	Туре	Author	History Citation	Literature Cutoff Date
Ful	l Evaluation	N. Nica	NDS 176, 1 (2021)	1-May-2021
$Q(\beta^{-})=-5760 \ 40; \ S(n)=9574 \ 25; \ S(p)$ $S(2n)=16900 \ 30, \ S(2p)=10235 \ 24 \ (20)$ Additional information 1.	=6024 <i>24</i> ; Q(21Wa16).	(α)=2040 24	4 2021Wa16	
			¹⁶⁰ Er Levels	
Quasiparticle labeling scheme (adopt A: $v3/2[651], \alpha = +1/2; i_{13/2}$ orbital. B: $v3/2[651], \alpha = -1/2; i_{13/2}$ orbital. C: $v1/2[660], \alpha = +1/2; i_{13/2}$ orbital. D: $v1/2[660], \alpha = -1/2; i_{13/2}$ orbital. E: $v3/2[521], \alpha = +1/2; h_{9/2}$ orbital. F: $v3/2[521], \alpha = -1/2; h_{9/2}$ orbital. G: $v5/2[523], \alpha = -1/2; f_{7/2}$ orbital. H: $v5/2[523], \alpha = -1/2; f_{7/2}$ orbital. Ap: $\pi7/2[523], \alpha = -1/2; h_{11/2}$ orbital. Bp: $\pi7/2[523], \alpha = -1/2; h_{11/2}$ orbital. F; $\pi7/2[404], \alpha = -1/2; g_{7/2}$ orbital.	ted from 2011	10102; f _{7/2}	and h _{9/2} are highly min	xed):
		Cross	Reference (XREF) Fla	gs
		A B C D	¹⁶⁰ Tm ε decay (9.4 mi ¹⁶⁰ Tm ε decay (74.5 s) (HI,xnγ) ¹¹⁶ Cd(⁴⁸ Ca,4nγ):tsd	n)

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	XREF	Comments
0.0@	0+	28.58 h 9	ABCD	$\% \varepsilon = 100$ $\Delta < r^2 > (^{160}Er - ^{150}Er) = 1.30 \text{ fm}^2$, estimated by the evaluator from the figure given in 1985Ne09. This same information, in graphical format, is given in a number of publications by this group. In an evaluation of nuclear rms charge radii, 2013An02 report $< r^2 > ^{1/2} = 5.2045$ fm 336.
				T _{1/2} : deduced from γ (t) measurements of 197 γ from ¹⁶⁰ Ho(5.02-h) daughter in equilibrium with parent (1970Ka23). Other measurements: 1954Mi16, 1955Ne03, 1957Dz60, 1957Go72, 1958Pa16, 1961Bj02, 1963Ra15, 1966La11.
125.47 [@] 6	2+	919 ps <i>31</i>	ABCD	 μ=+0.66 12 J^π: E2 transition to g.s. T_{1/2}: other: 850 ps 150, from ¹⁶⁰Tm ε decay (1978Ad03). These authors also mention the value T_{1/2}=919 ps 46, given in a 1972 monograph from another group. μ: From the compilation of 2014StZZ by perturbed angular correlation method (measured by 2005Wo06).
389.37 [@] 7	4+	32.3 ps 11	ABCD	μ =1.28 <i>19</i> J ^{π} : collective E2 transition to 2 ⁺ first excited state. Member of g.s. band. μ : From the compilation of 2014StZZ by recoil into gas or vacuum method (measured by 1970No01; see discussion of the experimental considerations underlying these data). g-factors for the g.s. band members are approximately constant up through the 8 ⁺ state 1989Ra17.

¹⁶⁰Er Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments		
765.01 [@] 8	6+	5.4 ps 3	BC	J ^{π} : collective E2 transition to 4 ⁺ member of g.s. band. Energy spacings indicate that this is the 6 ⁺ member of the g.s. band.		
854.20 ^d 13	2^{+}		Α	J^{π} : E2 transition to g.s. Bandhead of γ -vibrational band.		
893.5 ^e 5	0+		A	J^{π} : E0 γ to 0 ⁺ g.s. This, together with the relatively low excitation energy, strongly suggests that this is the bandhead of the first excited $K^{\pi}=0^+$ band.		
987.15 ^d 8	(3)+		ABC	XREF: C(989). J^{π} : γ 's only to 2 ⁺ and 4 ⁺ members of g.s. band require $J^{\pi}=2^+$, 3, or 4 ⁺ . Relative I γ values, location of state in the level scheme and E2 character of transition to 2 ⁺ member of g.s. band strongly suggest that this is the 3 ⁺ member of the γ -vibrational band.		
1007.93 ^e 9	2+		ABC	J ^{π} : $\Delta J=0 E0+M1+E2 \gamma$ to 2 ⁺ and $\Delta J=2 E2 \gamma$ to 0 ⁺ Probable member of the first excited $K^{\pi}=0^+$ band.		
1128.54 ^d 8	4+		В	J ^{π} : 1983Si20 suggest this state may be the 4 ⁺ member of the γ -vibrational band. M1+E2 γ to 4 ⁺ and log <i>ft</i> =6.6 from J=5.		
1229.06 [@] 9	8+	1.7 ps 4	С	J^{π} : collective E2 transition to 6 ⁺ member of the g.s. band and energy spacing indicate that this is the 8 ⁺ member of the g.s. band.		
1229.68 ^e 13	4+		BC	J ^{π} : E0+M1+E2 γ to 4 ⁺ . 1983Si20 suggest that this may be the 4 ⁺ member of the first excited $K^{\pi}=0^+$ band.		
1316.36 ^d 8	5+		BC	J ^{π} : M1+E2 transition to 4 ⁺ state indicates J ^{π} =3 ⁺ , 4 ⁺ , or 5 ⁺ ; 2006Du02 in (HI,xn γ) dataset assign 5 ⁺ as for member in the γ -vibrational band.		
1374.6 4	(4 ⁺)		AB	J^{π} : log ft=6.8 from J=5. γ to 2 ⁺ .		
1389.6 6	2+,3,4+		A	J^{n} : γ' s to 2^{+} and 4^{+} levels.		
1395.2? /			A			
1494.1 4	<+		A			
1499.244 9 1505.2 <i>3</i>	0		В	J [*] : M1+E2 γ to 5 [°] and member in the γ -vibrational band.		
1535.8 4	$1,2^{+}$		A	J^{n} : γ 's to 0' and 2' levels.		
1542.12° 11	(0.)		R	J^{*} : γ s to 4° and 6° and member of the first excited $K^{*}=0^{\circ}$ band.		
1586.0 5	$1,2^{+}$		A	J^{π} : γ 's to 0 ⁺ and 2 ⁺ levels.		
1636.8? <mark>&</mark> 8	(4^{-})		С	J^{π} : based only on tentative band assignment.		
1651.9 4			Α			
1740.71 ^{<i>d</i>} 8	7+		С	J ^{π} : E2 γ to 5 ⁺ member of γ -vibrational band and M1+E2 γ to 6 ⁺ member of g.s. band.		
1756.7 ^{<i>i</i>} 5	5(-)		С	J^{π} : $\Delta J=1$, D γ' s from this and 2151 second level of this band to 6 ⁺ of g.s. determine J=5 for this level (band head) and J=7 for 2151. $\pi=(-)$ based on assigned configurations.		
1760.88 [@] 10 1894.1 7	10 ⁺ 1,2 ⁺	0.87 ps 21	C A	J^{π} : E2 γ to 8 ⁺ and member of the g.s. band. J^{π} : γ 's to 0 ⁺ and 2 ⁺ levels.		
1905.0 ^f 5	6-		С	J^{π} : E2, 387.2 γ from 2292, 8 ⁻ level.		
1906.2? <mark>&</mark> 5	(6 ⁻)		С	J^{π} : based on band assignment and γ' s to (4 ⁻) and 6 ⁺ .		
1921.39 ^e 11	(8+)		С	J ^{π} : γ 's to 6 ⁺ and 8 ⁺ and member of the first excited $K^{\pi}=0^+$ band.		
1950.44 ^d 10	(8 ⁺)		С	J^{π} : γ to 6 ⁺ member of γ -vibrational band.		
2104.4 ^{<i>a</i>} 4	9-		С	J^{π} : E2 γ from 11 ⁻ and $\Delta J=1 \gamma$ to 8 ⁺ .		
2151.3 ^{<i>i</i>} 4	7 ⁽⁻⁾		С	J ^{π} : Δ J=1, D γ 's from 1756 band head and from this level to 6 ⁺ of g.s. band determine J=5 for 1756 and J=7 for this level. π =(-) based on assigned configurations.		
2194.3? 6			Α			
2242.11 ^{<i>a</i>} 9	(9+)		C	J^{π} : (E2) γ to 7 ⁺ member of γ -vibrational band and (M1+E2) γ to 8 ⁺ member of g.s. band.		
2248.9 5			Α			
2261.6 ^{<i>J</i>} 4	8-		C	J^{π} : in-band γ to 6^- .		

¹⁶⁰Er Levels (continued)

E(level) [†]	$J^{\pi #}$	T _{1/2} ‡	XREF	Comments		
2292.9 ^{&} 4	8-		С	J ^{π} : Δ J=1 (E1) γ to 7 ⁺ , 1741 of γ -vibrational band and member of negative parity band.		
2326.2 ^j 6	8(-)		С	J^{π} : $\Delta J=1$, D+Q γ to $7^{(-)}$; $\pi=(-)$ based on assigned configurations.		
2340.11 [@] 10	12^{+}	0.58 ps 15	С	J^{π} : E2 γ to 10 ⁺ and member of the g.s. band.		
2360.06 ^e 11	(10^{+})	1	С	J^{π} : γ 's to 8 ⁺ and 10 ⁺ and member of the first excited $K^{\pi}=0^+$ band.		
2436.73 ^d 10	(10^{+})		С	J^{π} : γ to (8 ⁺) member of γ -vibrational band.		
2468.8 5	(10^{+})		С			
2519.9 ^a 4	11-		С	$J^{*}: \Delta J=1, E1 / 59\gamma$ to $10^{+}, 1/60$ yrast level.		
2529.8 6	9()		C	$J'': \Delta J=1, D+Q \gamma$ to $\delta^{(\gamma)}$ and in-band γ to $\gamma^{(\gamma)}$.		
2531.0^{4}	10		C	$J'': EI \gamma$ to 10° and E2 γ to 8.		
26/1.1 ^J 5	10^{-1}		C	$J^{\prime\prime}$: E2 in-band γ to 8 ⁻ .		
2757.077	10(-)		С	J^{n} : $\Delta J=1$, $D+Q \gamma$ to $9^{(-\gamma)}$ and in-band γ to $8^{(-\gamma)}$.		
2800.04° 10	(11^{+}) (12^{+})		C	$J^{\prime\prime}$: E2 γ to (9 ⁺) member of γ -vibrational band.		
2043.79 12	(12)		c	J : γ s to 10 and 12 and memori of the first excited K =0 band.		
$2832.9 \ 8$	(9)		c	J. γ from in-band (11), band field of band 12.		
2074.4 + 7 2021 28 ^(a) 12	12 14 ⁺	0.62 ps 15	c	J. E2 m-band y to 10°. I^{π} : E2 α to 10 ⁺ and member of the g.s. band		
2931.38 I2 2979.4 ^{<i>a</i>} 4	14^{-14}	0.02 ps 15	c	J^{π} : E2 in-band γ to 11 ⁻ .		
2993.0^{i} 7	$11^{(-)}$		C	J^{π} : $\Delta J=1$, D+O γ to $10^{(-)}$ and in-band γ to $9^{(-)}$.		
2998.29 ^d 11	(12^{+})		C	J^{π} : γ to (10 ⁺) member of γ -vibrational band.		
3024.2 ¹ 7	(10^{+})		C	J^{π} : γ' 's to $9^{(-)}$.10 ⁽⁻⁾ and π =(+) (based on assigned configurations) select the most		
				likely J^{π} values equal to (9 ⁺),(10 ⁺); (10 ⁺) from $\Delta J=(1)$ interband transition from (11 ⁺).		
3038.2 7	(12^{+})		С			
3093.1 ¹ 8	12-		С	J^{π} : E2 in-band γ to 10^{-} .		
3121.6 ^b 5	14+		С	J^{π} : E2 γ to 12 ⁺ of g.s. band.		
3187.4 ^{<i>k</i>} 7	(11 ⁺)		С	J^{π} : γ 's to $10^{(-)}$, $11^{(-)}$ and π =(+) (based on assigned configurations) select the most likely J^{π} values equal to (10^+) , (11^+) ; (11^+) is postulated by 2011Ol02 ((HI,xn γ) dataset).		
3241.0 ^g 8	(13+)		С	J=(13) compatible with γ to 12 ⁺ , assigned in (HI,xn γ) (2011002) based on the fact that if J>13 this band would become yrast at higher spins, which is contrary to the observed intensities. π =(+) based on assigned configurations.		
3275.5 ^j 8	(12 ⁻)		С	J^{π} : γ to $11^{(-)}$ and in-band γ to $10^{(-)}$.		
3313.5 <mark>&</mark> 4	14-		С	J^{π} : E2 in-band γ to 12^{-} .		
3362.86 ^d 13	(13+)		С	J^{π} : (E2) γ to (11 ⁺) member of γ -vibrational band.		
3371.78 ^e 16	(14^{+})		С	J^{π} : γ 's to 12 ⁺ and 14 ⁺ and member of the first excited $K^{\pi}=0^+$ band.		
3396.3 ¹ 8	(12^{+})		С	J^{π} : γ to (11^+) and in-band γ to (10^+) .		
3461.8 ^{<i>h</i>} 8	(14 ⁺)		С	J=(14) compatible with γ to (13 ⁺), assigned in (HI,xn γ) (2011Ol02) based on the fact that if J>14 this band would become yrast at higher spins, which is contrary to the observed intensities. π =(+) based on assigned configurations.		
3465.43 [@] 13	16+	1.09 ps 14	С	J^{π} : E2 γ to 14 ⁺ and member of the g.s. band.		
3483.8 ^{<i>a</i>} 5	15-		С	J^{π} : E2 in-band γ to 13 ⁻ .		
3525.3 ⁱ 8	(13-)		С	J^{π} : γ to (12 ⁻) and in-band γ to 11 ⁽⁻⁾ .		
3566.50 ^d 14	(14^{+})		С			
3587.8 [†] 10	14-		С	J^{π} : E2 in-band γ to 12^{-} .		
3632.5 ^{<i>k</i>} 8	(13 ⁺)		С	J^{π} : γ 's to (12 ⁺) and in-band (11 ⁺).		
3654.1 ^b 4	16+		C	J^{π} : E2 in-band γ to 14 ⁺ .		
3695.5 ⁸ 8	(15 ⁺)		C	J [*] : γ to 14 ⁺ of g.s. band and in-band γ to (13 ⁺).		
3830.5°C 5	16-		С	J': E2 in-band γ to 14 ⁻ .		

