¹⁶⁰Tm ε decay (74.5 s) **1983Si20**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 176, 1 (2021)	1-May-2021

Parent: ¹⁶⁰Tm: E=70 20; J^{π}=5; T_{1/2}=74.5 s 15; Q(ϵ)=5760 40; % ϵ +% β ⁺ decay=15 5 ¹⁶⁰Tm-Q(ϵ): From 2021Wa16.

¹⁶⁰Tm- $\%\varepsilon$ + $\%\beta^+$ decay: 1983Si20 estimate I(ε + β^+)=15 5 based on the intensities of the 74-s and 9.4-min components of the 264-keV γ ray measured at the beginning of the counting period, assuming that the production cross sections for the ¹⁶⁰Tm g.s. and the 74.5-s isomer in the (p,5n) reaction are comparable.

Additional information 1.

1983Si20: source produced in the ¹⁶⁴Er(p,5n) reaction, E(p)=57 MeV. γ radiation studied using three high-resolution Ge detectors, two to measure γ singles, $\gamma\gamma$, and time-sequential data and one to measure γ singles and time-sequential data for x rays and low-energy γ rays. The internal-conversion electron spectrum measured using a mini-orange spectrometer and a cooled Si(Li) detector. Authors report E γ , I γ , $\gamma\gamma$, $\gamma(t)$, E(ce), Ice.

2014B112: ¹⁶⁰Tm source produced in ¹⁵⁰Sm(¹⁴N,4n), E=72 MeV reaction at INFN-LNS tandem accelerator facility in Catania. Measured γ -ray and conversion electron spectra, latter using a mini-orange spectrometer of fixed magnets. Deduced E0 transitions, conversion coefficients, X(E0/E2) ratios for E0 transitions.

¹⁶⁰Er Levels

E(level) [†]	J ^{π‡}	T _{1/2}	Comments
0.0	0^{+}	28.58 h 9	$T_{1/2}$: adopted value.
125.82 10	2^{+}		
389.86 14	4+		
765.66 17	6+		
987.25 14	$(3)^{+}$		
1008.01 22	2+		
1128.56 17	4+		
1230.29 24	4+		
1316.56 25	5+		
1375.23 23	(4^{+})		
1505.7 4			
1576.0 4			

[†] Calculated from a least-squares fit of the γ -ray energies. Where no uncertainties are available for the E γ values, a value of 1 keV was assigned for this calculation.

[‡] From Adopted Levels.

ε, β^+ radiations

The decay scheme is clearly incomplete, with many γ transitions from higher-lying levels not observed in the experiment reason for which the intensity and log *ft* are not adopted but listed in comments for illustrative purposes. It is expected that the $\varepsilon + \beta^+$ transition intensities, particularly those involving the lower-lying levels, are too large, and the log *ft* values too small. Consequently while the listed log *ft* values (and their uncertainties) are based on the known data they should rather be taken as lower limits. Given in comments are (in this order): I β^+ , I ε , log *ft*, I($\varepsilon + \beta^+$). Intensities are per 100 decays of the isomer.

E(decay)	E(level)	Comments
$(4.25 \times 10^3 5)$	1576.0	av E β =1464 21; ε K=0.384 9; ε L=0.0586 14; ε M+=0.0174 4 0.21 9, 0.17 8, 6.96 20, 0.38 17.
$(4.32 \times 10^3 5)$	1505.7	av E β =1496 21; ε K=0.371 9; ε L=0.0565 13; ε M+=0.0168 4 0.26 11, 0.20 9, 6.91 19, 0.46 20.

