.30×10 ⁻⁶ 4; α (P)=1.452×10 ⁻⁷ 21 B(E2)(W.u.)=6.3 +18-17
2109.33	1 ⁽⁺⁾	1120.52 21	58 [@] 3	988.548	2+	M1+E2	0.0028 7	α (K)=0.0024 6; α (L)=0.00033 7; α (M)=7.2×10 ⁻⁵ 15 α (N)=1.6×10 ⁻⁵ 4; α (O)=2.6×10 ⁻⁶ 6; α (P)=1.71×10 ⁻⁷ 44; α (IPF)=6.8×10 ⁻⁷ 4
		2034.17 ^{<i>a</i>} 12	100 [@] 2	75.263	2+	M1+E2	0.00111 12	$\alpha(K)=0.00067 \ 8; \ \alpha(L)=8.9\times10^{-5} \ 11; \ \alpha(M)=1.92\times10^{-5} \ 23$ $\alpha(N)=4.4\times10^{-6} \ 6; \ \alpha(O)=6.9\times10^{-7} \ 9; \ \alpha(P)=4.7\times10^{-8} \ 7;$ $\alpha(IPF)=0.000326 \ 23$
		2109.36 17	73.3 [@] 21	0.0	0+	(M1)	1.20×10 ⁻³	$\alpha(K)=0.000695 \ 10; \ \alpha(L)=9.21\times10^{-5} \ 13; \ \alpha(M)=1.98\times10^{-5} \ 3 \\ \alpha(N)=4.57\times10^{-6} \ 7; \ \alpha(O)=7.13\times10^{-7} \ 10; \ \alpha(P)=4.96\times10^{-8} \ 7; \\ \alpha(IPF)=0.000389 \ 6 \\ B(M1)(W.u.)=0.0027 \ 7 \\ Mult.: pure dipole in (n,n'\gamma) does not exclude (E1).$
2118.6	(10 ⁺)	401 817 1250		1717.5 1301.3 868.6	(8 ⁺) 10 ⁺ 8 ⁺			
2118.90	2+	2043.6 <i>3</i> 2118.89 <i>21</i>	35 8 100 <i>11</i>	75.263 0.0	2+ 0+	E2	9.88×10 ⁻⁴	$\alpha(K)=0.000552 \ 8; \ \alpha(L)=7.29\times10^{-5} \ 11; \ \alpha(M)=1.569\times10^{-5} \ 22$ $\alpha(N)=3.61\times10^{-6} \ 5; \ \alpha(O)=5.61\times10^{-7} \ 8; \ \alpha(P)=3.82\times10^{-8} \ 6; \ \alpha(PE)=0.000343 \ 5$
2135.72		2060.44 ^a 10	100 8	75.263	2+			<i>a</i> (111)-0.000345/5
2162.69	1	2135.7 ¹ 3 2087.45 14 2162.58 22	47 ¹ 6 100 9 89 9	0.0 75.263 0.0	0^+ 2^+ 0^+			
2242.2	(1,2)	865.4^{f} 10 891.0^{f} 10 1017.9^{f} 10	$14.7^{f} 25$ $37^{f} 4$ $100^{f} 9$	1376.73 1351.188 1224.237	2^{-} 1^{-} $1^{(-)}$			
2252.7		769.6 ^e 3	100 ⁵ 9	1483.08	(4^+)			
2277.4	1	841.1 ^{<i>f</i>} 10	6.8^{f} 7	1436.27	2 ⁺			
		1288.9^{J} 10 2202 1 f 9	4.6^{J} 5 73 7 f 20	988.548	2+ 2+			
2282 74	$(1^+ 2^+)$	2202.1° 9 2277.5 ^f 8 1057 9 7	$100^{f} 2$ 37.11	0.0	$ \begin{array}{c} 2 \\ 0^+ \\ 1^{(-)} \end{array} $	D		
	(1,2)	$1226.1^{f} 10$ $1295.0^{f} 10$ $2207.5^{i} 2$	$29^{f} 3$ $61^{f} 7$ $100^{i} 15$	1057.426 988.548	3^+ 2^+ 2^+			
2301.54	2+	2207.5° 3 2282.6 4 1153.5 4	96 <i>15</i> 42 6	75.263 0.0 1147.985	2+ 0+ 4+			
		2301.53 ^a 17	100 8	0.0	0^+	E2	9.86×10^{-4}	$\alpha(K)=0.000476\ 7;\ \alpha(L)=6.25\times10^{-5}\ 9;\ \alpha(M)=1.344\times10^{-5}\ 19$