¹⁶⁰Er Levels (continued)

E(level) [†]	J ^{π#}	$T_{1/2}^{\ddagger}$	XREF	Comments
3836.6 ^d 5	(15^{+})		С	J^{π} : γ to (13 ⁺) member of γ -vibrational band.
3850.3 ^j 9	(14 ⁻)		С	J^{π} : γ to (13 ⁻) and in-band γ to (12 ⁻).
3884.9? ^l 10	(14^{+})		С	J^{π} : γ to (13 ⁺) and in-band γ to (12 ⁺).
3950.1 ^h 8	(16 ⁺)		С	J^{π} : γ to (15 ⁺) and in-band γ to (14 ⁺).
3964.1 [°] 6	16+		С	J^{π} : E2 γ to 14 ⁺ of g.s. band.
3965.71 ^e 18	(16 ⁺)		C	
$4020.9^{\circ}3$	18^+	0.68 ps 19	C	J^{π} : E2 γ to 16 ⁺ and member of the g.s. band.
$4040.5^{\circ}0$	(15^{-})		C	J: E2 III-Dallu γ to 13. \overline{M}_{1} at to (14^{-}) and in hand at to (12^{-})
$4089.8^{\circ}9$	(15)		C	J^{-} , γ to (14) and m-band γ to (15).
$4157.1^{\circ} 12$	(10^{-})		c	$J : \text{in-band } i \text{ to } 14^+$. $I^{\pi_1} \alpha'_{5} \text{ to } (14^+) \text{ and in band } (13^+)$
4223.3 ⁸ 9	(13^{+})		c	J^{π} : γ to (16 ⁺) and in-band γ to (15 ⁺).
4286.7 ^b 5	18+		C	J^{π} : E2 in-band γ to 16 ⁺ .
4373.1 ^{<i>d</i>} 4	(17^{+})		c	J^{π} : γ to (15 ⁺) member of γ -vibrational band.
4403.3 ^{&} 6	18-		С	J^{π} : E2 in-band γ to 16 ⁻ .
4449.9 <i>j</i> 9	(16 ⁻)		С	J^{π} : γ to (15 ⁻) and in-band γ to (14 ⁻).
4462.8? ^{<i>l</i>} 12	(16 ⁺)		С	J^{π} : γ to (15 ⁺) and in-band γ to (14 ⁺).
4514.0 ^h 9	(18 ⁺)		С	J^{π} : γ to (17^+) and in-band γ to (16^+) .
4567.9 [°] 8	(18^{+})		С	J^{π} : in-band γ to 16 ⁺ .
4660.8 [@] 4	20^{+}		С	J^{π} : E2 γ to 18 ⁺ and member of the g.s. band.
4662.2 ^{<i>a</i>} 6	19-		C	J^{π} : E2 in-band γ to 17 ⁻ .
4684.9 ¹ 10	(17-)		C	J^{π} : γ to (16 ⁻) and in-band γ to (15 ⁻).
4767.2 ^J 13	(18 ⁻)		C	J^{π} : in-band γ to (16 ⁻).
4782.7 ^K 11	(17^+)		C	J^{π} : in-band γ to (15 ⁺).
4818.78 10	(19^{-1})		C	J^{**} γ to (18 ⁺) and in-band γ to (17 ⁺).
4954.7° 10	(10)		c	J^{*} . γ to (17) and m-band γ to (10).
4908.0° 7	(10^{+})		c	J [*] . EZ III-ballu y to 18 [°] .
$4991.5^{\circ}5$	(19)		C C	J^{*} : γ to (17) member of γ -viorational band.
5110.82^{1} 15	(18^{+})		C	J. EZ III-balld y to 18. I_{π} : in band of to (16^{\pm})
51367^{h} 10	(10^{+})		C	I^{π} : α to (10^+) and in-band α to (18^+)
5192.1 [°] 9	(20^{+})		c	J^{π} : E2 in-band γ to (18 ⁺).
5247.4 ⁱ 10	(19 ⁻)		C	J^{π} : γ to (18 ⁻) and in-band γ to (17 ⁻).
5322.5 ^a 7	21-		С	J^{π} : E2 in-band γ to 19 ⁻ .
5382.7 [@] 5	22+		С	J^{π} : E2 γ to 20 ⁺ and member of the g.s. band.
5412.4 <i>^f</i> 14	(20^{-})		С	J^{π} : in-band γ to (18 ⁻).
5458.9 ^k 13	(19^{+})		С	J^{π} : in-band γ to (17 ⁺).
5472.0 ⁸ 10	(21^{+})		C	J^{π} : γ to (20 ⁺) and in-band γ to (19 ⁺).
5562.5 ^J 11	(20^{-})		C	J^{π} : γ to (19 ⁻) and in-band γ to (18 ⁻).
5676.0 ^{Q} 9	22-		C	J^{π} : E2 in-band γ to 20 ⁻ .
5680.5 ^{<i>a</i>} 6	(21^{+})		C	J^{π} : γ to (19 ⁺) member of γ -vibrational band.
5707.6° 8	22+		C	J [*] : E2 in-band γ to 20 ⁺ .
5806.9" 11	(22^+)		C	J^{μ} : γ to (21^{+}) and in-band γ to (20^{+}) .
5808.6^{1} 11	(22^{+})		C	J. III-Dallu γ ID (2D). I^{π_1} at to (20 ⁻¹) and in hand at to (10 ⁻¹)
6026.6^{a} 9	(21) 23^{-}		C C	J^{π} : E2 in-band γ to 21^{-} .
6108.2^{f} 16	(22^{-})		c	J^{π} : in-band γ to (20 ⁻).
5100. <u> </u>	()			

¹⁶⁰Er Levels (continued)

E(level) [†]	$J^{\pi \#}$	XREF	Comments
6156.5 ⁸ 11	(23^{+})	С	J^{π} : γ to (22 ⁺) and in-band γ to (21 ⁺).
6175.1 [@] 6	24+	С	J^{π} : E2 γ to 22 ⁺ and member of the g.s. band.
6183.0 ^k 14	(21^{+})	с	J^{π} : in-band γ to (19 ⁺).
6257.1 ^j 12	(22^{-})	C	J^{π} : γ to (21^{-}) and in-band γ to (20^{-}) .
6392.7 <mark>&</mark> 11	24-	С	J^{π} : E2 in-band γ to 22 ⁻ .
6436.6 ^d 8	(23^{+})	с	J^{π} : γ to (21 ⁺) member of γ -vibrational band.
6508.2 ^b 9	24+	C	J^{π} : E2 in-band γ to 22 ⁺ .
6520.0^{h} 11	(24^{+})	C	I^{π} : γ to (23^+) and in-band γ to (22^+) .
6570.0 [°] 9	(24^+)	c	J^{π} : E2 in-band γ to (22 ⁺).
6632.5 ⁱ 12	(23 ⁻)	С	J^{π} : γ to (22 ⁻) and in-band γ to (21 ⁻).
6784.2 ^{<i>a</i>} 11	25-	С	J^{π} : E2 in-band γ to 23 ⁻ .
6860.2 ^f 17	(24 ⁻)	С	J^{π} : in-band γ to (22 ⁻).
6893.9 <mark>8</mark> 12	(25^+)	С	J^{π} : γ to (24 ⁺) and in-band γ to (23 ⁺).
6943.5 ^k 15	(23+)	С	J^{π} : in-band γ to (21 ⁺).
7027.6 [@] 9	26^{+}	С	J^{π} : E2 γ to 24 ⁺ and member of the g.s. band.
7027.8 ^J 13	(24 ⁻)	С	J^{π} : in-band γ to (22 ⁻).
7176.7 212	26^{-}	С	J^{π} : E2 in-band γ to 24 ⁻ .
7250.5 ^d 10	(25^+)	С	J^{π} : γ to (23 ⁺) member of γ -vibrational band.
7284.7 <mark>h</mark> 12	(26^{+})	С	J^{π} : γ to (25 ⁺) and in-band γ to (24 ⁺).
7334.6 ^b 10	26^{+}	С	J^{π} : E2 in-band γ to 24 ⁺ .
7368.1 [°] 10	(26^{+})	С	J^{π} : E2 in-band γ to (24 ⁺).
7438.2 ¹ 13	(25 ⁻)	C	J^{π} : in-band γ to (23 ⁻).
7603.7ª 13	27	C	J^{*} : E2 in-band γ to 25.
7662.3 ^J 18 7692.0 ^g 12	(26^{-}) (27^{+})	C C	J^{α} : in-band γ to (24 ⁻). J^{π} : γ to (26 ⁺) and in-band γ to (25 ⁺).
7747.5? ^k 18	(25^{+})	С	J^{π} : in-band γ to (23 ⁺).
7867.8 ^j 14	(26 ⁻)	С	J^{π} : in-band γ to (24 ⁻).
7929.0 [@] 10	28+	С	J^{π} : E2 γ to 26 ⁺ and member of the g.s. band.
8024.4 ^{&} 14	28-	С	J^{π} : E2 in-band γ to 26 ⁻ .
8115.3 ^d 12	(27^{+})	С	J^{π} : γ to (25 ⁺) member of γ -vibrational band.
8115.6 ^h 13	(28^{+})	С	J^{π} : γ to (27^+) and in-band γ to (26^+) .
8176.4 ^b 12	(28^{+})	С	J^{π} : (E2) in-band γ to 26 ⁺ .
8237.1 ^c 12	(28 ⁺)	С	J^{π} : in-band γ to (26 ⁺).
8307.7 ⁱ 15	(27 ⁻)	С	J^{π} : in-band γ to (25 ⁻).
8478.3 ^{<i>a</i>} 14	29-	С	J^{π} : E2 in-band γ to 27 ⁻ .
8494.6 ^J 19	(28 ⁻)	С	J^{π} : in-band γ to (26 ⁻).
8556.98 13	(29+)	C	J^{π} : γ to (28 ⁺) and in-band γ to (27 ⁺).
8586.5?* 21	(27^{+})	C	J^{π} : in-band γ to (25 ⁺).
8766.4 16	(28 ⁻)	C	J^{π} : in-band γ to (26 ⁻).
8865.6 ^w 12	30+	C	J [*] : E2 γ to 28 ⁺ and member of the g.s. band.
8918.2 ^{°°} 15	30-	C	$J^{\prime\prime}$: E2 in-band γ to 28 ⁻ .
8994.5 ^{<i>a</i>} 13	(29 ⁺)	С	J^{π} : γ to (27^+) member of γ -vibrational band.
9019.0 ^{<i>n</i>} 14	(30+)	C	J^{π} : in-band γ to (28 ⁺).
9080.8 ⁰ 13	(30^+)	C	J^{π} : (E2) in-band γ to (28 ⁺).
$914/.4^{\circ}$ 13	(30 ⁺)	C	J [*] : E2 in-band γ to (28 ⁺).
9234.5' 16	(29 ⁻)	C	J^{*} : in-band γ to (27).
9289.2 <mark>1</mark> 20	(30-)	C	J ^{\sim} : in-band γ to (28).

¹⁶⁰Er Levels (continued)

E(level) [†]	$J^{\pi \#}$	XREF	Comments
9383.8 ^a 15	31-	С	J^{π} : E2 in-band γ to 29 ⁻ .
9498.4 <mark>8</mark> 14	(31 ⁺)	С	J^{π} : in-band γ to (29 ⁺).
9720.7 ^j 17	(30-)	С	J^{π} : in-band γ to (28 ⁻).
9825.6 [@] 14	32^{+}	С	J^{π} : E2 γ to 30 ⁺ and member of the g.s. band.
9830.5 ^{&} 16	32-	С	J^{π} : E2 in-band γ to 30 ⁻ .
9839.8 ^d 15	(31 ⁺)	С	J^{π} : γ to (29 ⁺) member of γ -vibrational band.
9996.7 ^h 15	(32^{+})	С	J^{π} : in-band γ to (30 ⁺).
10043.6 ^b 14	(32^+)	С	J^{π} : (E2) in-band γ to (30 ⁺).
10123.4? ^c 16	(32^{+})	С	J^{π} : in-band γ to (30 ⁺).
10136.5 ^{<i>f</i>} 21	(32 ⁻)	С	J^{π} : in-band γ to (30 ⁻).
10213.7 ¹ 17	(31-)	С	J^{π} : in-band γ to (29 ⁻).
10302.7 ^{<i>a</i>} 16	33-	C	J^{π} : E2 in-band γ to 31 ⁻ .
10512.58 15	(33')	C	J^* : in-band γ to (31 ⁺).
10/24.1 ^J 18	(32^{-})	C	J^{π} : in-band γ to (30 ⁻).
10/29./* 10	(33.)	C	J^{T} : γ to (31°) member of γ -vibrational band.
$10/61.9^{\circ}$ 1/	34 2.4+	C	J^* : E2 in-band γ to 32.
10808.8° 15	34	C	$J^*: E2 \gamma$ to 32^+ and member of the g.s. band.
11042.8° 16	(34)	C	$J^{\prime\prime}$: (E2) in-band γ to (32 ⁺).
11047.1" 16	(34+)	С	J^{n} : in-band γ to (32 ⁺).
11064.6 21	(34^{-})	C	J^{π} : in-band γ to (32 ⁻).
11168.4?° 19	(34')	C	J^* : in-band γ to (32 ⁺).
11248.8 18	(33^{-})	C	$J^{\prime\prime}$: in-band γ to (31 ⁻).
11231.0 ² 17 11507.6 <mark>8</mark> 17	(35^+)	C	J^{*} ; EZ III-Dalid γ to 55. I^{π} , in band α to (33 ⁺)
11597.0° 17 11684 Ad 17	(35^+)	c	I^{π_1} at to (32^+) member of a with rational hand
1100+.4 17 11735 5 $\frac{6}{18}$ 18	(35)	c	J. γ to (55.) memory of γ -violational band. I^{π} : F2 in band α to 34^{-1}
11735.5 10 $117700^{1}10$	(34^{-})	c	$J = L2$ in-band y to (32^{-})
$11779.0^{\circ}19$	(5 +) 36 ⁺	c	I^{π} : F2 α to 34^{+} and member of the α s band
12087.8^{b} 17	(36^+)	c	$J = L2 \neq 0.54^{-1}$ and member of the g.s. band. I^{π_1} (E2) in band as to (34^+)
12087.8 I7 12080.6 f 22	(30^{-})	c	$J = (E2)$ in-band y to (34^{-}) .
$12089.0^{\circ} 22$	(30^{+})	C C	J in band y to (34^+) .
12102.7 17 12247.6^{a} 18	(30) 37^{-}	c	J. In-band y to (54°) . I^{π} : F2 in-band y to 35^{-1}
12217.0 10 123254^{i} 19	(35^{-})	c	J^{π} : in-hand γ to (33^{-})
$12702 0^{d} 18$	(37^+)	c	I^{π} , γ to (35^+) member of γ -vibrational hand
12761.9 2.0 10	38-	c	J^{π} : F2 in-band γ to 36^{-1}
$12865.4^{@}$ 17	38 ⁺	c	J^{π} : E2 γ to 36 ⁺ and member of the g.s. band.
13166 5 ^b 18	(38^{+})	C	I^{π} . (E2) in-band γ to (36 ⁺)
13302.2 ^{<i>a</i>} 19	39-	c	J^{π} : E2 in-band γ to 37 ⁻ .
13333.1 ^h 18	(38+)	С	J^{π} : in-band γ to (36 ⁺).
13777.9 ^d 19	(39 ⁺)	С	J^{π} : γ to (37 ⁺) member of γ -vibrational band.
13845.2 ^{&} 20	40^{-}	С	J^{π} : E2 in-band γ to 38 ⁻ .
13952.4 [@] 18	40^{+}	С	J^{π} : E2 γ to 38 ⁺ and member of the g.s. band.
14248.0 ^b 19	(40^{+})	С	J^{π} : in-band γ to (38 ⁺).
14421.2 ^{<i>a</i>} 20	41-	С	J^{π} : E2 in-band γ to 39 ⁻ .
14904.1 ^{<i>d</i>} 20	(41^+)	С	J^{π} : γ to (39 ⁺) member of γ -vibrational band.
14986.6 ^{&} 21	42-	С	J^{π} : E2 in-band γ to 40 ⁻ .
15086.7 [@] 19	42+	С	J^{π} : E2 γ to 40 ⁺ and member of the g.s. band.

¹⁶⁰Er Levels (continued)

E(level) [†]	J ^{π#}	XREF	Comments
15337.0 ^b 20	(42^{+})	C	J^{π} : in-band γ to (40^+) .
15610.6 ^{<i>a</i>} 21	43-	č	J^{π} : E2 in-band γ to 41 ⁻ .
16052.1 ^d 21	(43^{+})	C	J^{π} : γ to (41^+) member of γ -vibrational band.
16189 7 <mark>&</mark> 22	44-	c	I^{π} : F2 in-hand γ to 42^{-1}
16109.7 22 $16273.0^{@} 20$	44+	c	I^{π} : E2 w to 12^{+} and member of the g s band
10273.0 20	44 (44+)	C	J. E2 γ to 42 and memoer of the g.s. band.
$164/4.8^{\circ}$ 21 16865 24 22	(44^{+})	C	J [*] : In-Dand γ IO (42 [*]). I^{π} : (E2) in hand at to $A2^{-1}$
10803.2 22	(45)	C	$J : (E2)$ In-balle γ to 43 .
$1/453.4^{\circ\circ} 23$	40	C	J [*] : E2 in-band γ to 44 .
17512.8 21	46+	C	J^{n} : E2 γ to 44 ⁺ and member of the g.s. band.
17652.8? 23	(46^+)	C	J^{π} : in-band γ to (44 ⁺).
18171.6 ^a 23	(47)	C	$J^{\prime\prime}$: (E2) in-band γ to (45).
18773.4 [°] 23	(48 ⁻)	C	J^{π} : (E2) in-band γ to 46 ⁻ .
18797.1 [@] 22	(48^{+})	С	J^{π} : γ to 46 ⁺ and member of the g.s. band.
19530.4 ^{<i>a</i>} 24	(49 ⁻)	C	J^{π} : (E2) in-band γ to (47 ⁻).
20131.6 24	(50^{-})	С	J^{π} : (E2) in-band γ to (48 ⁻).
20141.9 [@] 23	(50^{+})	С	J^{π} : γ to 14 ⁺ and member of the g.s. band.
21597? ^{&} 3	(52 ⁻)	С	J^{π} : in-band γ to (50 ⁻).
0+x ^m		С	Additional information 2.
176.2+x ^m 8		С	
371.8+x ^m 8		С	
$586.0 + x^m 10$		С	
816.8+x ^m 10		C	
$1063.1 + x^{m} 11$		C	
$1323.4 + x^m 12$		C	
$1394.2 + x^{m} 13$		C	
16/4.4+x = 14 2162 0 + $x^{m} = 14$		C	
2102.0+x 14 $2455.0+x^{m}$ 15		c	
$2758.5 + x^{m}$ 16		c	
$3070.9 + x^m 16$		c	
3390.2+x ^m 17		C	
3722.1+x ^m 18		С	
4067.1+x ^m 18		С	
4425+x ^m		С	
y ⁿ	J1≈(33)	С	Additional information 3.
$1017.3 + y^{n} 6$	J1+2	C	
$2079.0+y^{n}9$	J1+4	C	
$31/9.0+y^{n}$ 11	JI+6	C	
$4319.4 + y^{n} 12$	J1+8 J1+10	C	
$5303.0 + y^{-14}$	J1+10 J1+12	C	
$8024.6 \pm y^{n}$ 16	$J1 \pm 12$ $I1 \pm 14$	Ċ	
$9370.8 + v^{n} 17$	J1+16	c	
$10777.7 + v^{n}$ 18	J1+18	c	
12251.8+y ⁿ 19	J1+20	Ċ	
13784.2+y ⁿ 20	J1+22	С	
15377.2+y? ⁿ 22	J1+24	С	
17043.2+y? ⁿ 25	J1+26	С	
z ⁰	J2≈(33)	С	Additional information 4.