¹⁶⁰Tm ε decay (74.5 s) 1983Si20 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Comments
$(4.45 \times 10^3 5)$	1375.23	av E β =1557 21; ε K=0.347 8; ε L=0.0529 12; ε M+=0.0157 4 0.34 15, 0.25 10, 6.86 19, 0.59 25.
$(4.51 \times 10^3 5)$	1316.56	av Eβ=1584 21; εK=0.337 8; εL=0.0514 12; εM+=0.0152 4 0.4 2, 0.2 1, 6.87 22, 0.6 3.
$(4.60 \times 10^3 5)$	1230.29	av Eβ=1624 21; εK=0.323 8; εL=0.0492 12; εM+=0.0146 4 0.5 2, 0.3 2, 6.78 22, 0.8 4.
$(4.70 \times 10^3 5)$	1128.56	av Eβ=1671 21; εK=0.307 7; εL=0.0467 11; εM+=0.0139 4 0.7 3, 0.40 18, 6.69 20, 1.1 5.
(4.82×10 ³ 5)	1008.01	 av Eβ=1727 21; εK=0.289 7; εL=0.0439 10; εM+=0.0130 3 0.29 12, 0.15 7, 7.13 19, 0.44 19. Log <i>ft</i>: this value is too small for a J=5 to J^π=2⁺ transition. This may indicate simply that the gammas feeding this level have not been detected.
$(4.84 \times 10^3 5)$	987.25	av Eβ=1736 21; εK=0.286 7; εL=0.0435 10; εM+=0.0129 3 1.1 4, 0.55 21, 6.58 17, 1.6 6.
$(5.06 \times 10^3 5)$	765.66	av Eβ=1839 21; εK=0.256 6; εL=0.0389 9; εM+=0.0115 3 1.8 8, 0.8 3, 6.46 19, 2.6 11.
$(5.44 \times 10^3 5)$	389.86	av Eβ=2015 21; εK=0.212 5; εL=0.0322 8; εM+=0.00956 22 3.3 13, 1.1 4, 6.37 17, 4.4 17.

$\gamma(^{160}\text{Er})$

 I_{γ} normalization: multiply by 0.61 *10* for γ intensities per 100 $\varepsilon + \beta^+$ decays of the isomer (obtained from $\Sigma I_{\gamma+ce}=100$ to g.s.) and by 0.09 *4* for γ intensities per 100 decays of the isomer. Due to the incompletness of the level scheme the normalization is not adopted but given for illustrative purposes.

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\dagger \#}$	α^{\ddagger}	Comments
125.8 <i>1</i>	72 12	125.82	2+	0.0	0+	E2		1.259	$ \frac{\alpha(K)=0.602 \ 9; \ \alpha(L)=0.504 \ 8;}{\alpha(M)=0.1220 \ 18} \\ \alpha(N)=0.0277 \ 4; \ \alpha(O)=0.00329 \ 5; \\ \alpha(P)=2.56\times10^{-5} \ 4 $
264.1 <i>1</i>	100	389.86	4+	125.82	2+	E2		0.1024	$\alpha(K)=0.0726 \ 11; \ \alpha(L)=0.0230 \ 4; \\ \alpha(M)=0.00541 \ 8 \\ \alpha(N)=0.001236 \ 18; \ \alpha(O)=0.0001568 \\ 22; \ \alpha(P)=3.64\times10^{-6} \ 6 $
375.8 1	27 4	765.66	6+	389.86	4+	E2		0.0356	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0273 \ 4; \ \alpha(\mathbf{L}) = 0.00647 \ 9; \\ &\alpha(\mathbf{M}) = 0.001496 \ 21 \\ &\alpha(\mathbf{N}) = 0.000344 \ 5; \ \alpha(\mathbf{O}) = 4.52 \times 10^{-5} \ 7; \\ &\alpha(\mathbf{P}) = 1.458 \times 10^{-6} \ 21 \end{aligned}$
597.6 <i>3</i>	2.9 7	987.25	$(3)^{+}$	389.86	4+				
738.7 1	12 2	1128.56	4+	389.86	4+	M1+E2	-7 +3-17	0.0066 3	α (K)exp=0.006 2 (2014B112) α (K)=0.00541 24; α (L)=0.00090 3; α (M)=0.000202 7 α (N)=4.68×10 ⁻⁵ 15; α (O)=6.54×10 ⁻⁶ 23; α (P)=3.07×10 ⁻⁷ 15 Mult., δ : α (K)exp consistent with M1+E2, δ =-7 +3-17 as measured earlier in 2006Du02 (HI dataset). No E0 admixture is evident. X(E0/E2)=0 (2014B112).
840.8 <i>3</i>	3.8 9	1230.29	4+	389.86	4+	E0+M1+E2		0.032 7	$\alpha(K) \exp=0.028 \ 6 \ (2014B112)$ $\alpha(K) = 0.0060 \ 20; \ \alpha(L) = 8.9 \times 10^{-4} \ 25;$

Continued on next page (footnotes at end of table)