From ENSDF

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							$\gamma(^{160}$	Gd) (continued	<u>)</u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	J_f^{π}	Mult.&	α ^g	Comments
2313.3 (11 ⁻) 507 ^j 1806.9 12 ⁺ 1012 1301.3 10 ⁺ 2315.8 (1,2) 1327.2 ^j 10 100 988.548 2 ⁺ 2327.5 (1 ⁺ ,2) 976.3 ^j 10 8.4 ^j 8 1351.188 1 ⁻ 1269.9 ^j 100 ⁶ 66.9 ^j 24 1057.426 3 ⁺ 1339.0 ^j 9 100 ^j 3 988.548 2 ⁺ 2333.5 (1,2 ⁺) 897.1 ^j 10 20.2 ^j 19 1436.27 2 ⁺ 982.5 ^j 10 9.0 ^j 19 1351.188 1 ⁻ 1109.3 ^j 10 100 ^j 10 1224.237 1 ⁻¹ 1344.9 ^j 10 30 ^j 4 988.548 2 ⁺ 2333.3 ^j 10 4.1 ^j 11 0.0 0 ⁺ 2344.5 646 ^{6j} 6 ⁱ 3 1698.21 (5.6 ⁺) 762.7 ^e 3 100 ^e 6 1581.81 (5 ⁺) 2347.4 1 ⁺ 2272.5 ^d 7 63 13 75.263 2 ⁺ [M1] 1.17×10 ⁻³ B(M1)(Wu.)=0.023.3 $a(K)=0.00589.9; a(L)=7.79\times10^{-5} 11; a(M)=1.677\times10^{-5} 24$ $a(K)=0.000589.8; a(L)=7.79\times10^{-5} 11; a(M)=1.677\times10^{-5} 24$ $a(K)=0.000548.8; a(L)=7.25\times10^{-5} 11; a(M)=1.559\times10^{-5} 22$ $a(K)=0.000548.8; a(L)=7.25\times10^{-5} 11; a(M)=1.559\times10^{-5} 22$ a(I)P-)=0.000521.8 2361.93 (2 ⁺ ,3 ⁻) 705.1 ^j 10 1.55 ^j 21 1657.2 (1 ⁻ ,2) 898.4 ^j 10 3.3 ^j j 1463.83 3 ⁻ 985.3 ^j 10 1.55 ^j 21 1376.73 2 ⁻ 1138.1 ^j 9 21.6 ^j 7 1224.237 1 ⁽⁻⁾ 1384.9 ^j 10 1.55 ^j 21 1376.73 2 ⁻ 2137.9 14 ⁺ 571.0 ^b 10 1.55 ^j 21 375.26 2 ⁺ 2377.9 14 ⁺ 571.0 ^b 10 1.846.9 12 75.26 2 ⁺ 2383.6 (2 ⁺ ,34 ⁺) 2135.7 ^j 3 100 ^j 13 248.502 4 ⁺ 2383.6 (2 ⁺ ,34 ⁺) 2135.7 ^j 13 100 ^j 13 248.502 4 ⁺ 2383.6 (2 ⁺ ,34 ⁺) 2135.7 ^j 10 10 ^j 13 248.502 4 ⁺ 2383.6 (2 ⁺ ,34 ⁺) 2135.7 ^j 10 10 ^j 13 248.502 4 ⁺ 2383.6 (1.2) 1034.5 ^j 10 50 ^j 4 1351.188 1 ⁻ 2385.6 (1.2) 1034.5 ^j 10 50 ^j 4 1351.188 1 ⁻						<u> </u>			α (N)=3.09×10 ⁻⁶ 5; α (O)=4.81×10 ⁻⁷ 7; α (P)=3.29×10 ⁻⁸ 5; α (IPF)=0.000430 6
2315.8 (1,2) $1327.2^{f} 10$ 100 988.548 2^{+} 2327.5 (1 ⁺ ,2) 976.3 ^f 10 8.4 ^f 8 135.1.88 1 ⁻ 1269.9 ^f 10 6.69 ^f 24 1057.26 3 ⁺ 1339.0 ^f 9 100 ^f 3 988.548 2^{+} 2333.5 (1,2 ⁺) 897.1 ^f 10 20.2 ^f 19 1436.27 2 ⁺ 982.5 ^f 10 9.0 ^f 19 1351.188 1 ⁻ 1109.3 ^f 10 100 ^f 10 1224.237 1 ⁽⁻⁾ 1344.9 ^f 10 30 ^f 4 988.548 2^{+} 2333.3 ^f 10 4.1 ^f 11 0.0 0 ⁺ 2344.5 646 ^f 6 ^f 3 1698.21 (5.6 ⁺) 762.7 ^g 3 100 ^g 6 1581.81 (5 ⁺) 2347.4 1 ⁺ 2272.5 ^d 7 63 13 75.263 2 ⁺ [M1] 1.17×10 ⁻³ B(M1)(W.u.)=0.023.3 $\alpha(K)=0.00054.9^{\circ}$, $\alpha(C)=6.03\times10^{-7}$ 9, $\alpha(P)=4.20\times10^{-5}$ 24 $\alpha(N)=3.86\times10^{-6}$ 6, $\alpha(C)=6.03\times10^{-7}$ 9, $\alpha(P)=4.20\times10^{-5}$ 524 $\alpha(N)=3.86\times10^{-6}$ 6, $\alpha(C)=6.03\times10^{-7}$ 9, $\alpha(P)=4.20\times10^{-5}$ 524 $\alpha(N)=3.90\times10^{-5}$ 51; $\alpha(M)=1.657\times10^{-5}$ 22 $\alpha(N)=3.90\times10^{-5}$ 51; $\alpha(M)=1.557\times10^{-5}$ 22 $\alpha(N)=3.90\times10^{-5}$ 5; $\alpha(C)=5.61\times10^{-7}$ 8; $\alpha(P)=3.90\times10^{-8}$ 6; $\alpha(1PF)=0.000521$ 8 2361.93 (2 ⁺ ,3 ⁻¹) 705.1 ^f 10 1.55 ^f 21 1657.2 (1 ⁻ ,2) 898.4 ^f 10 3.3 ^f 3 1463.83 3 ⁻ 985.3 ^f 10 1.55 ^f 21 1376.73 2 ⁻ 1138.1 ^f 9 21.6 ^f 7 1224.2137 1 ⁽⁻⁾ 1304.9 ^f 10 1.08 ^f 7 1057.426 3 ⁺ 2365.5 3 85.0 ^f 12 75.263 2 ⁺ 2377.9 14 ⁺ 571.0 ^b 100 1806.9 12 ⁺ [E2] 0.00991 $\alpha(K)=0.00815$ 12; $\alpha(L)=0.001383$ 20; $\alpha(M)=0.000305$ 5 $\alpha(N)=6.97\times10^{-5}$ 10; $\alpha(O)=1.03\times10^{-5}$ 15; $\alpha(P)=5.52\times10^{-7}$ 8 2383.6 (2 ⁺ ,3 ⁺) 135.7 ^{fj} 3 100 ^f 13 248.502 4 ⁺ 2383.6 (2 ⁺ ,3 ⁺) 135.7 ^{fj} 3 100 ^f 13 248.502 4 ⁺ 2383.8 ⁶ (5 21 13 75.263 2 ⁺ 2385.6 (1,2) 1034.5 ^f 10 50 ^f 4 1351.188 1 ⁻ 2385.6 (1,2) 1034.5 ^f 10 50 ^f 4 1351.188 1 ⁻ 2385.6 (1,2) 1034.5 ^f 10 50 ^f 4 1351.188 1 ⁻ 2385.6 (1,2) 1034.5 ^f 10 50 ^f 4 1351.188 1 ⁻ 2385.6 (1,2) 1034.5 ^f 10 50 ^f 4 1351.188 1 ⁻ 2385.6 (1,2) 1034.5 ^f 10 50 ^f 4 1351.188 1 ⁻ 2385.6 (1,2) 1034.5 ^f 10 50 ^f 4 1351.188 1 ⁻ 2385.6 (1,2) 1034.5 ^f 10 50 ^f 4 1351.188 1 ⁻	2313.3	(11-)	507 <i>j</i> 1012		1806.9 1301.3	12 ⁺ 10 ⁺			
2327.5 (1+2) 976.3 f 10 8.4 f 8 1351.188 1 ⁻ 1269.9 f 10 66.9 f 24 1057.426 3 ⁺ 1339.0 f 9 100 f 3 988.548 2 ⁺ 2333.5 (1,2 ⁺) 897.1 f 10 20.2 f 19 1436.27 2 ⁺ 982.5 f 10 9.0 f 19 1351.188 1 ⁻ 1109.3 f 10 100 f 10 1224.237 1 ⁽⁻⁾ 1344.9 f 10 30 f 4 988.548 2 ⁺ 2333.3 f 10 4.1 f 11 0.0 0 ⁺ 2344.5 646 f 6 f 3 1698.21 (5.6 ⁺) 762.7 f 3 100 f 6 1581.18 (5 ⁺) 2347.4 1 ⁺ 2272.5 f 7 63.13 75.263 2 ⁺ [M1] 1.17×10 ⁻³ B(M1)(Wu.)=0.023.3 $\alpha(K)=0.000589.9; \alpha(L)=7.79×10-5 11; \alpha(M)=1.677×10-5 24 \alpha(N)=3.86×10-6 6; \alpha(O)=6.03×10-7 9; \alpha(P)=4.20×10-8 6; \alpha(IPF)=0.000479.72347.3f 4 100.13 0.0 0+ [M1] 1.16×10-3 B(M1)(Wu.)=0.023.8\alpha(K)=0.000521.8 (3.1)\alpha(K)=1.59×10-5 2.2\alpha(N)=3.59×10-6 5; \alpha(O)=5.61×10-7 8; \alpha(P)=3.90×10-8 6; \alpha(IPF)=0.000521.82361.93 (2+,3-) 705.1f 10 1.55f 21 1657.2 (1-,2)898.4f 10 3.3f 1 1463.83 3-1378.3f 10 1.55f 21 1657.2 (1-,2)898.3f 10 1.55f 21 1657.2 (1-,2)898.3f 10 1.55f 21 1657.2 (1-,2)1388.1f 9 21.6f 7 1224.237 1(-)1384.9f 10 1.85f 7 1057.426 3+2377.9 14+ 571.0h 100 1886.9 12+ [E2] 0.00991 \alpha(K)=0.00815 12; \alpha(L)=0.001383 20; \alpha(M)=0.000305.5\alpha(N)=6.977\times10^{-5} 10; \alpha(O)=1.039×10^{-5} 15; \alpha(P)=5.52×10^{-7} 82383.6 (2+,3,4+) 2135.7f 3 100f 1.3 248.502 4+2388.6 (2+,3,4+) 2135.7f 3 100f 1.3 248.502 4+2383.6 (2+,3,4+) 2135.7f 10 50f 4 1351.188 1-2383.6 (2+,3,4+) 2135.7f 10 50f 4 1351.188 1-2383.6 (1,2) 1034.5f_f 10 50f_f 4 1351.188 1-$	2315.8	(1,2)	1327.2 ^{<i>f</i>} 10	100	988.548	2^{+}			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2327.5	$(1^+, 2)$	976.3 ^f 10	8.4 ^{<i>f</i>} 8	1351.188	1-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1269.9 <i>f</i> 10	66.9 ^{<i>f</i>} 24	1057.426	3+			