¹⁶⁰Er Levels (continued)

Comments

E(level) [†]	$J^{\pi #}$	XREF
947.0+z? ⁰ 10	J2+2	С
1948.9+z ^o 12	J2+4	С
3003.3+z ^o 13	J2+6	С
4101.6+z ^o 15	J2+8	С
5239.6+z ^o 16	J2+10	С
6425.2+z ^o 17	J2+12	С
7668.0+z ^o 18	J2+14	С
8973.1+z ^o 19	J2+16	С
10360.3+z ^o 20	J2+18	С
11830.4+z ^o 21	J2+20	С
13398.5+z? ^o 23	J2+22	С
u ^p	J3≈(27)	С
828.7+u ^p 6	J3+2	С
1677.1+u ^p 9	J3+4	С
2567.3+u ^p 11	J3+6	С
3506.8+u ^p 12	J3+8	С
4497.9+u ^p 14	J3+10	С
5546.6+u ^p 15	J3+12	С
6657.3+u ^p 16	J3+14	С
7823.6+u ^p 17	J3+16	С
9056.4+u ^p 18	J3+18	С
10359.4+u ^{<i>p</i>} 21	J3+20	С
11734.4+u ^p 23	J3+22	С
13190.5+u? ^p 25	J3+24	С

Additional information 5.

[†] Listed values were calculated from a least-squares fit of the γ -ray energies. Where no uncertainties are available for the E γ values, a value of 1 keV was assigned for this calculation.

[±] Listed values for excited states are from 1979Bo29 measured by 124 Sn(40 Ar,4n γ) reaction in (HI,xn γ) dataset.

[#] The J^{π} assignments for the levels above 1.3 MeV that are populated primarily in the heavy-ion-induced reactions are based on the properties of the deexciting γ rays and considerations of the expected rotational-band structure. For the lower levels of these bands J^{π} assignments are based on γ -ray multipolarities determined by on angular-distribution and/or angular-correlation measurements, with some $\alpha(K)$ exp values also being determined. Tentative parities are assigned to the band structures based on calculated configurations (which for some bands were confirmed by experimental arguments).

[@] Band(A): Yrast band. Configuration=vacuum ->AB ->AB & ApBp(EF and/or CD).

[&] Band(B): Band 1. Configuration=AF ->AFBC ->AFBC \otimes ApBp. E1, 771 γ to 10⁺, 1760 level of g.s. band establishes π =- for this band. Δ J=1 (E1) γ to 7⁺, 1741 of g.s. band firmly assigns 8⁻ for 2292 level of this band that together with well established Δ J=2, E2 in-band γ 's make J^{π} assignments of this band certain.

^{*a*} Band(C): Band 2. Configuration=AE \rightarrow AEBC \rightarrow AEBC \otimes A_pB_p. Δ J=1, E1 759 γ to 10⁺, 1760 yrast level firmly assigns 11⁻ to 2519 level of this band that together with well established Δ J=2, E2 in-band γ 's make J^{π} assignments of this band certain for almost all its levels.

^{*b*} Band(D): Band 3. Configuration=vacuum \rightarrow BCAD \rightarrow BCAD \otimes A_pB_p and/or EF. The E2, 782.6 γ from 3121 band head of band 3 to 12⁺ of g.s. band determines 14⁺ for the band head and π =+ for band 3.

^{*c*} Band(E): Band 4. Configuration= $\beta \rightarrow \beta \otimes AB$. The E2, 1033.0 γ from 3964 band head of band 4 to 14⁺ of g.s. band determines 16⁺ for the band head and π =+ for band 4.

^{*d*} Band(F): Band 5: $K^{\pi}=2^+$, γ -vibrational. Configuration= $\gamma - -> \gamma \otimes AB = -> \gamma \otimes AB \otimes A_pB_p$ The E2, 854.4 γ to 0⁺ g.s. determines $J^{\pi}=2^+$ for the 854 band head of the γ -vibrational band.

^{*e*} Band(f): Band 6: $K^{\pi}=0^+$, tentative β -vibrational.

¹⁶⁰Er Levels (continued)

- ^{*f*} Band(G): Band 7. Configuration=AG \rightarrow AGBC \rightarrow AGBC \otimes A_pB_p The E2, 387.2 γ from 2292, 8⁻ level of band 1 to 1905 level of band 7 determines $J^{\pi}=6^{-}$ for the band head of band 7.
- ^{*g*} Band(H): Band 8. Configuration=AE \rightarrow A_pE_p \rightarrow AEBC \otimes A_pE_p. J=(13) was assigned to the 3249 band head in (HI,xn γ) (2011Ol02) based on the fact that if J>13 this band would become yrast at higher spins, which is contrary to the observed intensities. π =(+) based on assigned configurations.
- ^{*h*} Band(h): Band 9. Configuration=AE \rightarrow A_pF_p \rightarrow AEBC \otimes A_pF_p. J=(14) was assigned to the 3461 band head in (HI,xn γ) (2011Ol02) based on the fact that if J>14 this band would become yrast at higher spins, which is contrary to the observed intensities. π =(+) based on assigned configurations.
- ^{*i*} Band(I): Band 10. Configuration= $A_pE_p \rightarrow AB \otimes A_pE_p$. $\Delta J=1$, D γ 's from first and second levels to 6⁺ g.s. band level determine J=5 for 1756 band head and J=7 for 2151. π =(-) based on assigned configurations.
- ^{*j*} Band(i): Band 11. Configuration= $A_pF_p \rightarrow AB \otimes A_pF_p$. $\Delta J=1$, D+Q γ to 7⁽⁻⁾ of band 10. $\pi=(-)$ based on assigned configurations.
- ^k Band(J): Band 12. Configuration=AF \rightarrow A_pE_p. π =(+) based on assigned configurations.
- ^{*l*} Band(j): Band 13. Configuration=AF \rightarrow A_pF_p. π =(+) based on assigned configurations.
- ^m Band(K): Band 14. Strongly-coupled band.
- ^{*n*} Band(L): Triaxial SD-1 band. Proposed configuration, relative to ¹⁴⁶Gd core: $\pi[(h_{11/2})^6(h_{9/2}f_{7/2})^1(i_{13/2})^1] \otimes \nu[(N=4)^{-2}(h_{11/2})^{-2}(i_{13/2})^5]$. Possible signature partner with Triaxial SD-2 band. Estimated deformation parameters: $\varepsilon \approx 0.37$, $\gamma=\pm 20^\circ$. Percent population ≈ 0.01 , relative to the intensity of 4n channel.
- ^{*o*} Band(M): Triaxial SD-2 band. Proposed configuration, relative to ¹⁴⁶Gd core: $\pi[(h_{11/2})^6(h_{9/2}f_{7/2})^1(i_{13/2})^1] \otimes \nu[(N=4)^{-2}(h_{11/2})^{-2}(i_{13/2})^5]$. Percent population ≈ 0.01 , relative to the intensity of 4n channel. Estimated deformation parameters: $\varepsilon \approx 0.37$, $\gamma=\pm 20^\circ$. Possible signature partner with Triaxial SD-1 band.
- ^{*p*} Band(N): Triaxial SD-3 band. Based on the dynamic moment of inertia behavior, this band appears to be based on similar underlying structure as bands 1 and 2 and is interperted as strongly deformed triaxial band. Estimated deformation parameters: $\varepsilon \approx 0.37$, $\gamma \approx 22^{\circ}$. 2011Ol02 found 1257 γ as a possible candidate for the decay of this band to the main (normal deformed) level scheme. The yrast transitions up to the decay of the 20⁺ state are observed in the spectrum of this band, confirming its association with ¹⁶⁰Er and suggesting a bandhead spin of >20.

From ENSDF

 $\gamma(^{160}\text{Er})$

The γ rays whose placement is questioned in the table were not confirmed by 2011Ol02, the most extensive work in the (HI,xn γ) dataset, while they were detected in a previous work.

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{†‡}	$\delta^{\dagger a}$	$\alpha^{\boldsymbol{b}}$	Comments
125.47	2+	125.43 6	100 [#]	0.0 0+	E2 [@]		1.273	B(E2)(W.u.)=169 6 α (K)=0.607 9; α (L)=0.511 8; α (M)=0.1236 18 α (N)=0.0280 4; α (O)=0.00333 5; α (P)=2.58×10 ⁻⁵ 4
389.37	4+	263.87 6	100 [#]	125.47 2+	E2 [@]		0.1026	B(E2)(W.u.)=241 8 α (K)=0.0727 11; α (L)=0.0231 4; α (M)=0.00543 8 α (N)=0.001240 18; α (O)=0.0001573 22; α (P)=3.65×10 ⁻⁶ 6
765.01	6+	375.71 6	100 [#]	389.37 4+	E2		0.0356	B(E2)(W.u.)=263 15 α (K)=0.0273 4; α (L)=0.00647 9; α (M)=0.001498 21 α (N)=0.000344 5; α (O)=4.53×10 ⁻⁵ 7; α (P)=1.459×10 ⁻⁶ 21
854.20	2+	728.5 [@] 5	100 [@] 9	125.47 2+	E0+M1+E2 [@]		0.0100 35	α (K)=0.0084 30; α (L)=0.00127 36; α (M)=2.82×10 ⁻⁴ 77 α (N)=6.6×10 ⁻⁵ 18; α (O)=9.4×10 ⁻⁶ 28; α (P)=5.0×10 ⁻⁷ 19
		854.21 15	63 [@] 5	0.0 0+	E2 [@]		0.00468	α (K)=0.00388 6; α (L)=0.000620 9; α (M)=0.0001385 20 α (N)=3.21×10 ⁻⁵ 5; α (O)=4.52×10 ⁻⁶ 7; α (P)=2.21×10 ⁻⁷ 3
893.5	0^{+}	767.8 [@] 6	100 [@] 10	125.47 2+	[E2]		0.00591	α (K)=0.00487 7; α (L)=0.000804 12; α (M)=0.000180 3 α (N)=4.18×10 ⁻⁵ 6; α (O)=5.84×10 ⁻⁶ 9; α (P)=2.76×10 ⁻⁷ 4
		894		0.0 0+	E0 [@]			E_{γ} : from 9.4 min ¹⁶⁰ Tm ε decay. X(E0/E2)=0.11 3 from 9.4 min ¹⁶⁰ Tm ε decay (2014B112).
987.15	$(3)^{+}$	597.77 5	24 [#] 6	389.37 4+				
		861.73 11	100 [#] 17	125.47 2+	E2 [@]		0.00459	α (K)=0.00381 6; α (L)=0.000607 9; α (M)=0.0001356 19 α (N)=3.14×10 ⁻⁵ 5; α (O)=4.43×10 ⁻⁶ 7; α (P)=2.17×10 ⁻⁷ 3
1007.93	2^{+}	617.5 [@] 6	64 [@] 12	389.37 4+				
		882.0 [#] 3	88 [@] 12	125.47 2+	E0+M1+E2 [@]		0.070 17	$\alpha(K)=0.0054 \ 18; \ \alpha(L)=7.9\times10^{-4} \ 22; \ \alpha(M)=1.75\times10^{-4} \ 47$ $\alpha(N)=4.1\times10^{-5} \ 11; \ \alpha(O)=5.9\times10^{-6} \ 17; \ \alpha(P)=3.2\times10^{-7} \ 11$ $E_{\gamma}: \text{ from } 74.5 \text{ s}^{-160}\text{ Tm } \varepsilon \text{ decay};$
								α : estimated from α (K)exp and theoretical K/Tot in 74.5 s ¹⁶⁰ Tm ε decay I γ from 9.4 min ¹⁶⁰ Tm ε decay.
		1008.0 1	100 [@] 12	0.0 0+	E2 [@]		0.00331	$\alpha(N)=2.18\times10^{-5}$ 3; $\alpha(O)=3.10\times10^{-6}$ 5; $\alpha(P)=1.574\times10^{-7}$ 22 $\alpha(K)=0.00276$ 4; $\alpha(L)=0.000422$ 6; $\alpha(M)=9.39\times10^{-5}$ 14
1128.54	4+	274.1 5	11 3	854.20 2+				$u(\mathbf{R}) = 0.0027077, u(\mathbf{E}) = 0.0007220, u(\mathbf{R}) = 0.00710777$
		739.13 5	100 6	389.37 4+	M1+E2	-7 +3-17	0.0066 3	α (N)=4.67×10 ⁻⁵ <i>15</i> ; α (O)=6.53×10 ⁻⁶ <i>23</i> ; α (P)=3.07×10 ⁻⁷ <i>15</i> α (K)=0.00541 <i>24</i> ; α (L)=0.00090 <i>3</i> ; α (M)=0.000202 <i>7</i>
								Mult., δ : α (K)exp in 74.5 s ¹⁶⁰ Ho ε decay (2014B112) is consistent with M1+E2, δ =-7 +3-17 measured in (HI,xn γ) (2006Du02).

					Adopted Lev	els, Gammas (co	ntinued)	
					$\gamma(^{16}$	⁰ Er) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{†‡}	$\delta^{\dagger a}$	α b	Comments
1128.54 1229.06	4+ 8+	1003.09 <i>9</i> 464.08 <i>6</i>	100	125.47 2 ⁺ 765.01 6 ⁺	E2		0.0200	B(E2)(W.u.)= $2.9 \times 10^2 + 9-6$ α (K)= $0.01576 22; \alpha$ (L)= $0.00327 5; \alpha$ (M)= $0.000748 11$ α (N)= $0.0001723 25; \alpha$ (O)= $2.32 \times 10^{-5} 4;$ α (P)= $8.66 \times 10^{-7} 13$
1229.68	4+	221 [°] 1 840.31 <i>17</i>	72 [#] 17	1007.93 2 ⁺ 389.37 4 ⁺	E0+M1+E2		0.0071 23	$\alpha(K)=0.0060\ 20;\ \alpha(L)=8.9\times10^{-4}\ 25;\ \alpha(M)=1.97\times10^{-4}$ $\alpha(N)=4.6\times10^{-5}\ 13;\ \alpha(O)=6.6\times10^{-6}\ 19;\ \alpha(P)=3.5\times10^{-7}$ 13 α : estimated from $\alpha(K)$ exp and theoretical K/Tot in 74.5 s 160 Tm ε decay. Mult.: from 74.5 s 160 Tm ε decay (2014B112).
1316.36	5+	1104.30 24 187.41 39 329.21 9 551.50 15 926.99 5	100 [#] 19 25 3 100 8	$\begin{array}{ccccccc} 125.47 & 2^+ \\ 1128.54 & 4^+ \\ 987.15 & (3)^+ \\ 765.01 & 6^+ \\ 389.37 & 4^+ \end{array}$	M1+E2	-5.5 +9-12	0.00405 8	X(E0/E2)=0.330 82 (2014B112). $\alpha(K)=0.00337 7; \alpha(L)=0.000523 9; \alpha(M)=0.0001166 20$ $\alpha(N)=2.71\times10^{-5} 5; \alpha(O)=3.83\times10^{-6} 7;$
1374.6	(4 ⁺)	$520.2^{@} 8$ 985.5 [@] 7 1249.1 [@] 6	$18^{@} 7$ $32^{@} 10$ $100^{@} 14$	854.20 2 ⁺ 389.37 4 ⁺ 125.47 2 ⁺				$\alpha(\mathbf{P})=1.93\times10^{-4}$
1389.6 1395.2? 1494.1	2+,3,4+	1000.2 [@] 8 1264.1 [@] 8 1269.7 [@] 7 640.1 [@] 7	54 [@] 23 100 [@] 23 100 [@] 19 [@] 3	389.37 4 ⁺ 125.47 2 ⁺ 125.47 2 ⁺ 854.20 2 ⁺				
1499.24	6+	370.66 6 734.26 5	31 6 100 9	$\begin{array}{c} 123.47 & 2 \\ 1128.54 & 4^{+} \\ 765.01 & 6^{+} \end{array}$	M1+E2	-8.2 +23-56	0.00662 13	α (K)=0.00545 <i>11</i> ; α (L)=0.000910 <i>16</i> ; α (M)=0.000204 <i>4</i> α (N)=4.73×10 ⁻⁵ <i>8</i> ; α (O)=6.61×10 ⁻⁶ <i>12</i> ; α (P)=3.09×10 ⁻⁷ <i>7</i>
1505.2 1535.8	1,2+	1115.8 [#] 3 548.4 [@] 8 681.7 [@] 7 1409.4 [@] 10 1536.6 [@] 8	100 [#] 55 [@] 27 64 [@] 27 64 [@] 27 100 [@] 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
1542.12	(6+)	312.48° 20	24 7	1229.68 4+				

