¹⁶⁰Gd(d,d') **1967Bl05**

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 176, 1 (2021)	1-May-2021

Additional information 1.

Mass separated targets, E(d)=12 MeV, magnetic spectrograph resolution \approx 8 keV. Measured $\sigma(E(d'),\theta)$, $\theta=90^{\circ}$ and 125° . Other inelastic scattering measurements: 1966El07 measured $\sigma(d')$ in $^{160}Gd(d,d')$ at $\theta=125^{\circ}$.

¹⁶⁰Gd Levels

1967Bl05 deduce B(EL) values from $d\sigma/d\Omega(90^\circ)$ by assuming that $d\sigma/d\Omega(E=0)=1200\times B(E2)$ and $d\sigma/d\Omega(E=0)=1720\times B(E3)$. The value of R listed with several 160 Gd levels represents the ratio of the $90^\circ/125^\circ$ cross sections as reported by 1967Bl05. 1967Bl05 state that a value of R \approx 1.4 is indicative of an E3 excitation and R \approx 2.1 for an E2 transition, while ratios <1 usually indicate multiple excitation.

E(level)	$J^{\pi \ddagger}$	$d\sigma/d\Omega(\mu b/sr)^{\dagger}$	Comments
0#	0+	45200	R=4.73.
75 [#]	2+	594	R=2.34.
249 [#]	4+	198	R=1.37.
514 [#] 946?	6+	20	R=0.62.
988 [@] 1016?	2+	82	R=3.58.
1070	4+	7	R=2.40. J^{π} : assigned as (2 ⁺) by 1967Bl05.
1148 [@]	4+	33	R=0.89.
1224 <mark>&</mark>	1-	3	R=0.47. J^{π} : assigned as (1 ⁻) by 1967Bl05.
1289 <mark>&</mark>	3-	108	R=1.33.
1426 <mark>&</mark>	5-	6	J^{π} : assigned as (5 ⁻) by 1967Bl05. R=0.44.
1462	(3-)	30	R=1.45. J^{π} : assigned as 3 ⁻ by 1967B105.
1688	(3 ⁻)	39	R=1.45. J^{π} : assigned as 3 ⁻ by 1967Bl05.
1973		5	R=0.92.
2063		21	R=1.42.
2141		19	R=1.35.

[†] Values at θ =90°.

[‡] From the Adopted Levels. Where these differ from those of 1967Bl05, this is pointed out.

[#] Band(A): ground-state rotational band.

[@] Band(B): γ -vibrational band.

[&]amp; Band(C): $K^{\pi}=0^{-}$ octupole band.

160 Gd(d,d') 1967Bl05

Band(C): K^π=0⁻ octupole band

5- 1426

3- 1289

1- 1224

Band(B): γ -vibrational band

<u>4</u>⁺ <u>1148</u>

Band(A): Ground-state rotational band

6⁺ 514

4+ 249

2⁺ 75

0+

 $^{160}_{64}\mathrm{Gd}_{96}$