2333.5 (1,2 ⁺) 897.1 $\int I_{0}$ 20.2 $\int I_{9}$ 1436.27 2 ⁺ 982.5 $\int I_{0}$ 9.0 $\int I_{9}$ 1351.188 1 ⁻ 1109.3 $\int I_{0}$ 100 $\int I_{0}$ 1224.237 1 ⁽⁻⁾ 1344.9 $\int I_{0}$ 30 $\int 4$ 988.548 2 ⁺ 2333.3 $\int I_{0}$ 4.1 $\int I_{1}$ 0.0 0 ⁺ 2344.5 646 ^{ej} 6 ^e 3 1698.21 (5,6 ⁺) 762.7 ^e 3 100 ^e 6 1581.81 (5 ⁺) 2347.4 1 ⁺ 2272.5 ^d 7 63.7 75.263 2 ⁺ [M1] 1.17×10 ⁻³ B(M1)(W.u.)=0.023.3 $\alpha(K)=0.000589.9; \alpha(L)=7.9\times10^{-5} II; \alpha(M)=1.677\times10^{-5} 2.4$ $\alpha(N)=3.86\times10^{-6} 6; \alpha(O)=6.03\times10^{-7} 9; \alpha(P)=4.20\times10^{-8} 6;$ $\alpha(IPF)=0.000479.7$ 2347.3 ^d 4 100 13 0.0 0 ⁺ [M1] 1.16×10 ⁻³ B(M1)(W.u.)=0.042.3 $\alpha(K)=0.000478.8; \alpha(L)=7.25\times10^{-5} II; \alpha(M)=1.559\times10^{-5} 2.2$ $\alpha(N)=3.59\times10^{-5} 5; \alpha(O)=5.61\times10^{-7} 8; \alpha(P)=3.90\times10^{-8} 6;$ $\alpha(IPF)=0.000521.8$ 2361.93 (2 ⁺ ,3 ⁻) 705.1 $\int I_{0}$ 1.55 $\int 2I$ 1657.2 (1 ⁻ ,2) 898.4 $\int I_{0}$ 3.3 $\int 3$ 1463.83 3 ⁻ 988.3 $\int I_{0}$ 1.55 $\int 2I$ 1376.73 2 ⁻ 1138.1 $\int 9$ 21.6 $\int 7$ 1224.237 1 ⁽⁻⁾ 1364.9 $\int I_{0}$ 1.08 $\int 7$ 1057.426 3 ⁺ 1373.9 $\int I_{0}$ 1.28 $\int I_{4}$ 988.548 2 ⁺ 213.40 I ₆ 100 I ₀ 248.502 4 ⁺ 2286.5 3 85.0 $\int I_{2}$ 75.263 2 ⁺ 2377.9 14 ⁺ 571.0 ^b 100 1806.9 12 ⁺ [E2] 0.00991 $\alpha(K)=0.00815 I_{2}; \alpha(L)=0.001383 20; \alpha(M)=0.00305 5$ $\alpha(N)=6.97\times10^{-5} I0; \alpha(O)=1.039\times10^{-5} I5; \alpha(P)=5.52\times10^{-7} 8$ 2383.6 (2 ⁺ ,3 ⁺) 103.45 $\int I_{0}$ 50 $\int I_{4}$ 1351.188 1 ⁻ 2385.6 (1.2) 1034.5 $\int I_{0}$ 50 $\int I_{4}$ 1351.188 1 ⁻ 2365.9 (1.2) 1034.5 $\int I_{1}$ 50 $\int I_{4}$ 1351.188 1 ⁻ 2365.9 (1.2) 1034.5 $\int I_{0}$ 50 $\int I_{4}$ 1351.188 1 ⁻ 2377.9 14 ⁺ 571.0 ^b 105 105 105 105 105 105 105 105 105 105			1339.0 ^{<i>f</i>} 9	100 ^{<i>f</i>} 3	988.548	2+			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2333.5	$(1,2^{+})$	897.1 ^{<i>f</i>} 10	20.2 ^{<i>f</i>} 19	1436.27	2+			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			982.5 ^f 10	9.0 ^f 19	1351.188	1-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1109.3^{f} 10	100 ^f 10	1224.237	$1^{(-)}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1344.9^{f} 10	$30^{f} 4$	988.548	2+			
2344.5 646^{ej} 6^{ej} 6			2333.3^{f} 10	4.1^{f} 11	0.0	0^{+}			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2344.5		646 ^{<i>e j</i>}	6 ^e 3	1698.21	(5.6^+)			
2347.4 1 ⁺ 2272.5 ^{<i>d</i>} 7 63 <i>l</i> 3 75.263 2 ⁺ [M1] 1.17×10^{-3} B(M1)(W.u)=0.023 3 $\alpha(K)=0.000589 9; \alpha(L)=7.79 \times 10^{-5} 11; \alpha(M)=1.677 \times 10^{-5} 24$ $\alpha(N)=3.86 \times 10^{-6} 6; \alpha(C)=0.03 \times 10^{-7} 9; \alpha(P)=4.20 \times 10^{-8} 6;$ $\alpha(PF)=0.000479 7$ 2347.3 ^{<i>d</i>} 4 100 <i>l</i> 3 0.0 0 ⁺ [M1] 1.16×10^{-3} B(M1)(W.u)=0.042 3 $\alpha(K)=0.000548 8; \alpha(L)=7.25 \times 10^{-5} 11; \alpha(M)=1.559 \times 10^{-5} 22$ $\alpha(N)=3.59 \times 10^{-6} 5; \alpha(O)=5.61 \times 10^{-7} 8; \alpha(P)=3.90 \times 10^{-8} 6;$ $\alpha(IPF)=0.000521 8$ 2361.93 (2 ⁺ ,3 ⁻) 705.1 ^{<i>f</i>} 10 1.55 ^{<i>f</i>} 21 1657.2 (1 ⁻ ,2) 898.4 ^{<i>f</i>} 10 3.3 ^{<i>f</i>} 3 1463.83 3 ⁻ 985.3 ^{<i>f</i>} 10 1.55 ^{<i>f</i>} 21 1376.73 2 ⁻ 1138.1 ^{<i>f</i>} 9 21.6 ^{<i>f</i>} 7 1224.237 1 ⁽⁻⁾ 1304.9 ^{<i>f</i>} 10 10.8 ^{<i>f</i>} 7 1057.426 3 ⁺ 1373.9 ^{<i>f</i>} 10 1.28 ^{<i>f</i>} 14 988.548 2 ⁺ 2286.5 3 85.0 ^{<i>f</i>} 12 75.263 2 ⁺ 2377.9 14 ⁺ 571.0 ^{<i>b</i>} 100 1806.9 12 ⁺ [E2] 0.00991 $\alpha(K)=0.00815 12; \alpha(L)=0.001383 20; \alpha(M)=0.000305 5$ $\alpha(N)=6.97 \times 10^{-5} 10; \alpha(O)=1.039 \times 10^{-5} 15; \alpha(P)=5.52 \times 10^{-7} 8$ 2383.6 (2 ⁺ ,3,4 ⁺) 2135.7 ^{<i>ij</i>} 3 100 ^{<i>i</i>} 13 248.502 4 ⁺ 2385.6 (1,2) 1034.5 ^{<i>f</i>} 10 50 ^{<i>f</i>} 4 1351.188 1 ⁻ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			762.7 ^e 3	100 ^e 6	1581.81	(5 ⁺)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2347.4	1+	2272.5 ^d 7	63 <i>13</i>	75.263	2+	[M1]	1.17×10 ⁻³	B(M1)(W.u.)=0.023 3 α (K)=0.000589 9; α (L)=7.79×10 ⁻⁵ 11; α (M)=1.677×10 ⁻⁵ 24 α (N)=3.86×10 ⁻⁶ 6; α (O)=6.03×10 ⁻⁷ 9; α (P)=4.20×10 ⁻⁸ 6; α (IPF)=0.000479 7
2361.93 $(2^+, 3^-)$ 705.1 f 10 1.55 f 21 1657.2 $(1^-, 2)$ 898.4 f 10 3.3 f 3 1463.83 3 ⁻ 985.3 f 10 1.55 f 21 1376.73 2 ⁻ 1138.1 f 9 21.6 f 7 1224.237 1 ⁽⁻⁾ 1304.9 f 10 10.8 f 7 1057.426 3 ⁺ 1373.9 f 10 1.28 f 14 988.548 2 ⁺ 2113.40 16 100 10 248.502 4 ⁺ 2286.5 3 85.0 f 12 75.263 2 ⁺ 2377.9 14 ⁺ 571.0 b 100 1806.9 12 ⁺ [E2] 0.00991 α (K)=0.00815 12; α (L)=0.001383 20; α (M)=0.000305 5 α (N)=6.97×10 ⁻⁵ 10; α (O)=1.039×10 ⁻⁵ 15; α (P)=5.52×10 ⁻⁷ 8 2383.6 (2 ⁺ ,3,4 ⁺) 2135.7 ij 3 100 i 13 248.502 4 ⁺ 2385.6 (1,2) 1034.5 f 10 50 f 4 1351.188 1 ⁻			2347.3 ^d 4	100 <i>13</i>	0.0	0+	[M1]	1.16×10 ⁻³	B(M1)(W.u.)=0.042 3 α (K)=0.000548 8; α (L)=7.25×10 ⁻⁵ 11; α (M)=1.559×10 ⁻⁵ 22 α (N)=3.59×10 ⁻⁶ 5; α (O)=5.61×10 ⁻⁷ 8; α (P)=3.90×10 ⁻⁸ 6; α (IPF)=0.000521 8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2361.93	$(2^+, 3^-)$	705.1 ^f 10	1.55 ^f 21	1657.2	(1-,2)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			898.4 ^{<i>f</i>} 10	3.3 ^f 3	1463.83	3-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			985.3 ^f 10	1.55 ^f 21	1376.73	2^{-}			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1138.1 ^f 9	21.6 ^f 7	1224.237	1 ⁽⁻⁾			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1304.9 ^{<i>f</i>} 10	10.8 ^{<i>f</i>} 7	1057.426	3+			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1373.9 ^f 10	1.28 ^f 14	988.548	2+			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2113.40 16	100 10	248.502	4+			
2377.9 14^{+} 571.0 ^b 100 1806.9 12^{+} [E2] 0.00991 α (K)=0.00815 <i>12</i> ; α (L)=0.001383 <i>20</i> ; α (M)=0.000305 <i>5</i> 2383.6 $(2^{+},3,4^{+})$ 2135.7 ^{<i>ij</i>} <i>3</i> 100 ^{<i>i</i>} <i>13</i> 248.502 4 ⁺ 2385.6 (1,2) 1034.5 ^{<i>f</i>} <i>10</i> 50 ^{<i>f</i>} <i>4</i> 1351.188 1 ⁻ (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)			2286.5 3	85.0 ^{<i>f</i>} 12	75.263	2+			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2377.9	14+	571.0 ^b	100	1806.9	12+	[E2]	0.00991	α (K)=0.00815 <i>12</i> ; α (L)=0.001383 <i>20</i> ; α (M)=0.000305 <i>5</i> α (N)=6.97×10 ⁻⁵ <i>10</i> ; α (O)=1.039×10 ⁻⁵ <i>15</i> ; α (P)=5.52×10 ⁻⁷ <i>8</i>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2383.6	$(2^+, 3, 4^+)$	2135.7 ^{ij} 3	100 ¹ 13	248.502	4+			
2385.6 (1,2) $1034.5^{J}_{J}10 50^{J}_{J}4 1351.188 1^{-1}_{J}$			$2308.3^{a}_{c}6$	52 13	75.263	2+			
	2385.6	(1,2)	1034.5 ^J 10	50 ^J 4	1351.188	1-			