					Adopt	ed Levels, Gamm	as (continued)	
						γ ⁽¹⁶⁰ Er) (contin	nued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^{†‡}	$\delta^{\dagger a}$	$\alpha^{\boldsymbol{b}}$	Comments
1542.12	(6 ⁺)	777.2 <i>3</i> 1152.64 <i>12</i>	<20 100 <i>15</i>	765.01 6 ⁺ 389.37 4 ⁺				
1575.5		1186.1 [#] 3	100 [#]	389.37 4+				
1586.0	1,2+	1460.6 [@] 6	100 [@] 12	125.47 2+				
		1585.9 [@] 7	23 [@] 5	$0.0 0^+$				
1636.8?	(4-)	1248 ^c	100	389.37 4+				
1651.9		665.0 [@] 8	21 [@] 8	987.15 (3)+				
		797.7 [@] 6	71 [@] 11	854.20 2+				
		1526.4 [@] 6	100 [@] 11	125.47 2+				
1740.71	7+	241.6 10	100.7	1499.24 6+	50		0.0254	
		424.36 4	100 /	1316.36 5	E2		0.0254	$\alpha(\mathbf{K})=0.0198 \ 3; \ \alpha(\mathbf{L})=0.00433 \ 6; \ \alpha(\mathbf{M})=0.000997 \ 14$ $\alpha(\mathbf{N})=0.000229 \ 4; \ \alpha(\mathbf{O})=3.05\times10^{-5} \ 5;$ $\alpha(\mathbf{P})=1.077\times10^{-6} \ 15$
		511.50 11		1229.06 8+				
		975.66 5	33 7	765.01 6+	M1+E2	-2.11 +26-29	0.00409 14	$\alpha(K)=0.00343 \ 12; \ \alpha(L)=0.000515 \ 16; \alpha(M)=0.000114 \ 4 \alpha(N)=2.66\times10^{-5} \ 8; \ \alpha(O)=3.79\times10^{-6} \ 12; \alpha(P)=1.98\times10^{-7} \ 8$
1756.7	5(-)	991.2 6	100	765.01 6+	(E1)		1.39×10 ⁻³	$\alpha(K) = 0.001186 \ 17; \ \alpha(L) = 0.0001601 \ 23; \alpha(M) = 3.51 \times 10^{-5} \ 5 \alpha(N) = 8.15 \times 10^{-6} \ 12; \ \alpha(O) = 1.175 \times 10^{-6} \ 17; \alpha(P) = 6.50 \times 10^{-8} \ 10 Mult.: mult = D(+Q) in \ \gamma(\theta). Placement in level scheme indicates \Delta \pi = ves$
1760.88	10+	531.86 5	100	1229.06 8+	E2		0.01405	B(E2)(W.u.)=2.9×10 ² +9-6 α (K)=0.01126 <i>16</i> ; α (L)=0.00217 <i>3</i> ; α (M)=0.000493 7 α (N)=0.0001138 <i>16</i> ; α (O)=1.548×10 ⁻⁵ <i>22</i> ; α (P)=6.26×10 ⁻⁷ <i>9</i>
1894.1	$1,2^{+}$	1768.5 [@] 8	89 [@] 22	125.47 2+				
		1894.4 [@] 11	100 [@] 33	$0.0 0^+$				
1905.0	6-	1139.7 6	100	765.01 6+				
1906.2?	(6-)	270 ^c	100	1636.8? (4-)				
1021 30	(8^{+})	370.20.11	100	765.01 6 1542.12 (6 ⁺)				
1921.39	(0)	692.4 5	19 2	1229.06 8+				
		1156.47 13	100 5	765.01 6+				
1950.44	(8+)	209.6 20		1740.71 7+				
		408.3 12	100 75	$1542.12 (6^+)$ $1400.24 6^+$				
		1185.44 14	71 7	765.01 6+				
2104.4	9-	874.3 6	100	1229.06 8+	(E1)		1.76×10^{-3}	α (K)=0.001503 22; α (L)=0.000204 3;
1								

Т

					Adopted	l Levels, Gam	mas (continued)
						$\gamma(^{160}\text{Er})$ (con	tinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f = J_f^{\pi}$	Mult. ^{†‡}	$\alpha^{\boldsymbol{b}}$	Comments
							$ α(M)=4.47\times10^{-5} 7 $ $ α(N)=1.039\times10^{-5} 15; α(O)=1.495\times10^{-6} 21; α(P)=8.21\times10^{-8} 12 $ Mult.: ΔJ=1, D γ from ang. correlations and Δπ=yes.
2151.3	7(-)	394.1 <i>6</i> 922.5 <i>6</i>	40 <i>3</i> 50 <i>4</i>	$\begin{array}{rrr} 1756.7 & 5^{(-)} \\ 1229.06 & 8^+ \end{array}$			
		1386.4 6	100 4	765.01 6+	(E1)	8.81×10 ⁻⁴	$\alpha(K)=0.000651 \ 10; \ \alpha(L)=8.67\times10^{-5} \ 13; \ \alpha(M)=1.90\times10^{-5} \ 3 \\ \alpha(N)=4.41\times10^{-6} \ 7; \ \alpha(O)=6.39\times10^{-7} \ 9; \ \alpha(P)=3.59\times10^{-8} \ 5; \\ \alpha(IPF)=0.0001190 \ 18 \\ Mult.: D \ in \ \gamma(\theta) \ in \ (HI,xn\gamma). Placement \ in \ level \ scheme \ indicates \\ \Delta \pi - ves$
2194.3?		1340.5 [@] 10	45 [@] 18	854.20 2+			$\Delta h = y c s.$
		2068.5 [@] 8	100 [@] 27	125.47 2+			
2242.11	(9 ⁺)	291.72 25	100 (1950.44 (8 ⁺)		0.01/00	
		501.35 5	100 4	1740.71 7*	(E2)	0.01633	$\alpha(\mathbf{K})=0.01301 \ I9; \ \alpha(\mathbf{L})=0.00258 \ 4; \ \alpha(\mathbf{M})=0.000589 \ 9$ $\alpha(\mathbf{N})=0.0001358 \ I9; \ \alpha(\mathbf{O})=1.84\times10^{-5} \ 3; \ \alpha(\mathbf{P})=7.20\times10^{-7} \ I0$
		1013.09 6	46 6	1229.06 8+	(M1+E2)	0.0046 14	$\alpha(N)=0.0001538\ 19,\ \alpha(O)=1.04\times10^{-5}\ 3,\ \alpha(\Gamma)=1.20\times10^{-1}\ 10^{-6}\ \alpha(N)=0.0039\ 12;\ \alpha(L)=5.7\times10^{-4}\ 15;\ \alpha(M)=1.25\times10^{-4}\ 33\ \alpha(N)=2.91\times10^{-5}\ 76;\ \alpha(O)=4.2\times10^{-6}\ 12;\ \alpha(P)=2.29\times10^{-7}\ 73$
2248.9		1394.7 [@] 6	100 [@] 11	854.20 2+			
		2123.4 [@] 8	31 [@] 8	125.47 2+			
2261.6	8-	356.4 6	43 2	1905.0 6-			
2202.0	0-	1032.8 6	100 3	1229.06 8+			
2292.9	8	191° 387.2.6	37 49 2	2104.4 9 1906.22 (6 ⁻)	F2	0.0327	$\alpha(\mathbf{K}) = 0.0252.4$; $\alpha(\mathbf{L}) = 0.00585.9$; $\alpha(\mathbf{M}) = 0.001352.21$
		551.8 6	100.3	1740.71 7+	(E1)	0.00450	$\alpha(\mathbf{K}) = 0.0232 i, \alpha(\mathbf{L}) = 0.00033 j, \alpha(\mathbf{H}) = 0.001332 21$ $\alpha(\mathbf{N}) = 0.000311 5; \alpha(\mathbf{O}) = 4.10 \times 10^{-5} 7; \alpha(\mathbf{P}) = 1.352 \times 10^{-6} 20$ $\alpha(\mathbf{K}) = 0.00382 6; \alpha(\mathbf{L}) = 0.000532 8; \alpha(\mathbf{M}) = 0.0001169 17$
							$\alpha(N)=2.71\times10^{-5} 4; \ \alpha(O)=3.87\times10^{-6} 6; \ \alpha(P)=2.06\times10^{-7} 3$
		1062.9 6	52 2	1229.06 8+	(E1)	1.22×10^{-3}	α (K)=0.001043 <i>15</i> ; α (L)=0.0001403 <i>20</i> ; α (M)=3.07×10 ⁻⁵ <i>5</i> α (N)=7.14×10 ⁻⁶ <i>10</i> ; α (O)=1.031×10 ⁻⁶ <i>15</i> ; α (P)=5.72×10 ⁻⁸ <i>8</i>
2326.2	8(-)	174.9 6	100	2151.3 7 ⁽⁻⁾	(M1+E2)	0.49 10	α(K)=0.36 13; α(L)=0.097 24; α(M)=0.0225 64 $ α(N)=0.0052 14; α(O)=0.00067 13; α(P)=2.05×10^{-5} 97 $ Mult.: D+Q in γ(θ) in (HI,xnγ); placement in level scheme indicate Δπ=no.
2340.11	12+	579.22 3	100	1760.88 10+	E2	0.01137	B(E2)(W.u.)= $2.9 \times 10^2 + 10 - 6$ $\alpha(K)=0.00919 \ 13; \ \alpha(L)=0.001697 \ 24; \ \alpha(M)=0.000385 \ 6$ $\alpha(K)=0.0010^{-5} \ 12; \ \alpha(M)=0.000385 \ 6$
2360.06	(10^{+})	409.6 10		1950.44 (8+)			$u(1) = 0.07 \times 10^{-1} I_3, u(0) = 1.210 \times 10^{-1} I_3, u(1) = 3.14 \times 10^{-1} \delta$
	(10)	438.69 14	75 20	1921.39 (8 ⁺)			
		599.20 10	95 <i>30</i>	1760.88 10+			
2426 70	(10+)	1131.01 10	100 15	1229.06 8+			
2436.73	(10^{+})	194.5 19		$2242.11 (9^+)$			
		400.27 /		1930.44 (8)			

Т

$\gamma(^{160}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. ^{†‡}	α b	Comments
2436.73	(10 ⁺)	515.3 25 675.82 11 1207.63 14		1921.39 1760.88 1229.06	(8^+) 10 ⁺ 8 ⁺			
2468.8 2519.9	(10 ⁺) 11 ⁻	518.4 <i>5</i> 415.7 <i>6</i>	100 40 2	1950.44 2104.4	(8 ⁺) 9 ⁻	E2	0.0269	$\alpha(K)=0.0209 \ 3; \ \alpha(L)=0.00463 \ 7; \ \alpha(M)=0.001066 \ 16$ $\alpha(N)=0.000245 \ 4; \ \alpha(\Omega)=3.26\times 10^{-5} \ 5; \ \alpha(P)=1.133\times 10^{-6} \ 17$
		759.1 6	100 3	1760.88	10+	E1	0.00232	$\alpha(K) = 0.00198 \ 3; \ \alpha(L) = 0.000270 \ 4; \ \alpha(M) = 5.93 \times 10^{-5} \ 9 \\ \alpha(N) = 1.378 \times 10^{-5} \ 20; \ \alpha(O) = 1.98 \times 10^{-6} \ 3; \ \alpha(P) = 1.077 \times 10^{-7} \ 16 $
2529.8	9(-)	203.8 6	100 <i>3</i>	2326.2	8(-)	(M1+E2)	0.31 8	Mult.: from $\alpha(K) \exp$ in (HI,xn γ). $\alpha(K) = 0.237 \ 84; \ \alpha(L) = 0.056 \ 9; \ \alpha(M) = 0.0129 \ 24$ $\alpha(N) = 0.0030 \ 5; \ \alpha(O) = 0.00039 \ 4; \ \alpha(P) = 1.35 \times 10^{-5} \ 63$ Mult.: D+Q in $\gamma(\theta)$ in (HI,xn γ); placement in level scheme indicates $\Delta \pi = n_0$
		378.6.6	43 7	2151.3	$7^{(-)}$			
2531.0	10-	238.2 6	25 1	2292.9	8-	E2	0.1421 23	α (K)=0.0976 <i>16</i> ; α (L)=0.0342 <i>6</i> ; α (M)=0.00809 <i>14</i> α (N)=0.00185 <i>4</i> ; α (O)=0.000232 <i>4</i> ; α (P)=4.79×10 ⁻⁶ 8
		424.6 6	38 1	2104.4	9-	(M1+E2)	0.039 14	α (K)=0.032 <i>13</i> ; α (L)=0.0054 <i>11</i> ; α (M)=0.00122 <i>23</i> α (N)=0.00028 <i>6</i> ; α (O)=4.0×10 ⁻⁵ <i>10</i> ; α (P)=1.90×10 ⁻⁶ <i>83</i>
		770.7 6	100 3	1760.88	10+	E1	0.00225	$\alpha(K)=0.00192 \ 3; \ \alpha(L)=0.000262 \ 4; \ \alpha(M)=5.75\times10^{-5} \ 9 \ \alpha(N)=1.336\times10^{-5} \ 19; \ \alpha(O)=1.92\times10^{-6} \ 3; \ \alpha(P)=1.046\times10^{-7} \ 15 \ Mult : based on \ \alpha(K)exp$
2671.1	10-	409.5 6	100 3	2261.6	8-	E2	0.0280	$\alpha(K)=0.0217 \ 4; \ \alpha(L)=0.00486 \ 8; \ \alpha(M)=0.001121 \ 17 \ \alpha(N)=0.000258 \ 4; \ \alpha(O)=3.42\times10^{-5} \ 5; \ \alpha(P)=1.176\times10^{-6} \ 17$
		910.2 6	22 2	1760.88	10^{+}	(E1)	1.63×10^{-3}	$\alpha(K) = 0.001392 \ 20; \ \alpha(L) = 0.000189 \ 3; \ \alpha(M) = 4.13 \times 10^{-5} \ 6 \ \alpha(N) = 9.60 \times 10^{-6} \ 14; \ \alpha(O) = 1.383 \times 10^{-6} \ 20; \ \alpha(P) = 7.61 \times 10^{-8} \ 11$
2757.0	10 ⁽⁻⁾	226.4 6	100 5	2529.8	9(-)	(M1+E2)	0.227 60	α (K)=0.177 64; α (L)=0.039 4; α (M)=0.0089 11 α (N)=0.00205 22; α (O)=0.000274 10; α (P)=1.01×10 ⁻⁵ 47 Mult.: D+Q in $\gamma(\theta)$ in (HI,xn γ); placement in level scheme indicates $\Delta \pi$ =no.
		430.6 6	73 5	2326.2	8(-)			
2800.04	(11^{+})	459.96 20		2340.11	12+			
		557.91 6	100	2242.11	(9+)	E2	0.01247	$\alpha(K)=0.01004 \ 14; \ \alpha(L)=0.00189 \ 3; \ \alpha(M)=0.000429 \ 6$ $\alpha(N)=9.90\times10^{-5} \ 14; \ \alpha(O)=1.352\times10^{-5} \ 19; \ \alpha(P)=5.61\times10^{-7} \ 8$
2845.79	(12+)	1039.19 <i>10</i> 485.79 <i>14</i> 505.7 <i>5</i> 1084.99 <i>10</i>	80 <i>10</i> 28 <i>10</i> 100 <i>10</i>	1760.88 2360.06 2340.11 1760.88	10 ⁺ (10 ⁺) 12 ⁺ 10 ⁺			
2852.9	(9+)	323.8 6	100	2529.8	9(-)			
2874.4	12-	343.1 3	100 3	2531.0	10-	E2	0.0463	α (K)=0.0349 5; α (L)=0.00884 13; α (M)=0.00205 3 α (N)=0.000471 7; α (O)=6.14×10 ⁻⁵ 9; α (P)=1.84×10 ⁻⁶ 3
		355 [°] 536 [°]	18 33	2519.9 2340.11	11 ⁻ 12 ⁺			

