¹¹⁶Cd(⁴⁸Ca,4nγ):tsd 2009Ol09,2011Ol02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 176, 1 (2021)	1-May-2021

2011Ol02 and 2009Ol09 were compiled for XUNDL database by J. Chen and B. Singh, and B. Singh, respectively (both from McMaster).

2011Ol02: ¹¹⁶Cd(⁴⁸Ca,4n), E(⁴⁸Ca)=215 MeV; the beam of ⁴⁸Ca was produced at the ATLAS facility at Argonne National Laboratory. Targets of two enriched (98.7%) ¹¹⁶Cd foils with a total thickness of 1.3 mg/cm². γ -rays were detected by the Gammasphere γ -ray spectrometer consisting of 101 Compton-suppressed HPGe detectors. Measured E γ , I γ , $\gamma(\theta)$, $\gamma\gamma(\theta)$. Deduced levels, J, π , band structures, triaxial superdeformed bands (TSD).

2009O109: ¹¹⁶Cd(⁴⁸Ca,4n), E(⁴⁸Ca)=215 MeV. Measured E γ , I γ , $\gamma\gamma$ using Gammasphere array of 101 HPGe detectors at ATLAS, ANL facility. Deduced two triaxial SD bands at high spins. Comparisons with cranked Nilsson-Strutinsky calculations and potential energy surface diagrams.

2009Ol09 state that the present paper supersedes their earlier conference reports: 2008SiZW and 2009Ri05.

2009Ol09 give bands 1 and 2, while 2011Ol02 give all three bands (with better defined $E\gamma's$ for the first two bands). Both papers are based on the same experimental data and are done by the same group.

The bands were identified from observation of several known transitions in the normal-deformed structures in coincidence with the transitions in the bands reported here.

¹⁶⁰Er Levels

Bands 1 and 2 are possible signature partners.

E(level)	\mathbf{J}^{π}	Comments
x [†]	J1≈(33)	Additional information 1.
1017.3+x [†] 6	J1+2	
2079.0+x [†] 9	J1+4	
3179.0+x [†] 11	J1+6	
4319.4+x [†] 12	J1+8	
5505.0+x [†] 14	J1+10	
6738.4+x [†] 15	J1+12	
8024.6+x [†] 16	J1+14	
9370.8+x [†] 17	J1+16	
10777.7+x 18	J1+18	
12251.9+x [†] 19	J1+20	
13784.2+x [†] 20	J1+22	
15377.2+x? [†] 23	J1+24	
17043.2+x? [†] 25	J1+26	
y‡	J2≈(33)	Additional information 2.
947.0+y? [‡] 10	J2+2	
1948.9+y [‡] 12	J2+4	
3003.3+y [‡] 14	J2+6	
4101.6+y [‡] 15	J2+8	
5239.6+y [‡] 16	J2+10	
6425.2+y [‡] 17	J2+12	
7668.0+y [‡] 18	J2+14	
8973.1+y [‡] <i>19</i>	J2+16	
10360.3+y [‡] 20	J2+18	

¹¹⁶Cd(⁴⁸Ca,4nγ):tsd **2009Ol09,2011Ol02** (continued)

¹⁶⁰Er Levels (continued)

E(level)	J^{π}	Comments
11830.4+y [‡] 21	J2+20	
13398.5+y? [‡] 23	J2+22	
z#	J3≈(27)	Additional information 3.
828.7+z [#] 6	J3+2	
1677.1+z [#] 9	J3+4	
2567.3+z [#] 11	J3+6	
3506.8+z [#] 12	J3+8	
4497.9+z [#] 14	J3+10	
5546.6+z [#] 15	J3+12	
6657.3+z [#] 16	J3+14	
7823.6+z [#] 17	J3+16	
9056.4+z [#] 18	J3+18	
10359.4+z [#] 21	J3+20	
11734.4+z [#] 23	J3+22	
13190.5+z? [#] 25	J3+24	

- [†] Band(A): Triaxial SD-1 band. Proposed configuration, relative to ¹⁴⁶Gd core: $\pi[(h_{11/2})^6(h_{9/2}f_{7/2})^1(i_{13/2})^1] \otimes \nu[(N=4)^{-2}(h_{11/2})^{-2}(i_{13/2})^5]$. Estimated deformation parameters: $\varepsilon \approx 0.37$, $\gamma = \pm 20^\circ$. Percent population ≈ 0.01 , relative to the intensity of 4n channel.
- [‡] Band(B): Triaxial SD-2 band. Proposed configuration, relative to ¹⁴⁶Gd core: $\pi[(h_{11/2})^6(h_{9/2}f_{7/2})^1(i_{13/2})^1] \otimes \nu[(N=4)^{-2}(h_{11/2})^{-2}(i_{13/2})^5]$. Estimated deformation parameters: $\varepsilon \approx 0.37$, $\gamma = \pm 20^\circ$. Percent population ≈ 0.01 , relative to the intensity of 4n channel. Estimated deformation parameters: $\varepsilon \approx 0.37$, $\gamma = \pm 20^\circ$.
- [#] Band(C): Triaxial SD-3 band. Based on the dynamic moment of inertia behavior, this band appears to be based on similar underlying structure as bands 1 and 2 and is interperted as strongly deformed traixial band. Estimated deformation parameters: $\varepsilon \approx 0.37$, $\gamma \approx 22^{\circ}$. 2011Ol02 found 1257 γ as a possible candidate for the decay of this band to the main (normal deformed) level scheme. The yrast transitions up to the decay of the 20⁺ state are observed in the spectrum of this band, confirming its association with ¹⁶⁰Er and suggesting a bandhead spin of >20.