	Adopted Levels, Gammas (continued)													
						$\gamma(^{160}C)$	d) (continued	<u>)</u>						
E_i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.&	α ^g	Comments						
2432.7	$(1^{-},2^{+})$	968.9 ^{<i>f</i>} 10	16.0 ^{<i>f</i>} 11	1463.83	3-									
		1055.8 ^f 10	22.1 ^{<i>f</i>} 22	1376.73	2^{-}									
		1081.6 <i>^f 10</i>	8.7 <mark>5</mark> 9	1351.188	1-									
		1142.8 ^f 8	100.0 ^{<i>f</i>} 21	1289.76	3-									
		1208.5 ^{<i>f</i>} 10	38.8 ^f 16	1224.237	$1^{(-)}$									
		2357.5 ^f 9	56.6 ^{<i>f</i>} 16	75.263	2+									
		2432.9 ^{<i>f</i>} 10	5.3 ^f 9	0.0	0^{+}									
2444.8	$(2^+, 3, 4^+)$	2196.0 6	61 13	248.502	4+									
		2369.6 3	100 13	75.263	2+									
2456.0	$(2^+,3,4^+)$	$2207.5^{\prime} 3$	100^{i} 15	248.502	4^+ 2 ⁺									
2464 41	(1^{-})	2380.38	185f 15	1657.205	(1-2)									
2404.41	(1)	807.25 10 856 1 f 10	1.85° 15 1.85° 15	1608.3	(1,2)									
		1027 8 f 10	$0.96 \int 7$	1436.27	2+									
		1027.5° 10	$18.9 \int 4$	1376 73	2-									
		1113.1^{f} 9	$14.6^{f} 4$	1351.188	1-									
		$1240.1^{f} 8$	22.6^{f} 16	1224.237	1(-)									
		1475.9^{f} 10	1.22^{f} 7	988.548	2+									
		2389.2 ^f 10	6.6^{f} 3	75.263	2+									
		2464.4 ^{<i>f</i>} 1	100.00 ^{<i>f</i>} 11	0.0	0^{+}									
2471.77	1-	2395.2 ^{ac} 5	29.1 ^{<i>f</i>} 23	75.263	2+	[E1]	1.10×10 ⁻³	B(E1)(W.u.)=9.0×10 ⁻⁰⁴ 17 α (K)=0.000223 4; α (L)=2.83×10 ⁻⁵ 4; α (M)=6.07×10 ⁻⁶ 9 α (N)=1.395×10 ⁻⁶ 20; α (O)=2.17×10 ⁻⁷ 3; α (P)=1.509×10 ⁻⁸ 22; α (IPF)=0.000840 12						
		2471.8 ^{ic} 1	100.0 ^{<i>if</i>} 5	0.0	0+	E1	1.13×10 ⁻³	B(E1)(W.u.)= $5.4 \times 10^{-04} 8$ $\alpha(K)=0.000213 3; \alpha(L)=2.70 \times 10^{-5} 4; \alpha(M)=5.78 \times 10^{-6} 8$ $\alpha(N)=1.328 \times 10^{-6} 19; \alpha(O)=2.07 \times 10^{-7} 3; \alpha(P)=1.437 \times 10^{-8} 21;$ $\alpha(IPF)=0.000887 13$ Mult.: from (γ,γ').						
2489.60	(5+,6+)	491.1 ^e 2 1006.5 ^e 3 1052.1 ^e 3 1194.1 ^e 3	$100^{e} 6$ $70^{e} 4$ $17.7^{e} 24$ $4.9^{e} 18$ $63^{e} 4$	1998.71 1483.08 1437.40 1295.22 1173.09	(5^{-}) (4^{+}) (7^{+}) (6^{+}) $(5)^{+}$									
2510.7	(1,2 ⁻)	1046.7^{f} 10 1159.6^{f} 10 1286.5^{f} 9	$50^{f} 3$ $17.2^{f} 12$ $100.0^{f} 24$	1463.83 1351.188 1224.237	(3) 3 ⁻ 1 ⁻ 1 ⁽⁻⁾									