						Adopt	ed Levels, G	ammas (continued)
							$\gamma(^{160}\mathrm{Er})$ ((continued)
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^{†‡}	$\alpha^{\boldsymbol{b}}$	Comments
2931.38	14+	591.21 6	100	2340.11	12+	E2	0.01082	B(E2)(W.u.)= $2.4 \times 10^2 + 8 - 5$ $\alpha(K)=0.00876 \ I3; \ \alpha(L)=0.001602 \ 23; \ \alpha(M)=0.000363 \ 5$ $\alpha(N)=8.38 \times 10^{-5} \ I2; \ \alpha(Q)=1.151 \times 10^{-5} \ I7; \ \alpha(P)=4.01 \times 10^{-7} \ 7$
2979.4	13-	459.4 6	90 <i>3</i>	2519.9	11-	E2	0.0205	$\alpha(N)=0.38\times10^{-12}, \alpha(C)=1.131\times10^{-17}, \alpha(T)=4.91\times10^{-7}$ $\alpha(K)=0.01617\ 24; \alpha(L)=0.00337\ 5; \alpha(M)=0.000772\ 12$ $\alpha(N)=0.000178\ 3; \alpha(O)=2.39\times10^{-5}\ 4; \alpha(P)=8.87\times10^{-7}\ 13$
		639.9 6	100 3	2340.11	12+	E1	0.00329	$\alpha(K) = 0.00280 \ 4; \ \alpha(L) = 0.000386 \ 6; \ \alpha(M) = 8.47 \times 10^{-5} \ 12 \\ \alpha(N) = 1.97 \times 10^{-5} \ 3; \ \alpha(O) = 2.82 \times 10^{-6} \ 4; \ \alpha(P) = 1.514 \times 10^{-7} \ 22 \\ \text{Mult: from } \alpha(K) \text{exp in (HI xny)}$
2993.0	11(-)	234.7 6	56 4	2757.0	10 ⁽⁻⁾	(M1+E2)	0.204 56	$\alpha(K)=0.16058;\alpha(L)=0.034322;\alpha(M)=0.00798$ $\alpha(N)=0.0018115;\alpha(O)=0.0002435;\alpha(P)=9.2\times10^{-6}42$ Mult.: D+Q in $\gamma(\theta)$ in (HI.xn γ); placement in level scheme indicates $\Delta\pi$ =no.
2998.29	(12+)	463.3 6 561.52 8 1237.45 9	100 10	2529.8 2436.73 1760.88	9 ⁽⁻⁾ (10 ⁺) 10 ⁺			
3024.2	(10 ⁺)	266.7 <i>6</i> 494.4 <i>6</i>	78 7 100 <i>16</i>	2757.0 2529.8	10 ⁽⁻⁾ 9 ⁽⁻⁾			
3038.2	(12^{+})	569.4 5	100	2468.8	(10^{+})			
3093.1	12^{-}	422.0 6	100	2671.1	10^{-}	E2	0.0258	α (K)=0.0201 3; α (L)=0.00441 7; α (M)=0.001015 15
								α (N)=0.000234 4; α (O)=3.11×10 ⁻⁵ 5; α (P)=1.092×10 ⁻⁶ 16
3121.6	14+	782.4 6	100	2340.11	12+	E2	0.00566	α (K)=0.00468 7; α (L)=0.000767 11; α (M)=0.0001719 25 α (N)=3.98×10 ⁻⁵ 6; α (O)=5.58×10 ⁻⁶ 8; α (P)=2.65×10 ⁻⁷ 4
3187.4	(11^{+})	162.9 6	100 4	3024.2	(10^{+})			
		194.5 6	73 8	2993.0	$11^{(-)}$			
		335.2 6	22 4	2852.9	(9+)			
		430.0 6	61 4	2757.0	$10^{(-)}$			
3241.0	(13^{+})	901 [°] 1	100	2340.11	12+			
3275.5	(12 ⁻)	281.4 6	78 12	2993.0	11(-)			
		519.8 6	100 24	2757.0	$10^{(-)}$		0.05.5	
3313.5	14-	3350	24	2979.4	13-	(M1+E2)	0.074 25	α (K)=0.060 24; α (L)=0.0109 14; α (M)=0.00247 24 α (N)=0.00057 6; α (O)=7.9×10 ⁻⁵ 13; α (P)=3.5×10 ⁻⁶ 16
		382	9	2931.38	14+	50	0.0222	
		439.0 <i>3</i>	100 3	2874.4	12-	E2	0.0232	$\alpha(K)=0.0182 \ 3; \ \alpha(L)=0.00389 \ 6; \ \alpha(M)=0.000893 \ 13$
3362.86	(13+)	562.82 9	100	2800.04	(11+)	(E2)	0.01220	$\alpha(N)=0.000200 \ 5; \ \alpha(O)=2.73\times10^{-4}; \ \alpha(P)=9.91\times10^{-1} \ 14$ $\alpha(K)=0.00984 \ 14; \ \alpha(L)=0.00184 \ 3; \ \alpha(M)=0.000418 \ 6$ $\alpha(N)=9.65\times10^{-5} \ 14; \ \alpha(O)=1.319\times10^{-5} \ 19; \ \alpha(P)=5.49\times10^{-7} \ 8$
		1022.9 4		2340.11	12^{+}			
3371.78	(14^{+})	439 ^c 1	<47	2931.38	14^{+}			
	. /	526.23 14	92	2845.79	(12^{+})			
		1031.5 5	100 27	2340.11	12+			
3396.3	(12^{+})	209.7 6	100 5	3187.4	(11^{+})			
		372.1 6	40 3	3024.2	(10^{+})			
		403.4 6	74 5	2993.0	$11^{(-)}$			

$^{160}_{68}\mathrm{Er}_{92}$ -15

Т

From ENSDF

 $^{160}_{68}\mathrm{Er}_{92}$ -15

γ (¹⁶⁰Er) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. ^{†‡}	α b	Comments
3461.8 3465.43	(14 ⁺) 16 ⁺	220.8 <i>6</i> 534.04 <i>6</i>	100 100	3241.0 2931.38	(13 ⁺) 14 ⁺	E2	0.01391	B(E2)(W.u.)=228 +33-27 α (K)=0.01115 16; α (L)=0.00214 3; α (M)=0.000487 7
3483.8	15-	504.5 3	100 3	2979.4	13-	E2	0.01607	$\alpha(N)=0.0001124 \ 16; \ \alpha(O)=1.530\times10^{-3} \ 22; \ \alpha(P)=6.20\times10^{-7} \ 9 \ \alpha(K)=0.01281 \ 18; \ \alpha(L)=0.00253 \ 4; \ \alpha(M)=0.000578 \ 9 \ \alpha(N)=0.0001333 \ 19; \ \alpha(O)=1.80\times10^{-5} \ 3; \ \alpha(P)=7.09\times10^{-7} \ 10$
		552 ^c	11	2931.38	14+	(E1)	0.00450	$\alpha(K) = 0.0031353 \text{ fr}, \alpha(G) = 1.30\times10^{-5} \text{ s}, \alpha(1) = 7.09\times10^{-1} \text{ fr}$ $\alpha(K) = 0.00382 \text{ 6}; \alpha(L) = 0.000531 \text{ 8}; \alpha(M) = 0.0001168 \text{ 17}$ $\alpha(N) = 2.71\times10^{-5} \text{ 4}; \alpha(O) = 3.87\times10^{-6} \text{ 6}; \alpha(P) = 2.05\times10^{-7} \text{ 3}$ Mult : AI=1 D γ from ang correlations and $\Delta \pi = \text{ves}$
3525.3	(13 ⁻)	250.9 6 532.3 6	40 <i>10</i> 100 <i>19</i>	3275.5 2993.0	(12 ⁻) 11 ⁽⁻⁾			
3566.50 3587.8	(14 ⁺) 14 ⁻	568.21 9 494.7 6	100 100	2998.29 3093.1	(12 ⁺) 12 ⁻	E2	0.01690	α (K)=0.01344 20; α (L)=0.00269 4; α (M)=0.000613 9 α (N)=0.0001414 21; α (O)=1.91×10 ⁻⁵ 3; α (P)=7.43×10 ⁻⁷ 11
3632.5	(13+)	236.8 <i>6</i> 444.4 <i>6</i>	16 <i>1</i> 100 <i>3</i>	3396.3 3187.4	(12^+) (11^+)			
3654.1	16+	533.4 6	33 2	3121.6	14+	E2	0.01395	$\alpha(K)=0.01118 \ 16; \ \alpha(L)=0.00215 \ 3; \ \alpha(M)=0.000489 \ 7 \ \alpha(N)=0.0001128 \ 17; \ \alpha(O)=1.535 \times 10^{-5} \ 22; \ \alpha(P)=6.22 \times 10^{-7} \ 9$
		723.2 6	100 6	2931.38	14+	E2	0.00675	$\alpha(K)=0.00555\ 8;\ \alpha(L)=0.000935\ 14;\ \alpha(M)=0.000210\ 3$ $\alpha(N)=4.87\times10^{-5}\ 7;\ \alpha(O)=6.78\times10^{-6}\ 10;\ \alpha(P)=3.14\times10^{-7}\ 5$
3695.5	(15 ⁺)	233.8 6 454.6 6 764 ^c 1	100 5 59 5 64 18	3461.8 3241.0 2931.38	(14 ⁺) (13 ⁺) 14 ⁺			
3830.5	16-	347 ^c 517.0 3	8 100 <i>3</i>	3483.8 3313.5	15 ⁻ 14 ⁻	E2	0.01510	$\alpha(K)=0.01206\ 17;\ \alpha(L)=0.00236\ 4;\ \alpha(M)=0.000537\ 8$ $\alpha(N)=0.0001238\ 18;\ \alpha(O)=1\ 680\times10^{-5}\ 24;\ \alpha(P)=6\ 69\times10^{-7}\ 10$
3836.6	(15 ⁺)	473.8 6	100	3362.86	(13+)			<i>u</i> (1)=0.0001250 10, <i>u</i> (0)=1.000×10 24, <i>u</i> (1)=0.05×10 10
3850.3	(14 ⁻)	325.7 6 573.7 6	83 <i>17</i> 100 <i>17</i>	3525.3 3275.5	(13^{-}) (12^{-})			
3884.9?	(14 ⁺)	252° 1	40 20	3632.5	(13^+) (12^+)			
3950.1	(16+)	254.1 6 488.3 6	100 20 100 7 46 2	3695.5 3461.8	(12^{+}) (15^{+}) (14^{+})			
3964.1	16+	1033.0 6	100	2931.38	14+	E2	0.00314	$\alpha(K)=0.00263 \ 4; \ \alpha(L)=0.000400 \ 6; \ \alpha(M)=8.89\times10^{-5} \ 13 \ \alpha(N)=2.06\times10^{-5} \ 3; \ \alpha(O)=2.93\times10^{-6} \ 5; \ \alpha(P)=1.499\times10^{-7} \ 21$
3965.71	(16+)	594.07 <i>12</i> 1033.84 22		3371.78 2931.38	(14 ⁺) 14 ⁺			
4020.9	18+	555.5 3	100	3465.43	16+	E2	0.01261	$\alpha(K)=0.01015 \ I5; \ \alpha(L)=0.00191 \ 3; \ \alpha(M)=0.000434 \ 7$ $\alpha(N)=0.0001002 \ I5; \ \alpha(O)=1.368\times10^{-5} \ 20; \ \alpha(P)=5.66\times10^{-7} \ 8$ B(F2)(W u)=3.0×10 ² + 12-7
4046.3	17-	562.5 3	100	3483.8	15-	E2	0.01222	$\alpha(K)=0.00985 \ 14; \ \alpha(L)=0.00184 \ 3; \ \alpha(M)=0.000418 \ 6 \ \alpha(N)=9.66\times10^{-5} \ 14; \ \alpha(O)=1.321\times10^{-5} \ 19; \ \alpha(P)=5.50\times10^{-7} \ 8$

γ (¹⁶⁰Er) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{†‡}	$\alpha^{\boldsymbol{b}}$	Comments
4089.8	(15 ⁻)	239.4 6	10 3	3850.3	(14 ⁻)			
		564.8 6	100 9	3525.3	(13-)			
4157.1	(16^{-})	569.3 6	100	3587.8	14-			
4168.8	(15 ⁺)	284° <i>I</i>	5 2	3884.9?	(14^{+})			
1222.2	(17+)	536.2 0 272 8 6	100 3	3632.5	(13^{+})			
4223.3	(17)	52826	07 7	3605 5	(10^{-})			
4286.7	18+	633.9.6	100.3	3654.1	16^+	E2	0.00916	$\alpha(K) = 0.00746 \ 11; \ \alpha(L) = 0.001323 \ 19; \ \alpha(M) = 0.000299 \ 5$
	10	00000	100 0	000 111	10		0.000710	$\alpha(N) = 6.91 \times 10^{-5} \ lo: \ \alpha(\Omega) = 9.53 \times 10^{-6} \ l4: \ \alpha(P) = 4.20 \times 10^{-7} \ 6$
		819.6 6	4 1	3465.43	16+			
4373.1	(17^{+})	536.6 6	28 <i>3</i>	3836.6	(15^{+})			
		907.4 6	100 3	3465.43	16+			
4403.3	18^{-}	572.8 <i>3</i>	100	3830.5	16-	E2	0.01169	$\alpha(K)=0.00944$ 14; $\alpha(L)=0.001751$ 25; $\alpha(M)=0.000397$ 6
								$\alpha(N)=9.17\times10^{-5}$ 13; $\alpha(O)=1.256\times10^{-5}$ 18; $\alpha(P)=5.28\times10^{-7}$ 8
4449.9	(16 ⁻)	359.7 6	21 8	4089.8	(15 ⁻)			
		599.5 6	100 25	3850.3	(14 ⁻)			
4462.8?	(16 ⁺)	294° 1	100 20	4168.8	(15^{+})			
4514.0	(10+)	578 1	54 4	3884.9?	(14^{+})			
4514.0	(181)	290.6 6	100 4	4223.3	$(1/^{+})$			
4567.0	(18^{+})	505.8 0 604.1 6	100	3950.1	(10) 16^+			
4507.9	(18) 20^+	640.0.3	100	4020 9	10 18 ⁺	F2	0.00895	$\alpha(\mathbf{K}) = 0.00730 \ 11; \ \alpha(\mathbf{I}) = 0.001289 \ 19; \ \alpha(\mathbf{M}) = 0.000291 \ 4$
1000.0	20	010.0 5	100	1020.7	10	112	0.00075	$\alpha(\mathbf{N}) = 6.00750 11, \alpha(\mathbf{L}) = 0.001207 12, \alpha(\mathbf{N}) = 0.000227 17$ $\alpha(\mathbf{N}) = 6.73 \times 10^{-5} 10; \alpha(\mathbf{O}) = 9.30 \times 10^{-6} 13; \alpha(\mathbf{P}) = 4.11 \times 10^{-7} 6$
4662.2	19-	615.9.3	100	4046.3	17^{-}	E2	0.00981	$\alpha(K) = 0.00797$ 12: $\alpha(L) = 0.001431$ 21: $\alpha(M) = 0.000323$ 5
								$\alpha(N) = 7.48 \times 10^{-5}$ <i>11</i> ; $\alpha(O) = 1.030 \times 10^{-5}$ <i>15</i> ; $\alpha(P) = 4.48 \times 10^{-7}$ <i>7</i>
4684.9	(17^{-})	234.8 6	50 2	4449.9	(16 ⁻)			
	. ,	595.6 6	100 3	4089.8	(15-)			
4767.2	(18 ⁻)	610.1 6	100	4157.1	(16 ⁻)			
4782.7	(17^{+})	613.9 6	100	4168.8	(15^{+})			
4818.7	(19 ⁺)	304.5 6	62 4	4514.0	(18 ⁺)			
10515	(10-)	595.7 6	100 6	4223.3	(17^{+})			
4954.7	(18 ⁻)	269.7 6	45 9	4684.9	(17^{-})			
1068 0	20^{+}	504.4 0	100 18	4449.9	(16)	ED	0.00775	$\alpha(W) = 0.00624.0$, $\alpha(U) = 0.001002.16$, $\alpha(W) = 0.000246.4$
4906.0	20	081.0 0	100	4200.7	10	EΖ	0.00775	$u(\mathbf{K}) = 0.00034 \ 9, \ u(\mathbf{L}) = 0.001095 \ 10, \ u(\mathbf{N}) = 0.000240 \ 4$
4991 3	(10^{+})	618.0.6	100 18	4373 1	(17^{+})			$u(1)=3.70\times10$ 0, $u(0)=7.90\times10$ 12; $u(1)=3.30\times10$ 3
туу1.5	(1))	970.1.6	74.5	4020.9	18+			
5017.2	20-	613.9 3	100 4	4403.3	18-	E2	0.00988	$\alpha(K)=0.00803$ 12; $\alpha(L)=0.001443$ 21; $\alpha(M)=0.000326$ 5
								$\alpha(N)=7.55\times10^{-5}$ 11; $\alpha(O)=1.039\times10^{-5}$ 15; $\alpha(P)=4.51\times10^{-7}$ 7
5110.8?	(18^{+})	648 ^C 1	100	4462.8?	(16^{+})			
5136.7	(20^{+})	317.9 6	100 4	4818.7	(19 ⁺)			
		622.8 6	96 4	4514.0	(18^{+})			