 $^{160}_{68}\mathrm{Er}_{92}$ -3

$\frac{160}{10} \text{Tm } \varepsilon \text{ decay (74.5 s)} \qquad 1983 \text{Si20 (continued)}$									
$\gamma(^{160}\text{Er})$ (continued)									
E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [†]	$\delta^{\dagger \#}$	α^{\ddagger}	Comments
			_						$\alpha(M)=1.97\times10^{-4} 53$ $\alpha(N)=4.6\times10^{-5} 13;$ $\alpha(O)=6.6\times10^{-6} 19;$ $\alpha(P)=3.5\times10^{-7} 13$ $\alpha: \text{ estimated from } \alpha(K)\text{exp and theoretical K/Tot}\approx0.87.$ Mult.: based on $\alpha(K)\text{exp (2014B112, photon and electron spectra).}$ $\alpha(K)exp from table III in 2014B112, uncertainty=0.005 in text on page 5.$
861.4 <i>1</i>	12 2	987.25	(3)+	125.82	2+	E2		0.00460	X(E0/E2)=0.330 82 (2014B112). α (K)exp=0.0038 8 (2014B112) α (K)=0.00382 6; α (L)=0.000607 9; α (M)=0.0001357 19 α (N)=3.15×10 ⁻⁵ 5; α (O)=4.43×10 ⁻⁶ 7; α (P)=2.17×10 ⁻⁷ 3 Mult.: based on α (K)exp (2014B112). α (K)exp from table III in 2014B112, listed as 0.0034 8 in taxt on page 5
882.0 <i>3</i>	2.5 7	1008.01	2+	125.82	2+	E0+M1+E2		0.070 <i>17</i>	text on page 5. $\alpha(K)\exp=0.061 \ 15 \ (2014B112)$ $\alpha(K)=0.0054 \ 18; \ \alpha(L)=7.9\times10^{-4}$ $22; \ \alpha(M)=1.75\times10^{-4} \ 47$ $\alpha(N)=4.1\times10^{-5} \ 11;$ $\alpha(O)=5.9\times10^{-6} \ 17;$ $\alpha(P)=3.2\times10^{-7} \ 11$ α : estimated from $\alpha(K)\exp$ and theoretical K/Tot ≈ 0.87 . Mult.: based on $\alpha(K)\exp$ (2014B112, photon and electron spectra). X(E0/E2)=0.97 \ 21 \ (2014B112). Contribution to electron intensity from 879, M1+E2 γ in 160 Dy subtracted. E_{γ} : incorrectly listed as 894 in level-scheme figure 7 of
926.7 2	6.7 12	1316.56	5+	389.86	4+	M1+E2	-5.5 +9-12	0.00405 8	$\begin{array}{l} 2014B112. \\ \alpha(K)=0.00338 \ 7; \ \alpha(L)=0.000524 \\ 9; \ \alpha(M)=0.0001167 \ 20 \\ \alpha(N)=2.71\times10^{-5} \ 5; \\ \alpha(O)=3.83\times10^{-6} \ 7; \\ \alpha(P)=1.93\times10^{-7} \ 4 \end{array}$
1008.2 <i>3</i>	2.3 5	1008.01	2+	0.0	0+	E2		0.00330	ο: from 2006Du02 (HI dataset). α (K)exp=0.0032 7 (2014B112) α (K)=0.00276 4; α (L)=0.000422 6; α (M)=9.39×10 ⁻⁵ 14 α (N)=2.18×10 ⁻⁵ 3; α (O)=3.09×10 ⁻⁶ 5;

$^{160}\mathrm{Tm}~\varepsilon$ decay (74.5 s) 1983Si20 (continued)

$\gamma(^{160}\text{Er})$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
1104.1 <i>3</i> 1115.8 <i>3</i> 1186.1 <i>3</i> 1249.4 2	5.3 10 5.0 10 4.2 9 6.5 12	1230.29 1505.7 1576.0 1375.23	4 ⁺ (4 ⁺)	125.82 389.86 389.86 125.82	2 ⁺ 4 ⁺ 4 ⁺ 2 ⁺	α (P)=1.574×10 ⁻⁷ 22 α (K)exp from table III in 2014B112, listed as 0.0033 8 in text on page 5.

[†] From adopted values. Some values reported by articles quoted in this dataset are mentioned separately.
 [‡] Additional information 2.
 [#] Additional information 3.

¹⁶⁰Tm ε decay (74.5 s) 1983Si20

¹⁶⁰₆₈Er₉₂