From ENSDF

 $^{160}_{64}\mathrm{Gd}_{96}$ -23

					Ac	lopted Leve	els, Gammas	(continued)
						$\gamma(^{160}$	Gd) (continue	ed)
E_i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	${ m J}_f^\pi$	Mult.&	α ^g	Comments
2510.7	(1,2 ⁻)	1522.3 ^{<i>f</i>} 10	9.4^{f}_{f} 10	988.548	2+			
2516.5	(2)	2435.2^{J} 9	$67.7^{J} 22$	75.263	2^+			
2510.5	(2)	1052.0^{-9} 1165.3 $\frac{1}{10}$	46f 5	1403.83	5 1 ⁻			
		1226.7^{f} 10	40^{-5} 41^{f} 4^{-5}	1289.76	3-			
		1292.4 ^{<i>f</i>} 10	84 ^{<i>f</i>} 7	1224.237	1(-)			
		1459.0 ^{<i>f</i>} 10	38 ^f 3	1057.426	3+			
2529.9	(1-,2)	1153.2 ^{<i>f</i>} 10	$6.8^{f}_{f} 8$	1376.73	2-			
		1178.7 ^J 10	22.3^{J} 15	1351.188	1-			
		$1240.0^{\circ} 9$ 1205.7f 10	$100^{1} 6$	1289.76	3^{-}			
2547.0	$(0^+ 1 2^+)$	$2471 8^{ij} 4$	100^{i} 15	75 263	2+			
201110	(*,1,2*)	2547.0 5	46 9	0.0	$\bar{0}^{+}$			
2559.54	$(5^+, 6^+)$	560.8 ^e 2	$100^{e} 5$	1998.71	(5^{-})			
		1070.4° 3	9.5 ^e 11	1437.40	(7^+)			
		1264.1 ^e 3	16.0 ^e 22	1295.22	(6^+)			
2582.9	(12^{+})	1386.5° 3 464	42° 5	2118.6	$(5)^+$ (10^+)			
		776		1806.9	12+			
2670.2	1+	1282	52 4	1301.3	10^+	DV(1)	1 17, 10-3	$\mathbf{D}(\mathbf{M}) \setminus \mathbf{M} = (0.001, 2)$
2670.2	1.	2595" 1	53 4	/5.263	2.	[M1]	1.1/×10 °	B(M1)(w.u.)=0.021 2 α (K)=0.000440 7; α (L)=5.80×10 ⁻⁵ 9; α (M)=1.248×10 ⁻⁵ 18 α (N)=2.87×10 ⁻⁶ 4; α (O)=4.49×10 ⁻⁷ 7; α (P)=3.13×10 ⁻⁸ 5; α (IPF)=0.000656 10
		2670 ^d 1	100	0.0	0^+	M1	1.18×10^{-3}	B(M1)(W.u.)=0.036 3
								$\alpha(K)=0.000414 \ 6; \ \alpha(L)=5.45\times10^{-5} \ 8; \ \alpha(M)=1.172\times10^{-5} \ 17$ $\alpha(N)=2.70\times10^{-6} \ 4; \ \alpha(O)=4.22\times10^{-7} \ 6; \ \alpha(P)=2.94\times10^{-8} \ 5;$ $\alpha(IPF)=0.000696 \ 10$
2761.2	1	2686 1	100	75.263	2+	_		
2706.2	1+	2761 l	56 <i>12</i>	0.0	0^+	D	1.10×10^{-3}	$\mathbf{D}(\mathbf{M})(\mathbf{M}_{m}) = 0.0000000000000000000000000000000000$
2790.2	1.	2/214 1	30.8 22	/5.203	2.		1.19×10 ⁵	B(M1)(w.u.)=0.086 6 $\alpha(K)=0.000397 6: \alpha(L)=5.23\times10^{-5} 8: \alpha(M)=1.124\times10^{-5} 16$
								$\alpha(N) = 2.59 \times 10^{-6} 4; \ \alpha(O) = 4.04 \times 10^{-7} 6; \ \alpha(P) = 2.82 \times 10^{-8} 4; \\ \alpha(IPF) = 0.000722 \ 11$
		2796 ^d 1	100	0.0	0^{+}	M1	1.20×10^{-3}	B(M1)(W.u.)=0.14 1
								$\alpha(K)=0.000375 \ 6; \ \alpha(L)=4.93\times10^{-3} \ 7; \ \alpha(M)=1.059\times10^{-3} \ 15 \\ \alpha(N)=2.44\times10^{-6} \ 4; \ \alpha(O)=3.81\times10^{-7} \ 6; \ \alpha(P)=2.66\times10^{-8} \ 4; \\ \alpha(IPF)=0.000761 \ 11$