17

γ (¹⁶⁰Er) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{†‡}	α b	Comments
5192.1	(20 ⁺)	624.5 6	100	4567.9 ((18 ⁺)	E2	0.00949	$\alpha(K)=0.00772 \ 11; \ \alpha(L)=0.001377 \ 20; \ \alpha(M)=0.000311 \ 5 \\ \alpha(N)=7.20\times10^{-5} \ 11; \ \alpha(O)=9.92\times10^{-6} \ 15; \ \alpha(P)=4.34\times10^{-7} \ 7$
5247.4	(19 ⁻)	292.3 6 562.9 6	100 8 91 75	4954.7 (4684 9 ((18^{-}) (17^{-})			
5322.5	21-	660.3 <i>3</i>	100	4662.2 1	19-	E2	0.00832	$\alpha(K)=0.00680 \ I0; \ \alpha(L)=0.001185 \ I7; \ \alpha(M)=0.000267 \ 4$ $\alpha(N)=6.18\times10^{-5} \ 9; \ \alpha(Q)=8.56\times10^{-6} \ I2; \ \alpha(P)=3.83\times10^{-7} \ 6$
5382.7	22+	721.9 3	100	4660.8 2	20+	E2	0.00678	$\alpha(N)=0.10\times 10^{-9}$, $\alpha(O)=0.50\times 10^{-12}$, $\alpha(\Gamma)=5.55\times 10^{-6}$ $\alpha(K)=0.00557$ 8; $\alpha(L)=0.000939$ 14; $\alpha(M)=0.000211$ 3 $\alpha(N)=4.89\times 10^{-5}$ 7; $\alpha(O)=6.81\times 10^{-6}$ 10; $\alpha(P)=3.15\times 10^{-7}$ 5
5412.4	(20^{-})	645.2 6	100	4767.2 ((18 ⁻)			
5458.9	(19+)	676.2 6	100	4782.7 ((17 ⁺)			
5472.0	(21^{+})	335.0 6	79 <i>3</i>	5136.7 ((20^{+})			
		653.3 6	100 3	4818.7 ((19+)			
5562.5	(20^{-})	315.6 6	100 8	5247.4 ((19 ⁻)			
		607.9 6	81 17	4954.7 ((18-)			
5676.0	22^{-}	658.8 <i>6</i>	100	5017.2 2	20-	E2	0.00837	$\alpha(K)=0.00683 \ 10; \ \alpha(L)=0.001193 \ 17; \ \alpha(M)=0.000269 \ 4$
								$\alpha(N) = 6.22 \times 10^{-5}$ 9; $\alpha(O) = 8.61 \times 10^{-6}$ 13; $\alpha(P) = 3.85 \times 10^{-7}$ 6
5680.5	(21^{+})	688.7.6	100.3	4991.3 ((19^{+})			
	()	1020.2 6	41.3	4660.8	20+			
5707.6	22^{+}	739.3 6	100	4968.0 2	20^{+}	E2	0.00643	$\alpha(K)=0.00529 8; \alpha(L)=0.000884 13; \alpha(M)=0.000199 3$
								$\alpha(N) = 4.60 \times 10^{-5} \ 7. \ \alpha(O) = 6.42 \times 10^{-6} \ 9. \ \alpha(P) = 3.00 \times 10^{-7} \ 5$
5806.9	(22^{+})	335.0.6	35.8	5472.0 ((21^{+})			
5000.9	(22)	670.4.6	100 4	51367	(20^+)			
5848 6	(22^{+})	656.9.6	100 /	5192.1 ((20^+)			
5898.6	(22^{-})	336.4.6	25 4	5562.5 ((20^{-})			
5070.0	(21)	650.4.6	100 3	5247.4	(10^{-})			
6026.6	23-	704.1.6	100.5	5322.5	21-	F2	0.00718	$\alpha(\mathbf{K}) = 0.00589.9; \alpha(\mathbf{L}) = 0.001002.15; \alpha(\mathbf{M}) = 0.000225.4$
0020.0	25	704.10	100	5522.5 2	<u>-</u> 1	12	0.00710	$\alpha(\mathbf{N}) = 0.0050579, \alpha(\mathbf{L}) = 0.001002 15, \alpha(\mathbf{N}) = 0.00022574$
6108.2	(22^{-})	605 8 6	100	5412 4 ((20^{-})			$u(\mathbf{N}) = 5.22 \times 10^{-5}, u(\mathbf{O}) = 7.20 \times 10^{-11}, u(\mathbf{F}) = 5.55 \times 10^{-5}$
6156.5	(22)	240.0.6	100 7	5806.0	(20^{-})			
0150.5	(23)	549.90	100 7	5472.0	(22)			
6175-1	24+	702 4 3	100	53827	(21)	E2	0.00551	$\alpha(\mathbf{K}) = 0.00455.7; \alpha(\mathbf{I}) = 0.000744.11; \alpha(\mathbf{M}) = 0.0001666.24$
0175.1	24	192.4 5	100	5562.7 2	<u> </u>	62	0.00551	$u(\mathbf{K}) = 0.004557, u(\mathbf{L}) = 0.000744777, u(\mathbf{M}) = 0.000100024$
(102.0	(21+)	704.1.6	100	5459.0 ((10+)			$\alpha(N)=3.86\times10^{-5}$ 6; $\alpha(O)=3.41\times10^{-5}$ 8; $\alpha(P)=2.58\times10^{-7}$ 4
6183.0	(21^{+})	/24.1 0	100	5458.9 ((19^{+})			
6257.1	(22)	358.4 6	43 /	5898.6 ((21)			
(202.7	24-	694.9 0	100 18	5562.5 ((20)	50	0.00000	
6392.7	24	/16./ 0	100 25	56/6.0 2	22	E2	0.00689	$\alpha(\mathbf{K}) = 0.00566 \ 8; \ \alpha(\mathbf{L}) = 0.00095 \ / \ 14; \ \alpha(\mathbf{M}) = 0.000215 \ 3$
	(22)		100		(a .4.)			$\alpha(N) = 4.98 \times 10^{-5}$ /; $\alpha(O) = 6.94 \times 10^{-6}$ 10; $\alpha(P) = 3.20 \times 10^{-7}$ 5
6436.6	(23 ⁺)	756.1 6	100	5680.5 ((21*)	52	0.00520	
6508.2	24+	800.3 6	100	5707.6 2	22+	E2	0.00539	$\alpha(K)=0.00446$ /; $\alpha(L)=0.000726$ 11; $\alpha(M)=0.0001625$ 23
								$\alpha(N)=3.77\times10^{-5} 6; \alpha(O)=5.28\times10^{-6} 8; \alpha(P)=2.53\times10^{-7} 4$
6520.0	(24^{+})	363.3 6	88 6	6156.5 ((23^{+})			
		713.2 6	100 9	5806.9 ((22^{+})			

18

γ (¹⁶⁰Er) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{†‡}	α b	Comments
6570.0	(24 ⁺)	721.7 6	100	5848.6	(22 ⁺)	E2	0.00678	$\alpha(K)=0.00558 \ 8; \ \alpha(L)=0.000940 \ 14; \ \alpha(M)=0.000211 \ 3$ $\alpha(N)=4.89\times10^{-5} \ 7; \ \alpha(O)=6.82\times10^{-6} \ 10; \ \alpha(P)=3.15\times10^{-7} \ 5$
6632.5	(23 ⁻)	375.6 6	14 2	6257.1	(22^{-})			
6784.2	25-	757.6 6	100 4 100	5898.6 6026.6	(21^{-}) 23^{-}	E2	0.00608	$\alpha(K)=0.00502\ 7;\ \alpha(L)=0.000831\ 12;\ \alpha(M)=0.000187\ 3$ $\alpha(N)=4.32\times10^{-5}\ 7;\ \alpha(Q)=6.04\times10^{-6}\ 9;\ \alpha(P)=2.84\times10^{-7}\ 4$
6860.2	(24^{-})	752.0 6	100	6108.2	(22^{-})			
0893.9	(23)	737.6 6	100 8	6156.5	(24^{-}) (23^{+})			
6943.5	(23^{+})	760.5 6	100	6183.0	(21^{+})			
7027.6	26+	852.5 6	100	6175.1	24+	E2	0.00470	$\alpha(K)=0.00390 \ 6; \ \alpha(L)=0.000623 \ 9; \ \alpha(M)=0.0001392 \ 20 \\ \alpha(N)=3.23\times10^{-5} \ 5; \ \alpha(O)=4.54\times10^{-6} \ 7; \ \alpha(P)=2.22\times10^{-7} \ 4$
7027.8	(24 ⁻)	770.7 6	100	6257.1	(22^{-})			
7176.7	26-	784.0 6	100	6392.7	24-	E2	0.00564	$\alpha(K)=0.00466\ 7;\ \alpha(L)=0.000763\ 11;\ \alpha(M)=0.0001711\ 25$ $\alpha(N)=3.96\times10^{-5}\ 6;\ \alpha(O)=5.55\times10^{-6}\ 8;\ \alpha(P)=2.64\times10^{-7}\ 4$
7250.5	(25^+)	813.9 6	100	6436.6	(23^{+})			
7284.7	(26^{+})	390.6 6	61 3	6893.9	(25^{+})			
		765.1 6	100 6	6520.0	(24^{+})			
7334.6	26^{+}	764.7 6	11.9 4	6570.0	(24^{+})			
		826.3 6	100 3	6508.2	24+	E2	0.00503	$\alpha(K)=0.00417$ 6; $\alpha(L)=0.000671$ 10; $\alpha(M)=0.0001502$ 22
								$\alpha(N)=3.48\times10^{-5} 5; \alpha(O)=4.89\times10^{-6} 7; \alpha(P)=2.37\times10^{-7} 4$
7368.1	(26+)	798.3 6	70 6	6570.0	(24+)	E2	0.00542	$\alpha(K)=0.00448\ 7;\ \alpha(L)=0.000730\ 11;\ \alpha(M)=0.0001635\ 23$ $\alpha(N)=3.79\times10^{-5}\ 6;\ \alpha(O)=5.31\times10^{-6}\ 8;\ \alpha(P)=2.54\times10^{-7}\ 4$
		859.7 6	100 3	6508.2	24+			
7438.2	(25^{-})	805.7 6	100 3	6632.5	(23 ⁻)			
7603.7	27-	819.5 6	100	6784.2	25-	E2	0.00512	$\alpha(K)=0.00424\ 6;\ \alpha(L)=0.000685\ 10;\ \alpha(M)=0.0001532\ 22$ $\alpha(N)=3.55\times10^{-5}\ 5;\ \alpha(Q)=4.99\times10^{-6}\ 7;\ \alpha(P)=2.41\times10^{-7}\ 4$
7662.3	(26^{-})	802.1 6	100	6860.2	(24^{-})			
7692.0	(27^{+})	407.0 6	72 4	7284.7	(26^{+})			
		797.96	100 8	6893.9	(25^{+})			
7747.5?	(25^{+})	804 ^C 1	100	6943.5	(23^{+})			
7867.8	(26 ⁻)	840.0 6	100	7027.8	(24 ⁻)			
7929.0	28+	901.4 6	100	7027.6	26+	E2	0.00417	α (K)=0.00347 5; α (L)=0.000546 8; α (M)=0.0001218 18 α (N)=2.82×10 ⁻⁵ 4; α (O)=3.99×10 ⁻⁶ 6; α (P)=1.98×10 ⁻⁷ 3
8024.4	28-	847.7 6	100	7176.7	26-	E2	0.00476	$\alpha(K)=0.00395\ 6;\ \alpha(L)=0.000631\ 9;\ \alpha(M)=0.0001411\ 20$ $\alpha(N)=3.27\times10^{-5}\ 5;\ \alpha(Q)=4.60\times10^{-6}\ 7;\ \alpha(P)=2.24\times10^{-7}\ 4$
8115.3	(27^{+})	864.8 6	100	7250.5	(25^{+})			
8115.6	(28+)	423.3 6	47 14	7692.0	(27+)			
	. /	831.3 6	100 8	7284.7	(26^{+})			
8176.4	(28 ⁺)	841.8 6	100	7334.6	26+	(E2)	0.00483	$\alpha(K)=0.00401\ 6;\ \alpha(L)=0.000642\ 9;\ \alpha(M)=0.0001435\ 21$ $\alpha(N)=3.33\times10^{-5}\ 5;\ \alpha(Q)=4.68\times10^{-6}\ 7;\ \alpha(P)=2.28\times10^{-7}\ 4$
8237.1	(28+)	869.0 <i>6</i>	100	7368.1	(26^{+})			

19

 $^{160}_{68}\mathrm{Er}_{92}$ -19

γ (¹⁶⁰Er) (continued)

E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{†‡}	α b	Comments
8307.7 8478.3	(27 ⁻) 29 ⁻	869.5 6 874.6 6	100 100	7438.2 7603.7	(25 ⁻) 27 ⁻	E2	0.00445	$\alpha(K)=0.00370\ 6;\ \alpha(L)=0.000586\ 9;\ \alpha(M)=0.0001308\ 19$ $\alpha(N)=3.03\times10^{-5}\ 5;\ \alpha(O)=4.28\times10^{-6}\ 6;\ \alpha(P)=2.10\times10^{-7}\ 3$
8494.6 8556.9	(28 ⁻) (29 ⁺)	832.3 6 441.4 6 864 7 6	100 62 <i>3</i> 100 7	7662.3 8115.6 7692.0	(26^{-}) (28^{+}) (27^{+})			$a(1)=5.05\times10^{-5}$, $a(0)=1.25\times10^{-6}$, $a(1)=2.10\times10^{-5}$
8586.5?	(27^+)	839 [°] 1	100	7747.5?	(25^+) (25^-)			
8865.6	$(28)^{+}$	936.6 6	100	7929.0	(20 ⁻) 28 ⁺	E2	0.00385	$\alpha(K)=0.003215; \alpha(L)=0.0004997; \alpha(M)=0.000111316$ $\alpha(N)=2.58\times10^{-5}4; \alpha(O)=3.65\times10^{-6}6; \alpha(P)=1.83\times10^{-7}3$
8918.2	30-	893.8 6	100	8024.4	28-	E2	0.00425	$\alpha(\mathbf{N}) = 2.58 \times 10^{-4}, \ \alpha(\mathbf{O}) = 3.03 \times 10^{-6}, \ \alpha(\mathbf{I}) = 1.63 \times 10^{-5} \text{ s}$ $\alpha(\mathbf{K}) = 0.00353 \ 5; \ \alpha(\mathbf{L}) = 0.000557 \ 8; \ \alpha(\mathbf{M}) = 0.0001242 \ 18$ $\alpha(\mathbf{N}) = 2.88 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 4.07 \times 10^{-6} \ 6; \ \alpha(\mathbf{P}) = 2.01 \times 10^{-7} \ 3$
8994.5	(29^+)	879.2 6	100	8115.3	(27^+)			
9080.8	(30^{+})	903.4 0 904.4 6	100	8115.0 8176.4	(28) (28 ⁺)	(E2)	0.00414	$\alpha(K)=0.00345\ 5;\ \alpha(L)=0.000542\ 8;\ \alpha(M)=0.0001208\ 17$ $\alpha(N)=2\ 80\times10^{-5}\ 4;\ \alpha(\Omega)=3\ 96\times10^{-6}\ 6;\ \alpha(P)=1\ 96\times10^{-7}\ 3$
9147.4	(30 ⁺)	910.3 6	100	8237.1	(28+)	E2	0.00409	$\alpha(K) = 2.56 \times 10^{-5}$; $\alpha(C) = 3.50 \times 10^{-6}$; $\alpha(K) = 1.50 \times 10^{-5}$ 3 $\alpha(K) = 0.00340$ 5; $\alpha(L) = 0.000533$ 8; $\alpha(M) = 0.0001190$ 17 $\alpha(N) = 2.76 \times 10^{-5}$ 4; $\alpha(O) = 3.90 \times 10^{-6}$ 6; $\alpha(P) = 1.94 \times 10^{-7}$ 3
9234.5	(29^{-})	926.8 6	100	8307.7	(27^{-})			
9289.2 9383.8	(30^{-}) 31^{-}	905.5 6	100	8494.0 8478.3	(28) 29 ⁻	E2	0.00413	$\alpha(K)=0.00344\ 5;\ \alpha(L)=0.000540\ 8;\ \alpha(M)=0.0001205\ 17$ $\alpha(N)=2.79\times10^{-5}\ 4;\ \alpha(O)=3.95\times10^{-6}\ 6;\ \alpha(P)=1.96\times10^{-7}\ 3$
9498.4	(31^+)	941.5 6	100	8556.9	(29^+)			
9720.7 9825.6	(30°) 32^{+}	954.3 0 960.0 6	100	8766.4 8865.6	(28) 30^+	E2	0.00366	$\alpha(K)=0.00305\ 5;\ \alpha(L)=0.000472\ 7;\ \alpha(M)=0.0001051\ 15$ $\alpha(N)=2\ 44\times10^{-5}\ 4;\ \alpha(\Omega)=3\ 45\times10^{-6}\ 5;\ \alpha(P)=1\ 737\times10^{-7}\ 25$
9830.5	32-	912.3 6	100	8918.2	30-	E2	0.00407	$\alpha(K) = 0.00339 5; \ \alpha(L) = 0.000531 8; \ \alpha(M) = 0.0001183 17$ $\alpha(K) = 2.75 \times 10^{-5} 4; \ \alpha(O) = 3.88 \times 10^{-6} 6; \ \alpha(P) = 1.93 \times 10^{-7} 3$
9839.8	(31^+)	845.3 6	100	8994.5	(29^+)			
9996.7 10043.6	(32^+) (32^+)	977.7 6 962.8 6	100	9019.0 9080.8	(30^{+}) (30^{+})	(E2)	0.00363	$\alpha(K)=0.00303 5; \alpha(L)=0.000469 7; \alpha(M)=0.0001043 15$ $\alpha(N)=2.42\times10^{-5} 4; \alpha(O)=3.43\times10^{-6} 5; \alpha(P)=1.727\times10^{-7} 25$
10123.4? 10136.5	(32^+) (32^-) (31^-)	976 ^c 1 847.3 6 979 2 6	100 100	9147.4 9289.2	(30^+) (30^-) (20^-)			
10213.7 10302.7	(31) 33^{-}	979.2 6 918.9 6	100	9234.5 9383.8	(29^{-}) 31^{-}	E2	0.00401	α (K)=0.00334 5; α (L)=0.000522 8; α (M)=0.0001163 17 α (N)=2.70×10 ⁻⁵ 4; α (O)=3.81×10 ⁻⁶ 6; α (P)=1.90×10 ⁻⁷ 3
10512.5 10724.1	(33 ⁺) (32 ⁻)	1014.1 <i>6</i> 1003.4 <i>6</i>	100 100	9498.4 9720.7	(31 ⁺) (30 ⁻)			
10729.7 10761.9	(33 ⁺) 34 ⁻	889.9 <i>6</i> 931.4 <i>6</i>	100 100	9839.8 9830.5	(31 ⁺) 32 ⁻	E2	0.00389	α (K)=0.00325 5; α (L)=0.000506 8; α (M)=0.0001127 16 α (N)=2.62×10 ⁻⁵ 4; α (O)=3.70×10 ⁻⁶ 6; α (P)=1.85×10 ⁻⁷ 3

20

 $^{160}_{68}\mathrm{Er}_{92}$ -20

$\gamma(^{160}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{†‡}	$\alpha^{\boldsymbol{b}}$	Comments
10808.8	34+	983.2 6	100	9825.6	32+	E2	0.00348	$\alpha(K)=0.00291 4; \alpha(L)=0.000447 7; \alpha(M)=9.94\times10^{-5} 14$ $\alpha(N)=2.31\times10^{-5} 4; \alpha(Q)=3.27\times10^{-6} 5; \alpha(P)=1.655\times10^{-7} 24$
11042.8	(34+)	999.2 6	100	10043.6	(32+)	(E2)	0.00337	$\alpha(N) = 2.51 \times 10^{-5} 4; \ \alpha(O) = 3.27 \times 10^{-5} 5; \ \alpha(P) = 1.605 \times 10^{-5} 14$ $\alpha(N) = 2.22 \times 10^{-5} 4; \ \alpha(O) = 3.16 \times 10^{-6} 5; \ \alpha(P) = 1.602 \times 10^{-7} 23$
11047.1	(34 ⁺)	1050.4 6	100	9996.7	(32^{+})			$u(1)=2.22\times10^{-4}, u(0)=3.10\times10^{-5}, u(1)=1.002\times10^{-2.5}$
11064.6	(34^{-})	928.1 6	100	10136.5	(32^{-})			
11168.4?	(34^{+})	1045 [°] 1	100	10123.4?	(32^{+})			
11248.8	(33 ⁻)	1035.1 6	100	10213.7	(31 ⁻)			
11251.0	35-	948.3 6	100	10302.7	33-	E2	0.00375	$\alpha(K)=0.00313 5; \alpha(L)=0.000485 7; \alpha(M)=0.0001081 16$ $\alpha(N)=2.51\times10^{-5} 4; \alpha(O)=3.55\times10^{-6} 5; \alpha(P)=1.78\times10^{-7} 3$
11597.6	(35^{+})	1085.1 6	100	10512.5	(33^{+})			
11684.4	(35+)	954.7 6	100	10729.7	(33^{+})			
11735.5	36-	973.6 6	100	10761.9	34-	E2	0.00355	α (K)=0.00297 5; α (L)=0.000457 7; α (M)=0.0001017 15 α (N)=2.36×10 ⁻⁵ 4; α (O)=3.35×10 ⁻⁶ 5; α (P)=1.688×10 ⁻⁷ 24
11779.0	(34 ⁻)	1054.9 6	100	10724.1	(32 ⁻)			
11820.0	36+	1011.2 6	100	10808.8	34+	E2	0.00328	$\alpha(K)=0.00275 4; \alpha(L)=0.000419 6; \alpha(M)=9.33\times 10^{-5} 14$
								$\alpha(N)=2.17\times10^{-5}$ 3; $\alpha(O)=3.07\times10^{-6}$ 5; $\alpha(P)=1.564\times10^{-7}$ 22
12087.8	(36^{+})	1045.0 6	100	11042.8	(34^{+})	(E2)	0.00307	$\alpha(K)=0.00257$ 4; $\alpha(L)=0.000390$ 6; $\alpha(M)=8.66\times 10^{-5}$ 13
	. ,							$\alpha(N)=2.01\times10^{-5}$ 3: $\alpha(O)=2.86\times10^{-6}$ 4: $\alpha(P)=1.465\times10^{-7}$ 21
12089.6	(36^{-})	1025.0 6	100	11064.6	(34^{-})			
12162.7	(36+)	1115.6 6	100	11047.1	(34+)			
12247.6	37-	996.6 <i>6</i>	100	11251.0	35-	E2	0.00338	$\alpha(K)=0.00283 4; \alpha(L)=0.000433 6; \alpha(M)=9.64\times10^{-5} 14$
								$\alpha(N)=2.24\times10^{-5}$ 4; $\alpha(O)=3.17\times10^{-6}$ 5; $\alpha(P)=1.611\times10^{-7}$ 23
12325.4	(35^{-})	1076.6 6	100	11248.8	(33^{-})			
12702.0	(37^{+})	1017.6 6	100	11684.4	(35+)			
12761.9	38-	1026.4 6	100	11735.5	36-	E2	0.00319	$\alpha(K)=0.00267 4; \alpha(L)=0.000406 6; \alpha(M)=9.02\times10^{-5} 13$
								$\alpha(N)=2.09\times10^{-5}$ 3; $\alpha(O)=2.97\times10^{-6}$ 5; $\alpha(P)=1.518\times10^{-7}$ 22
12865.4	38+	1045.4 6	100	11820.0	36+	E2	0.00307	$\alpha(K)=0.00257$ 4: $\alpha(L)=0.000389$ 6: $\alpha(M)=8.65\times10^{-5}$ 13
								$\alpha(N) = 2.01 \times 10^{-5}$ 3: $\alpha(O) = 2.86 \times 10^{-6}$ 4: $\alpha(P) = 1.464 \times 10^{-7}$ 21
13166 5	(38^{+})	1078 6 6	100	12087.8	(36^{+})	(E2)	0.00288	$\alpha(K) = 0.00241 4 \cdot \alpha(L) = 0.000363 6 \cdot \alpha(M) = 8.07 \times 10^{-5} 12$
10100.0	(50)	1070.0 0	100	12007.0	(50)	(112)	0.00200	$\alpha(\mathbf{N}) = 1.87 \times 10^{-5} \ 3^{\circ} \alpha(\mathbf{O}) = 2.67 \times 10^{-6} \ 4^{\circ} \alpha(\mathbf{P}) = 1.376 \times 10^{-7} \ 20$
13302.2	30-	1054.6.6	100	12247.6	37-	F2	0.00301	$\alpha(K) = 0.00253 4$; $\alpha(L) = 0.000382 6$; $\alpha(M) = 8.48 \times 10^{-5} 12$
15502.2	57	105 1.0 0	100	12217.0	51	112	0.00501	$\alpha(\mathbf{N}) = 0.002357, \alpha(\mathbf{D}) = 0.00000205, \alpha(\mathbf{N}) = 0.0000007721$
13333 1	(38^{+})	117046	100	12162.7	(36^{+})			$u(1) = 1.77 \times 10^{-5}$, $u(0) = 2.00 \times 10^{-7}$, $u(1) = 1.450 \times 10^{-2}$
13777.9	(39^+)	1075.9 6	100	12702.0	(37^+)			
13845.2	40-	1083 3 6	100	12761.9	38-	F2	0.00286	$\alpha(K) = 0.00239.4; \alpha(L) = 0.000360.5; \alpha(M) = 7.99 \times 10^{-5}.12$
15015.2	10	1005.5 0	100	12701.7	50	112	0.00200	$\alpha(\mathbf{N}) = 0.002577, \alpha(\mathbf{D}) = 0.0000000000000000000000000000000000$
13952 4	40+	1087.0.6	100	12865.4	38+	F2	0.00284	$\alpha(K) = 0.00238 4$; $\alpha(L) = 0.000357 5$; $\alpha(M) = 7.93 \times 10^{-5} 12$
15752.7	-10	1007.0 0	100	12003.4	50	L-2-	0.00204	$\alpha(N) = 1.84 \times 10^{-5}$ 3. $\alpha(O) = 2.62 \times 10^{-6}$ 4. $\alpha(D) = 1.255 \times 10^{-7}$ 10
14248 0	(40^{+})	1081 5 6	100	13166 5	(38^{+})			$u_{(11)}=1.07\times10$ J, $u_{(0)}=2.02\times10$ 7, $u_{(1)}=1.333\times10$ 19
14421 2	(+0) /1-	1110.0 6	100	13302.2	30-	F2	0.00268	$\alpha(\mathbf{K}) = 0.00225 \ A \cdot \alpha(\mathbf{L}) = 0.000335 \ 5 \cdot \alpha(\mathbf{M}) = 7.44 \times 10^{-5} \ 11$
14421.2	+1	1117.0 0	100	15502.2	37	Ľ	0.00208	$u(\mathbf{N}) = 0.002257, u(\mathbf{L}) = 0.0000000000000000000000000000000000$
								$u(1) = 1.120 \times 10^{-2.3}, u(0) = 2.40 \times 10^{-4}, u(1) = 1.279 \times 10^{-10}, u(11) = 3.32 \times 10^{-14}$

21

γ (¹⁶⁰Er) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{†‡}	$\alpha^{\boldsymbol{b}}$	Comments
14904.1	(41^{+})	1126.2 6	100	13777.9	(39^{+})			
14986.6	42-	1141.4 6	100	13845.2	40-	E2	0.00257	α (K)=0.00216 3; α (L)=0.000321 5; α (M)=7.12×10 ⁻⁵ 10 α (N)=1.655×10 ⁻⁵ 24; α (O)=2.36×10 ⁻⁶ 4; α (P)=1.231×10 ⁻⁷ 18; α (IPF)=1.15×10 ⁻⁶ 3
15086.7	42+	1134.3 6	100	13952.4	40+	E2	0.00260	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.00219 \ 3; \ \alpha(\mathrm{L}) = 0.000326 \ 5; \ \alpha(\mathrm{M}) = 7.22 \times 10^{-5} \ 11 \\ \alpha(\mathrm{N}) = 1.677 \times 10^{-5} \ 24; \ \alpha(\mathrm{O}) = 2.39 \times 10^{-6} \ 4; \ \alpha(\mathrm{P}) = 1.246 \times 10^{-7} \ 18; \ \alpha(\mathrm{IPF}) = 9.10 \times 10^{-7} \\ 23 \end{array} $
15337.0	(42^{+})	1089.06	100	14248.0	(40^{+})			
15610.6	43-	1189.4 6	100	14421.2	41-	E2	0.00237	α (K)=0.00199 3; α (L)=0.000294 5; α (M)=6.51×10 ⁻⁵ 10 α (N)=1.514×10 ⁻⁵ 22; α (O)=2.16×10 ⁻⁶ 3; α (P)=1.135×10 ⁻⁷ 16; α (IPF)=4.12×10 ⁻⁶ 8
16052.1	(43+)	1148.0 6	100	14904.1	(41^{+})			
16189.7	44-	1203.1 6	100	14986.6	42-	E2	0.00232	$\begin{array}{l} \alpha(\mathrm{K}) = 0.00195 \ 3; \ \alpha(\mathrm{L}) = 0.000287 \ 4; \ \alpha(\mathrm{M}) = 6.35 \times 10^{-5} \ 9 \\ \alpha(\mathrm{N}) = 1.477 \times 10^{-5} \ 21; \ \alpha(\mathrm{O}) = 2.11 \times 10^{-6} \ 3; \ \alpha(\mathrm{P}) = 1.110 \times 10^{-7} \ 16; \ \alpha(\mathrm{IPF}) = 5.45 \times 10^{-6} \\ 10 \end{array}$
16273.0	44+	1186.3 6	100	15086.7	42+	E2	0.00239	α (K)=0.00200 3; α (L)=0.000296 5; α (M)=6.55×10 ⁻⁵ 10 α (N)=1.522×10 ⁻⁵ 22; α (O)=2.17×10 ⁻⁶ 3; α (P)=1.141×10 ⁻⁷ 16; α (IPF)=3.85×10 ⁻⁶ 8
16474.8	(44^{+})	1137.8 6	100	15337.0	(42^{+})			
16865.2	(45 ⁻)	1254.5 6	100 <i>1</i>	15610.6	43-	(E2)	0.00214	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.00180 \ 3; \ \alpha(\mathrm{L}) = 0.000263 \ 4; \ \alpha(\mathrm{M}) = 5.81 \times 10^{-5} \ 9 \\ \alpha(\mathrm{N}) = 1.351 \times 10^{-5} \ 19; \ \alpha(\mathrm{O}) = 1.93 \times 10^{-6} \ 3; \ \alpha(\mathrm{P}) = 1.024 \times 10^{-7} \ 15; \ \alpha(\mathrm{IPF}) = 1.186 \times 10^{-5} \\ 19 \end{array} $
17453.4	46-	1263.7 6	100	16189.7	44-	E2	0.00212	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.001772 \ 25; \ \alpha(\mathbf{L}) = 0.000259 \ 4; \ \alpha(\mathbf{M}) = 5.72 \times 10^{-5} \ 8 \\ &\alpha(\mathbf{N}) = 1.330 \times 10^{-5} \ 19; \ \alpha(\mathbf{O}) = 1.90 \times 10^{-6} \ 3; \ \alpha(\mathbf{P}) = 1.010 \times 10^{-7} \ 15; \ \alpha(\mathbf{IPF}) = 1.319 \times 10^{-5} \\ &21 \end{aligned} $
17512.8	46+	1239.8 6	100	16273.0	44+	E2	0.00219	$\begin{array}{l} \alpha(\mathrm{K}) = 0.00184 \ 3; \ \alpha(\mathrm{L}) = 0.000269 \ 4; \ \alpha(\mathrm{M}) = 5.96 \times 10^{-5} \ 9 \\ \alpha(\mathrm{N}) = 1.385 \times 10^{-5} \ 20; \ \alpha(\mathrm{O}) = 1.98 \times 10^{-6} \ 3; \ \alpha(\mathrm{P}) = 1.048 \times 10^{-7} \ 15; \ \alpha(\mathrm{IPF}) = 9.84 \times 10^{-6} \\ 16 \end{array}$
17652.8?	(46^{+})	1178 ^C 1	100	16474.8	(44^{+})			
18171.6	(47-)	1306.4 6	100	16865.2	(45 ⁻)	(E2)	0.00199	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.001662 \ 24; \ \alpha(\mathrm{L}) = 0.000241 \ 4; \ \alpha(\mathrm{M}) = 5.34 \times 10^{-5} \ 8 \\ \alpha(\mathrm{N}) = 1.240 \times 10^{-5} \ 18; \ \alpha(\mathrm{O}) = 1.778 \times 10^{-6} \ 25; \ \alpha(\mathrm{P}) = 9.47 \times 10^{-8} \ 14; \ \alpha(\mathrm{IPF}) = 2.02 \times 10^{-5} \end{array} $
18773.4	(48-)	1320.0 6	100	17453.4	46-	(E2)	0.00195	$\alpha(K) = 0.001629 \ 23; \ \alpha(L) = 0.000236 \ 4; \ \alpha(M) = 5.22 \times 10^{-5} \ 8 \\ \alpha(N) = 1.214 \times 10^{-5} \ 17; \ \alpha(O) = 1.740 \times 10^{-6} \ 25; \ \alpha(P) = 9.28 \times 10^{-8} \ 13; \ \alpha(IPF) = 2.28 \times 10^{-5} $
18707 1	(48^{+})	128/13-6	100	17512.8	46+			4
19530.4	(40^{-})	1358 8 6	100	18171.6	(47^{-})	(F2)	0.00186	$\alpha(K) = 0.001542.22$; $\alpha(I) = 0.000222.4$; $\alpha(M) = 4.91 \times 10^{-5}.7$
17550.4	(+))	1556.6 0	100	10171.0	(+7)	(L2)	0.00100	$\alpha(\text{N}) = 0.001342\ 22,\ \alpha(\text{D}) = 0.000222\ 4,\ \alpha(\text{N}) = 4.51\times10^{-5}\ 7$ $\alpha(\text{N}) = 1.143\times10^{-5}\ 16;\ \alpha(\text{O}) = 1.640\times10^{-6}\ 23;\ \alpha(\text{P}) = 8.78\times10^{-8}\ 13;\ \alpha(\text{IPF}) = 3.12\times10^{-5}\ 5$
20131.6	(50 ⁻)	1358.1 6	100	18773.4	(48 ⁻)	(E2)	0.00186	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.001543 \ 22; \ \alpha(\mathrm{L}) = 0.000223 \ 4; \ \alpha(\mathrm{M}) = 4.92 \times 10^{-5} \ 7 \\ \alpha(\mathrm{N}) = 1.144 \times 10^{-5} \ 16; \ \alpha(\mathrm{O}) = 1.642 \times 10^{-6} \ 23; \ \alpha(\mathrm{P}) = 8.79 \times 10^{-8} \ 13; \ \alpha(\mathrm{IPF}) = 3.11 \times 10^{-5} \\ 5 \end{array} $
20141.9 21597?	(50 ⁺) (52 ⁻)	1344.8 <i>6</i> 1465 ^c 1	100 100	18797.1 20131.6	(48 ⁺) (50 ⁻)			