$\gamma(^{160}\text{Gd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult. <mark>&</mark>	α^{g}	Comments
2820.2	1 ⁽⁺⁾	2745 ^d 1	100 14	75.263	2+	[M1]	1.19×10 ⁻³	B(M1)(W.u.)=0.053 <i>13</i> α (K)=0.000390 <i>6</i> ; α (L)=5.13×10 ⁻⁵ <i>8</i> ; α (M)=1.103×10 ⁻⁵ <i>16</i> α (N)=2.54×10 ⁻⁶ <i>4</i> ; α (O)=3.97×10 ⁻⁷ <i>6</i> ; α (P)=2.77×10 ⁻⁸ <i>4</i> ; α (IPF)=0.000735 <i>11</i>
		2820 ^d 1	76	0.0	0+	(M1)	1.20×10 ⁻³	B(M1)(W.u.)=0.037 7 α (K)=0.000368 6; α (L)=4.84×10 ⁻⁵ 7; α (M)=1.040×10 ⁻⁵ 15 α (N)=2.39×10 ⁻⁶ 4; α (O)=3.74×10 ⁻⁷ 6; α (P)=2.61×10 ⁻⁸ 4; α (IPF)=0.000773 11
2999.2	1	2924 <i>1</i> 2999 <i>1</i>	36 <i>12</i> 100	75.263 0.0	$2^+_{0^+}$	D		
3008.7	16+	630.8 ^b	100	2377.9	14+	[E2]	0.00775	$\alpha(K)=0.00641$ 9; $\alpha(L)=0.001049$ 15; $\alpha(M)=0.000231$ 4 $\alpha(N)=5.27\times10^{-5}$ 8; $\alpha(O)=7.01\times10^{-6}$ 11; $\alpha(D)=4.27\times10^{-7}$ 7
3032.2	1-	2957 [°] 1	100 11	75.263	2+	[E1]	1.35×10 ⁻³	$\begin{array}{l} a(N)=3.27\times10^{-6} & 6, \ \alpha(O)=7.51\times10^{-11}, \ \alpha(P)=4.37\times10^{-7} \\ B(E1)(W.u.)=3.7\times10^{-04} & 6 \\ \alpha(K)=0.0001622 & 23; \ \alpha(L)=2.05\times10^{-5} & 3; \ \alpha(M)=4.39\times10^{-6} & 7 \\ \alpha(N)=1.010\times10^{-6} & 15; \ \alpha(O)=1.575\times10^{-7} & 22; \ \alpha(P)=1.097\times10^{-8} & 16; \\ \alpha(PE)=0.001160 & 17 \end{array}$
		3032 ^{<i>c</i>} 1	67	0.0	0+	E1	1.38×10 ⁻³	$\begin{array}{l} \alpha(\mathrm{PF}) = 0.001100 \ 17 \\ \mathrm{B(E1)(W.u.)} = 2.3 \times 10^{-04} \ 3 \\ \alpha(\mathrm{K}) = 0.0001563 \ 22; \ \alpha(\mathrm{L}) = 1.98 \times 10^{-5} \ 3; \ \alpha(\mathrm{M}) = 4.23 \times 10^{-6} \ 6 \\ \alpha(\mathrm{N}) = 9.72 \times 10^{-7} \ 14; \ \alpha(\mathrm{O}) = 1.517 \times 10^{-7} \ 22; \ \alpha(\mathrm{P}) = 1.057 \times 10^{-8} \ 15; \\ \alpha(\mathrm{PE}) = 0.001100 \ 17 \end{array}$
3131.2	1-	3056 ^c 1	84 7	75.263	2+	[E1]	1.39×10 ⁻³	$B(E1)(W.u.)=3.5\times10^{-04} 7$ $\alpha(K)=0.0001545 22; \ \alpha(L)=1.95\times10^{-5} 3; \ \alpha(M)=4.18\times10^{-6} 6$ $\alpha(N)=9.61\times10^{-7} 14; \ \alpha(O)=1.499\times10^{-7} 21; \ \alpha(P)=1.045\times10^{-8} 15;$ $\alpha(IPF)=0.001213 17$
		3131 ^c 1	100	0.0	0+	E1	1.43×10 ⁻³	B(E1)(W.u.)= $3.8 \times 10^{-04} 4$ α (K)= $0.0001491 21$; α (L)= $1.88 \times 10^{-5} 3$; α (M)= $4.03 \times 10^{-6} 6$ α (N)= $9.27 \times 10^{-7} 13$; α (O)= $1.446 \times 10^{-7} 21$; α (P)= $1.008 \times 10^{-8} 15$; α (IPF)= $0.001256 18$
3166.2	1(-)	3091 [°] 1	64 11	75.263	2+	[E1]	1.41×10 ⁻³	B(E1)(W.u.)=2.7×10 ⁻⁰⁴ 6 α (K)=0.0001520 22; α (L)=1.92×10 ⁻⁵ 3; α (M)=4.11×10 ⁻⁶ 6 α (N)=9.45×10 ⁻⁷ 14; α (O)=1.474×10 ⁻⁷ 21; α (P)=1.027×10 ⁻⁸ 15; α (IPF)=0.001233 18
		3166 ^{<i>c</i>} 1	100	0.0	0+	(E1)	1.45×10 ⁻³	B(E1)(W.u.)= $4.0 \times 10^{-04} 5$ α (K)= $0.0001467 21$; α (L)= $1.85 \times 10^{-5} 3$; α (M)= $3.97 \times 10^{-6} 6$ α (N)= $9.12 \times 10^{-7} 13$; α (O)= $1.422 \times 10^{-7} 20$; α (P)= $9.92 \times 10^{-9} 14$; α (IPF)= $0.001275 18$
3170.2	1+	3095 ^d 1	60 6	75.263	2+	[M1]	1.26×10 ⁻³	B(M1)(W.u.)=0.049 7 α (K)=0.000302 5; α (L)=3.95×10 ⁻⁵ 6; α (M)=8.50×10 ⁻⁶ 12 α (N)=1.96×10 ⁻⁶ 3; α (O)=3.06×10 ⁻⁷ 5; α (P)=2.13×10 ⁻⁸ 3; α (IPF)=0.000911
		3170 ^{<i>d</i>} 1	100	0.0	0^+	M1	1.28×10^{-3}	B(M1)(W.u.)=0.077 8