$\gamma(^{160}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_{f}	${ m J}_f^\pi$
176.2+x		176 <mark>&</mark>	0+x	5505.0+y	J1+10	1185.6 <mark>&</mark> 6	4319.4+y	J1+8
371.8+x		195 <mark>&</mark>	176.2+x	6738.4+y	J1+12	1233.4 <mark>&</mark> 6	5505.0+y	J1+10
		372 ^{&}	0+x	8024.6+y	J1+14	1286.2 <mark>&</mark> 6	6738.4+y	J1+12
586.0+x		214 <mark>&</mark>	371.8+x	9370.8+y	J1+16	1346.2 <mark>&</mark> 6	8024.6+y	J1+14
		410 ^{&}	176.2+x	10777.7+y	J1+18	1406.9 <mark>&</mark> 6	9370.8+y	J1+16
816.8+x		231 ^{&}	586.0+x	12251.8+y	J1+20	1474.1 <mark>&</mark> 6	10777.7+y	J1+18
		445 <mark>&</mark>	371.8+x	13784.2+y	J1+22	1532.3 <mark>&</mark> 6	12251.8+y	J1+20
1063.1+x		246 <mark>&</mark>	816.8+x	15377.2+y?	J1+24	1593 <mark>&c</mark> 1	13784.2+y	J1+22
		477 ^{&}	586.0+x	17043.2+y?	J1+26	1666 ^{&c} 1	15377.2+y?	J1+24
1323.4+x		260 <mark>&</mark>	1063.1+x	947.0+z?	J2+2	947 ^{&c} 1	Z	J2≈(33)
		507 <mark>&</mark>	816.8+x	1948.9+z	J2+4	1001.9 <mark>&</mark> 6	947.0+z?	J2+2
1594.2+x		271 ^{&}	1323.4+x	3003.3+z	J2+6	1054.4 <mark>&</mark> 6	1948.9+z	J2+4
		531 ^{&}	1063.1+x	4101.6+z	J2+8	1098.3 <mark>&</mark> 6	3003.3+z	J2+6
1874.4+x		280 <mark>&</mark>	1594.2+x	5239.6+z	J2+10	1138.0 <mark>&</mark> 6	4101.6+z	J2+8
		551 ^{&}	1323.4+x	6425.2+z	J2+12	1185.6 ^{&} 6	5239.6+z	J2+10
2162.0+x		288 <mark>&</mark>	1874.4+x	7668.0+z	J2+14	1242.8 ^{&} 6	6425.2+z	J2+12
		568 <mark>&</mark>	1594.2+x	8973.1+z	J2+16	1305.1 <mark>&</mark> 6	7668.0+z	J2+14
2455.0+x		293 &	2162.0+x	10360.3+z	J2+18	1387.2 ^{&} 6	8973.1+z	J2+16
		580	1874.4+x	11830.4+z	J2+20	1470.1 & 6	10360.3+z	J2+18
2758.5+x		304	2455.0+x	13398.5+z?	J2+22	1568 ^{&c} 1	11830.4+z	J2+20
		597 <mark>&</mark>	2162.0+x	828.7+u	J3+2	828.7 ^{&} 6	u	J3≈(27)
3070.9+x		314	2758.5+x	1677.1+u	J3+4	848.4 ^{&} 6	828.7+u	J3+2
		615	2455.0+x	2567.3+u	J3+6	890.2 ^{&} 6	1677.1+u	J3+4
3390.2+x		320	3070.9+x	3506.8+u	J3+8	939.5 ^{&} 6	2567.3+u	J3+6
		631	2758.5+x	4497.9+u	J3+10	991.1 ^{&} 6	3506.8+u	J3+8
3722.1+x		332	3390.2+x	5546.6+u	J3+12	1048.7 ^{&} 6	4497.9+u	J3+10
		651 ^{&}	3070.9+x	6657.3+u	J3+14	1110.7 6	5546.6+u	J3+12
4067.1+x		345	3722.1+x	7823.6+u	J3+16	1166.3 ^{&} 6	6657.3+u	J3+14
		677	3390.2+x	9056.4+u	J3+18	1232.8 6	7823.6+u	J3+16
1017.3+y	J1+2	1017.3 ^{&} 6	y J1≈(33) 10359.4+u	J3+20	1303 ^{&} <i>c</i> 1	9056.4+u	J3+18
2079.0+y	J1+4	1061.7 ^{&} 6	1017.3+y J1+2	11734.4+u	J3+22	1375 ^{&C} 1	10359.4+u	J3+20
3179.0+y	J1+6	1100.0 ^{&} 6	2079.0+y J1+4	13190.5+u?	J3+24	1456 ^{&c} 1	11734.4+u	J3+22
4319.4+y	J1+8	1140.4 ^{&} 6	3179.0+y J1+6					

23

$\gamma(^{160}\text{Er})$ (continued)

[†] From (HI,xn γ), except where noted otherwise.

[±] Unless noted otherwise, values are those determined in (HI,xn γ) dataset from measured α (K)exp values and angular distributions (A₂,A₄ coefficients and R ratios). The angular distributions measurements determined only the quadrupole or dipole character (Q or D, respectively). These values were futher adopted here as electric or magnetic based on band structure and calculations: E2 for Q as fast in-band transitions (these assignments are generally certain); E1, or M1(+E2) for D (combined with interband-determined parity shift $\Delta \pi$ =yes, or no; these assignments are tentative).

[#] From 74.5 s ¹⁶⁰Tm ε decay (1983Si20). [@] From 9.4 min ¹⁶⁰Tm ε decay.

& From ${}^{116}Cd({}^{48}Ca,4n\gamma)$:tsd dataset.

^{*a*} Additional information 6.

^b Additional information 7.
 ^c Placement of transition in the level scheme is uncertain.

0+

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

13+24	13190 5+0
12.22	11724 4
	<u>11/34.4+u</u>
<u>J3+20</u>	10359.4+u
<u>J3+18</u>	9056.4+u
<u>J3+16</u>	7823.6+u
<u>J3+14</u>	6657.3+u
<u>J3+12</u>	5546.6+u
<u>J3+10</u>	4497.9+u
<u>J3+8</u>	3506.8+u
	2567.3+u
	828 7+µ
<u>J3≈(27)</u> ↓ 5 ⁶	
<u>J2+22</u> /	<u>13398.5+z_</u>
<u>J2+20</u>	11830.4+z
	10360.3+z
<u>J2+16</u>	8973.1+z
<u>J2+14</u>	7668.0+z
<u>J2+12</u>	6425.2+z
<u>J2+10</u>	<u>\$239.6+z</u>
J2+8	<u>4101.6+z</u>
<u>J2+6</u>	<u>₹ 8 3003.3+z</u>
<u>J2+4</u>	1948.9+z
$\frac{J2+2}{I2\approx(33)}$	[↓] , [~] ↓ - [©] <u>947.0+z</u>
<u></u>	
J1+24	5 [°] 15377.2+y
11.22	
<u>J1+22</u>	12251 9.00
<u>J1+20</u>	12251.8+y
<u>J1+18</u>	10777.7+y
<u>J1+16</u>	9370.8+y
J1+14	₩ ³ 8024.6+y
J1+12	♥ ♥ 6738.4+y
J1+10	5505.0+y
<u>J1+8</u>	4319.4+y
<u>J1+6</u>	3179.0+y
<u>J1+4</u> <u>I1+2</u>	<u> </u>
J12(33)	
	₩ & - x 4067.1+x
	3722.1+x 2200.2 Jr
	▼ 5390.2+X

0.0 28.58 h 9

¹⁶⁰₆₈Er₉₂

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁶⁰₆₈Er₉₂

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁶⁰₆₈Er₉₂

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{160}_{68}\mathrm{Er}_{92}$

¹⁶⁰₆₈Er₉₂

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

¹⁶⁰₆₈Er₉₂

¹⁶⁰₆₈Er₉₂

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁶⁰₆₈Er₉₂

¹⁶⁰₆₈Er₉₂

¹⁶⁰₆₈Er₉₂

From ENSDF

Level Scheme (continued)

Adopted Levels, Gammas

Legend

 $^{160}_{68}{
m Er}_{92}$

35

 $^{160}_{68}\mathrm{Er}_{92}$ -35

Band(B): Band 1

0.0

Adopted Levels, Gammas

	(52 ⁻) 21597			
Band(A): Yrast band	1465			
(50 ⁺) 20141.9	(50 ⁻) 20131.6	Band(C): Band 2		
1345	1358	(49 ⁻) 19530.4		
(48 ⁺) 18797.1	(48 ⁻) 18773.4	1359	Rond(D): Rond 3	
1284	1320	(47 ⁻) 18171.6	(A6 ⁺) 17652.9	
<u>46+</u> <u>17512.8</u>	<u>46</u> <u>17453.4</u>	1306		Band(F): Band 5: $K^{\pi}=2^+$,
1240 44 ⁺ 16273 0	1264	(45) 16865.2	$(44^+) + 16474.8$	γ -vibrational
1186	44 10189.7	43 ⁻ 15610.6	1138	(43+) 16052.1
42+ 15086.7	42 ⁻ 14986.6	1189	<u>(42+)</u> <u>15337.0</u>	(41^+) (41^+) 1148 14904.1
1134	1141	41- 14421.2	$(40^+) \begin{array}{c} 1089 \\ \hline 14248.0 \end{array}$	1126
	<u>40-</u> <u>13845.2</u>	1119 39- 13302 2	1082 (20 ⁺)	(39 ⁺) 13777.9
<u>38+</u> <u>12865.4</u>	<u>1083</u> <u>38-</u> <u>12761.9</u>	1055		(37 ⁺) 1076 12702.0
1045 36 ⁺ 11820.0	1026	<u>37</u> <u>12247.6</u>	$\frac{(36^+)}{12087.8}$ Band(E): Band 4	1018
1011	<u>36</u> 974	<u>35</u> ⁻ <u>11251.0</u>	(34^+) 11042 8 (34^+) 11168.4	(35 ⁺) 11684.4
<u>34+</u> <u>10808.8</u>	<u>34</u> <u>10761.9</u>	948 33- 10302 7		(33 ⁺) 10729.7
<u>983</u> <u>32+</u> <u>9825.6</u>	<u>32</u> ⁻ <u>931</u> <u>9830.5</u>	919	$\underbrace{(32^+)}_{10043.6} \underbrace{(32^+)}_{-10123.4} \underbrace{(32^+)}_{-10123.4}$	- <u>(31⁺)</u> 9839.8
960 30 ⁺ 8865.6	912 30 ⁻ 8918.2	<u>31-</u> <u>9383.8</u>	$\underbrace{(30^+)}_{963} \underbrace{9080.8}_{9080.8} \underbrace{(30^+)}_{976} \underbrace{976}_{9147.4}$	_ <u>(29⁺)</u> 845 8994.5
937	894	29- 8478.3	(28^+) 904 (28^+) 910 (28^+) 8176.4 (28^+) 8237.1	(27 ⁺) 879 8115.3
	<u>28</u> 8024.4 848	<u>27</u> ⁻ 7603.7	26^+ 842 7334.6 (26^+) 869 7368.1	$(25^+) 865 7250.5$
<u>26+</u> 7027.6	<u>26</u> 7176.7 784	<u>25</u> ⁻ 6784.2	$\begin{array}{c} 20 & 7334.0 \\ \hline \\ 826 & (750.0 \\ \end{array} & (24^+) & 798 \\ \hline \\ 6570.0 \\ \end{array}$	$\begin{array}{c c} \hline (23^+) & \hline (6436.6 \\ \hline (21^+) & 814 \\ \hline 5680.5 \\ \hline \end{array}$
<u>24</u> ⁺ <u>6175.1</u>	24- 6392.7	23- 758 6026.6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$- (19^+) (17^+$
<u>22+</u> 792 5382.7	22^{-} 5676.0	21^{-} 704 5322.5	$\frac{22^+}{739} \qquad \frac{(22^+)}{(20^+)} \qquad \frac{5346.0}{57} \qquad \frac{(22^+)}{5192.1} \qquad \frac{657}{5192.1} \qquad \frac{5346.0}{510} \qquad \frac{(22^+)}{510} \qquad \frac{657}{510} \qquad \frac{5192.1}{510} \qquad \frac{(22^+)}{510} \qquad \frac{5346.0}{510} \qquad \frac{(22^+)}{510} \qquad (2$	$- (15^+) (14^+) (14^+) (689) (3836.6) (3566.50)$
<u>20+</u> 722 4660.8	$\frac{20}{18^{-}} \xrightarrow{614} 4403.3$	<u>19⁻ 4662.2</u>	$\frac{20^{+}}{10^{+}}, \frac{4968.0}{681}, \frac{(18^{+})}{10^{+}}, \frac{624}{4567.9}, \frac{4567.9}{10^{+}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
<u>18⁺ 640 4020.9</u>	<u>16</u> 573 3830.5		$\frac{18}{16^+}, \frac{4286.7}{3654.1}, \frac{16^+}{16^+}, \frac{604}{3964.1}$	$- \underbrace{\frac{(11^+)}{(10^+)}}_{537} \underbrace{\frac{2800.04}{2436.73}}_{537}$
$\frac{16^+}{14^+} \xrightarrow{556} 3465.43}{14^+} \xrightarrow{534} 2931.38 \times$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15^{-} 50^{-} 3483.8 13^{-} 50^{-} 2979.4	$\frac{10}{14^+} \frac{5034.1}{3121.6}$	$\begin{array}{c c}\hline(9^+)\\\hline(8^+)\\\hline(8^+)\\\hline563\\\hline568\\\hline1950.44\end{array}$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$11^{-} 459 2519.9$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{10^+}{8^+} \xrightarrow{579} 1760.88$	$(\overset{(\mathbf{b})}{\underline{(4^{-})}}, \overset{\underline{387}}{\underline{270}}, \overset{\underline{1906.2}}{\underline{1636.8}})$	7 410 2104.4 Y		$\frac{5^+}{4^+} - \frac{486}{451} \frac{1316.36}{1128.54}$
$\begin{array}{c} 532 \\ 6^+ \\ 4^+ \\ 464 \\ 389.37 \\ \end{array}$				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c} 2^+ & 376 \\ \hline 0^+ & 264 \\ \hline 0.0 \\ \end{array}$				•

 $^{160}_{68}{\rm Er}_{92}$

¹⁶⁰₆₈Er₉₂

Band(K): Band 14				
	4425+x			
4067.1+x				
345	77 <u>3722.1+x</u>			
332	3390.2+x			
320	31 <u>3070.9+x</u>			
314	2758.5+x			
304	97 2455.0+x			
580	2162.0+x			
288 5	68 <u>1874.4+x</u>			
	1594.2+x			
	$\frac{1323.4+x}{1063.1+x}$			
507 	816.8+x			
445	586.0+x			
214	$10 \frac{371.8 + x}{176.2 + x}$			
372-176	0+x			

Band(J): Band 12

¹⁶⁰₆₈Er₉₂

$^{160}_{68}\mathrm{Er}_{92}$ -39

Adopted Levels, Gammas (continued)

		Band(N): Triaxial SD-3 band	
		<u>J3+2413190.5+u</u>	
		J3+22 ¹⁴⁵⁶ 11734.4+u	
		J3+20 ¹³⁷⁵ 10359.4+u	
		J3+18 ¹³⁰³ 9056.4+u	
		J3+16 ¹²³³ 7823.6+u	
		J3+14 ¹¹⁶⁶ 6657.3+u	
		J3+12 ¹¹¹¹ 5546.6+u	
		J3+10 ¹⁰⁴⁹ 4497.9+u	
		J3+8 991 3506.8+u	
	Band(M): Triaxial SD-2	J3+6 940 2567.3+u	
	band	<u>J3+4 890 1677.1+u</u>	
	12+22 13308 5+7	$\frac{J3+2}{I3\approx(27)} \xrightarrow{848} 828.7+u$	
	$\frac{J2+22}{2} - \frac{13396.3+2}{2}$	<u>55~(27)</u> u	
	<u>J2+20</u> 11830.4+z		
	J2+18 1470 10360.3+z		
	J2+16 ¹³⁸⁷ 8973.1+z		
	J2+14 ¹³⁰⁵ 7668.0+z		
	J2+12 ¹²⁴³ 6425.2+z		
	J2+10 ¹¹⁸⁶ 5239.6+z		
	J2+8 ¹¹³⁸ 4101.6+z		
	J2+6 ¹⁰⁹⁸ 3003.3+z		
Band(L): Triaxial SD-1	J2+4 ¹⁰⁵⁴ 1948.9+z		
band	J2+2 1002 947.0+z		
J1+26 17043.2+y	$\overline{J2\approx}(\overline{33})$ 947 \underline{z}		
<u>J1+24</u> <u>1666</u> <u>15377.2+y</u>			
J1+22 ¹⁵⁹³ 13784.2+y			
J1+20 ¹⁵³² 12251.8+y			
.I1+18 ¹⁴⁷⁴ 10777.7+y			
I1+16 ¹⁴⁰⁷ 9370.8+v			
11+14 1346 $8024.6+y$			
11+12 1286 $6738.4+y$			
11+10 1233 $5505.0+y$			
J1+8 ¹¹⁸⁶ 4319.4+v			
<u>J1+6</u> <u>1140</u> <u>3179.0+v</u>			
11+4 1100 2079 0+v			
11+2 1062 1017 3av			
$\frac{J1+2}{11\approx(33)} \frac{1017}{1017} = 1017.5+y}{1017}$			
J1~(33) 1017 y			

¹⁶⁰₆₈Er₉₂