25

$\gamma(^{160}\text{Gd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.&	α^{g}	Comments
	-							$\alpha(K)=0.000287 \ 4; \ \alpha(L)=3.76\times10^{-5} \ 6; \ \alpha(M)=8.07\times10^{-6} \ 12$ $\alpha(N)=1.86\times10^{-6} \ 3; \ \alpha(O)=2.90\times10^{-7} \ 4; \ \alpha(P)=2.03\times10^{-8} \ 3; \ \alpha(IPF)=0.000948 \ 14$
3228.2	1	3153 <i>I</i>	100 19	75.263	$2^{+}_{0^{+}}$	D		
2277.2	1+	3228 I	90 52 4	0.0	0^{+}		1.20×10^{-3}	$D(M1)(W_{12})=0.061.5$
5211.2	1	5202 1	554	75.205	Z		1.29×10	$\alpha(K)=0.000281 \ 4; \ \alpha(L)=3.68\times10^{-5} \ 6; \ \alpha(M)=7.90\times10^{-6} \ 11 \\ \alpha(N)=1.82\times10^{-6} \ 3; \ \alpha(O)=2.84\times10^{-7} \ 4; \ \alpha(P)=1.99\times10^{-8} \ 3; \ \alpha(IPF)=0.000964 \ 14$
		3277 ^d 1	100	0.0	0+	M1	1.31×10 ⁻³	B(M1)(W.u.)=0.106 8 α (K)=0.000267 4; α (L)=3.50×10 ⁻⁵ 5; α (M)=7.52×10 ⁻⁶ 11 α (N)=1.731×10 ⁻⁶ 25; α (O)=2.71×10 ⁻⁷ 4; α (P)=1.89×10 ⁻⁸ 3; α (IPF)=0.001002 14
3292.2	1	3217 <i>1</i>	31 9	75.263	2^{+}			
		3292 1	100	0.0	0^+	D		
3308.2	1+	3233 ^d 1	58 <i>3</i>	75.263	2+	[M1]	1.30×10^{-3}	B(M1)(W.u.)=0.050 5 α (K)=0.000275 4; α (L)=3.60×10 ⁻⁵ 5; α (M)=7.74×10 ⁻⁶ 11 α (N)=1.782×10 ⁻⁶ 25; α (O)=2.78×10 ⁻⁷ 4; α (P)=1.94×10 ⁻⁸ 3; α (IPF)=0.000980 14
		3308 ^d 1	100	0.0	0+	M1	1.32×10 ⁻³	B(M1)(W.u.)=0.080 7 α (K)=0.000262 4; α (L)=3.43×10 ⁻⁵ 5; α (M)=7.37×10 ⁻⁶ 11 α (N)=1.697×10 ⁻⁶ 24; α (Q)=2.65×10 ⁻⁷ 4; α (P)=1.85×10 ⁻⁸ 3; α (IPE)=0.001017 15
3328.2	1	3253 <i>1</i> 3328 <i>1</i>		75.263 0.0	$2^+_{0^+}$	D		I_{γ} : see the comment for this transition in the (γ, γ') data set. I_{γ} : see the comment for this transition in the (γ, γ') data set.
3331.2	1^{+}	3256 ^d 1	46 5	75.263	2^{+}			
		3331 ^{<i>d</i>} 1	100	0.0	0^+	M1	1.33×10^{-3}	α (K)=0.000258 4; α (L)=3.38×10 ⁻⁵ 5; α (M)=7.26×10 ⁻⁶ 11 α (N)=1.672×10 ⁻⁶ 24; α (O)=2.61×10 ⁻⁷ 4; α (P)=1.83×10 ⁻⁸ 3; α (IPF)=0.001028 15
3340.2	1+	3265 ^d 1	59 5	75.263	2+	[M1]	1.31×10 ⁻³	B(M1)(W.u.)=0.029 4 α (K)=0.000269 4; α (L)=3.53×10 ⁻⁵ 5; α (M)=7.58×10 ⁻⁶ 11 α (N)=1.745×10 ⁻⁶ 25; α (O)=2.73×10 ⁻⁷ 4; α (P)=1.90×10 ⁻⁸ 3; α (IPF)=0.000996 14
		3340 ^d 1	100	0.0	0+	M1	1.33×10 ⁻³	B(M1)(W.u.)=0.047 5 α (K)=0.000257 4; α (L)=3.36×10 ⁻⁵ 5; α (M)=7.22×10 ⁻⁶ 11 α (N)=1.662×10 ⁻⁶ 24; α (O)=2.60×10 ⁻⁷ 4; α (P)=1.82×10 ⁻⁸ 3; α (IPF)=0.001033 15
3357.2	1	3282 1	40 6	75.263	2^{+}			, , , , , , , , , , , , , , , , , , ,
		3357 1	100	0.0	0^{+}	D		
3376.2	1	3301 1	43 5	75.263	2^+	D		
3415.2	1-	3340 [°] 1	47 <i>3</i>	0.0 75.263	2^+	D [E1]	1.51×10^{-3}	$B(E1)(W.u.)=3.6\times10^{-04} 4$
		3415 ^c 1	100	0.0	0+	E1	1.54×10 ⁻³	$\alpha(K)=0.000135779; \alpha(L)=1.713\times10^{-5}24; \alpha(M)=3.66\times10^{-6}6$ $\alpha(N)=8.42\times10^{-7}12; \alpha(O)=1.314\times10^{-7}19; \alpha(P)=9.17\times10^{-9}13; \alpha(IPF)=0.00135719$ $B(E1)(W.u.)=7.2\times10^{-4}7$ $\alpha(K)=0.000131419; \alpha(L)=1.658\times10^{-5}24; \alpha(M)=3.55\times10^{-6}5$ $\alpha(K)=0.00013147; \alpha(L)=1.658\times10^{-5}24; \alpha(M)=3.55\times10^{-6}5$
3460.2	1-	3385 ^c 1	40 3	75.263	2+	[E1]	1.53×10^{-3}	$\alpha(N)=8.15\times10^{-7}$ 12; $\alpha(O)=1.272\times10^{-7}$ 18; $\alpha(P)=8.88\times10^{-9}$ 13; $\alpha(IPF)=0.001388$ 20 B(E1)(W.u.)=2.6×10^{-04} 4

26

$\gamma(^{160}\text{Gd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_{f}^{π}	Mult.&	α ^g	Comments
3460.2	1-	3460 <i>I</i>	100	0.0	0+	E1	1.56×10 ⁻³	$\begin{aligned} \alpha(\text{K}) &= 0.0001331 \ 19; \ \alpha(\text{L}) = 1.680 \times 10^{-5} \ 24; \ \alpha(\text{M}) = 3.59 \times 10^{-6} \ 5 \\ \alpha(\text{N}) &= 8.26 \times 10^{-7} \ 12; \ \alpha(\text{O}) = 1.289 \times 10^{-7} \ 18; \ \alpha(\text{P}) = 8.99 \times 10^{-9} \ 13; \ \alpha(\text{IPF}) = 0.001376 \ 20 \\ \text{B}(\text{E1})(\text{W.u.}) &= 6.0 \times 10^{-04} \ 7 \\ \alpha(\text{K}) &= 0.0001290 \ 18; \ \alpha(\text{L}) = 1.627 \times 10^{-5} \ 23; \ \alpha(\text{M}) = 3.48 \times 10^{-6} \ 5 \\ \alpha(\text{N}) &= 8.00 \times 10^{-7} \ 12; \ \alpha(\text{O}) = 1.248 \times 10^{-7} \ 18; \ \alpha(\text{P}) = 8.71 \times 10^{-9} \ 13; \ \alpha(\text{IPF}) = 0.001408 \ 20 \end{aligned}$
3477.2	$1^{(+)}$	3402 ^{<i>d</i>} 1	43 4	75.263	2+	[M1]	1.35×10^{-3}	B(M1)(W.u.)=0.0285 $e(W)=0.002474; e(U)=2.23\times10^{-5}5; e(W)=6.04\times10^{-6}10$
		3477 ^d 1	100	0.0	0+	(M1)	1.37×10 ⁻³	$\begin{aligned} \alpha(\text{N}) = 0.0002474, \ \alpha(\text{L}) = 3.25 \times 10^{-5} \text{ s}, \ \alpha(\text{M}) = 0.94 \times 10^{-170} \text{ f} \\ \alpha(\text{N}) = 1.599 \times 10^{-6} \text{ 23}; \ \alpha(\text{O}) = 2.50 \times 10^{-7} \text{ 4}; \ \alpha(\text{P}) = 1.746 \times 10^{-8} \text{ 25}; \ \alpha(\text{IPF}) = 0.001061 \text{ 15} \\ \text{B}(\text{M1})(\text{W.u.}) = 0.060 \text{ 10} \\ \alpha(\text{K}) = 0.000236 \text{ 4}; \ \alpha(\text{L}) = 3.09 \times 10^{-5} \text{ 5}; \ \alpha(\text{M}) = 6.63 \times 10^{-6} \text{ 10} \\ \alpha(\text{N}) = 1.526 \times 10^{-6} \text{ 22}; \ \alpha(\text{O}) = 2.39 \times 10^{-7} \text{ 4}; \ \alpha(\text{P}) = 1.667 \times 10^{-8} \text{ 24}; \ \alpha(\text{IPF}) = 0.001092 \text{ 16} \end{aligned}$
3537.2	1	3462 <i>1</i> 3537 <i>1</i>	47 <i>5</i> 100	75.263 0.0	2^+ 0^+	D		
3550.2	1	3475 <i>1</i> 3550 <i>1</i>	40 7 100	75.263 0.0	2^+ 0^+	D		

[†] From (n,n' γ), except as noted.

27

[‡] 2020Ur03 measured the following values for the γ rays from 8⁺ to g.s. of the g.s. band: 70.70 20, 173.86 5, 267.10 5, 353.15 5.

[#] From $(n,n'\gamma)$, 2009Go33 (reported originally as relative intensities) unless noted otherwise.

^(e) From $(n,n'\gamma)$, 2017Le04 (reported originally as relative photon branching from each level, reason for which they could not be listed together with the relative intensities from 2009Go33 in $(n,n'\gamma)$ but being more precise are adopted here).

& From $(n,n'\gamma)$, except as noted, measured by 2009Go33 and 2017Le04 based on angular distribution measurements combined with multiplet analysis and intensity arguments. Based on these arguments they assigned E2 for $\Delta J=2$ transitions, and used the values of measured $\Delta J=2$ mixing ratios of the D+Q transitions to distinguish in between M1 and E1 character (high mixing ratio values implying M1 rather than E1).

^{*a*} Doublet or multiplet.

^b Calculated by the evaluator from the level-energy differences reported by 1993Su16, in Coulomb excitation. These authors report $E\gamma$ to only the nearest keV, but report level energies to the nearest 0.1 keV. This allows the level-energy spacings within the g.s. band given by 1993Su16 to be retained here.

^c B(E1)(W.u.) value computed by the evaluator from $\Gamma_{\gamma 0}$ in (γ, γ') and the listed γ branching.

^d B(M1)(W.u.) value computed by the evaluator from $\Gamma_{\gamma 0}$ in (γ, γ') and the listed γ branching.

^{*e*} From β^- decay (42.6 s).

- ^{*f*} From β^- decay (30.8 s).
- ^g Additional information 6.

^{*h*} Additional information 7.

 i Multiply placed with undivided intensity.

^{*j*} Placement of transition in the level scheme is uncertain.

¹⁶⁰₆₄Gd₉₆-27

Level Scheme

Intensities: Relative photon branching from each level

06

28

Level Scheme (continued)

Legend

 $^{160}_{64}\text{Gd}_{96}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

31

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued) Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given → γ Decay (Uncertain)

 $^{160}_{64}\text{Gd}_{96}$ -37

From ENSDF

 $^{160}_{64}\mathrm{Gd}_{96}\text{--}37$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{160}_{64}\mathrm{Gd}_{96}$

 $^{160}_{64}\text{Gd}_{96}$

	Band(G): ł	First $\mathbf{K}^{\pi} = 1^{-}$				
	(7-)	1910.7			Band(b): ł	First $K^{\pi}=2^{-}$
					(5-)	1884.0
					(4)-	1782.48
			Band(H): First K ^π =1 ⁺ band			
			(4^+) <u>1692.8</u>		3-	1691.35
	(6 ⁻) 5 ⁻	1668.4	3+ 1665.09			
and (E): Second evoited	5	1033.20				
$K^{\pi}=0^+$ band					2-	1621.37
<u>2+ 1598.82</u>			<u>2+ 1586.56</u>			
0+ 1558.35			1+ 1568.67	Band(a): First $K^{\pi}=3^{-1}$		
·				band ? 3 ⁻ 1531.95		
				-		
	<u>4</u> -	1498.85				
	3-	1463.83				
	2-	1376.73				
	1-	1351.188				