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
828.7 6	828.7+z	J3+2	Z	J3≈(27)	1166.3 6	7823.6+z	J3+16	6657.3+z	J3+14
848.4 6	1677.1+z	J3+4	828.7+z	J3+2	1185.66	5505.0+x	J1+10	4319.4+x	J1+8
890.2 6	2567.3+z	J3+6	1677.1+z	J3+4	1185.6 6	6425.2+y	J2+12	5239.6+y	J2+10
939.5 6	3506.8+z	J3+8	2567.3+z	J3+6	1232.8 6	9056.4+z	J3+18	7823.6+z	J3+16
947 [‡] 1	947.0+y?	J2+2	У	J2≈(33)	1233.4 6	6738.4+x	J1+12	5505.0+x	J1+10
991.16	4497.9+z	J3+10	3506.8+z	J3+8	1242.8 6	7668.0+y	J2+14	6425.2+y	J2+12
1001.9 6	1948.9+y	J2+4	947.0+y?	J2+2	1286.2 6	8024.6+x	J1+14	6738.4+x	J1+12
1017.3 6	1017.3+x	J1+2	Х	J1≈(33)	1303 [‡] 1	10359.4+z	J3+20	9056.4+z	J3+18
1048.7 6	5546.6+z	J3+12	4497.9+z	J3+10	1305.1 6	8973.1+y	J2+16	7668.0+y	J2+14
1054.4 6	3003.3+y	J2+6	1948.9+y	J2+4	1346.2 6	9370.8+x	J1+16	8024.6+x	J1+14
1061.7 6	2079.0+x	J1+4	1017.3+x	J1+2	1375 [‡] 1	11734.4+z	J3+22	10359.4+z	J3+20
1098.3 6	4101.6+y	J2+8	3003.3+y	J2+6	1387.2 6	10360.3+y	J2+18	8973.1+y	J2+16
1100.0 6	3179.0+x	J1+6	2079.0+x	J1+4	1406.9 6	10777.7+x	J1+18	9370.8+x	J1+16
1110.7 6	6657.3+z	J3+14	5546.6+z	J3+12	1456 [‡] 1	13190.5+z?	J3+24	11734.4+z	J3+22
1138.0 6	5239.6+y	J2+10	4101.6+y	J2+8	1470.1 6	11830.4+y	J2+20	10360.3+y	J2+18
1140.4 6	4319.4+x	J1+8	3179.0+x	J1+6	1474.1 6	12251.9+x	J1+20	10777.7+x	J1+18

 $\gamma(^{160}\text{Er})$

Continued on next page (footnotes at end of table)

116 Cd(48 Ca,4n γ):tsd 2009Ol09,2011Ol02 (continued)

$\gamma(^{160}\text{Er})$ (continued)

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
1532.3 6	13784.2+x	J1+22	12251.9+x	J1+20
1568 [‡] 1	13398.5+y?	J2+22	11830.4+y	J2+20
1593 [‡] 1	15377.2+x?	J1+24	13784.2+x	J1+22
1666 [‡] 1	17043.2+x?	J1+26	15377.2+x?	J1+24

[†] From 2011Ol02.
[‡] Placement of transition in the level scheme is uncertain.

¹¹⁶Cd(⁴⁸Ca,4nγ):T1/2SD 2009Ol09,2011Ol02

Level Scheme

Legend

 $--- \rightarrow \gamma$ Decay (Uncertain)

\$	
<u>J</u> 3+24	<u>13190.5+z</u>
J3+22 ▼ 5	11734.4+z
J3+20 V	10359.4+z
J3+18	
J3+16	
J3+14 ↓ S ↔	
J3+12	5546.6+z
J3+10 S	4497.9+z
J3+8 v	3506.8+z
J3+6	2567.3+z
<u>J3+4</u>	1677.1+z
<u>13≈(21)</u>	Z
J_{2+22} J_{2+20}	- <u>11830.4+y</u>
<u>J2+18</u>	10360.3+у
<u>J2+16</u>	8973.1+y
<u>J2+14</u>	7668.0+y
<u>J2+12</u>	<u>6425.2+y</u>
J2+10	<u>5239.6+y</u>
J2+8	, Š
<u>I2+6</u>	3003.3+y
12+4	1948.9+v
J2+2	947.0+y
<u>J2</u> ~(33)	<u> </u>
<u>J1+26</u> /	<u>17043.2+x</u>
<u>J1+24</u>	<u>15377.2+x</u>
<u>J1+22</u>	
<u>J1+20</u>	<u>↓ ↓ 12251.9+x</u>
<u>J1+18</u>	<u> </u>
<u>J1+16</u>	<u>→ → → → 9370.8+x</u>
<u>J1+14</u>	₩ ³ ³ 8024.6+x
<u>J1+12</u>	v ² ,∞ 6738.4+x
<u>J1+10</u>	<u></u> <u>5505.0+x</u>
<u>J1+8</u>	→ × × × 4319.4+x
<u>J1+6</u>	<u>→ S S 3179.0+x</u>
J1+4	▼ Š ^S ∧? 2079.0+x
J1+2	1017.3+x
J1≈(33)	X

¹⁶⁰₆₈Er₉₂

$^{160}_{68}\mathrm{Er}_{92}$ -5

¹¹⁶Cd(⁴⁸Ca,4nγ):T1/2SD 2009Ol09,2011Ol02

1456	11734.4+
1375	10359.4+
1303	9056.4+
1233	7823.6+
1166	6657.3+
1111	5546.6+
1049	4497.9+
991	3506.8+
940	2567.3+
890	1677.1+
848	828.7+
	× 1375 × 1303 × 11303 × 11233 × 1166 × 11111 1049 991 991 940 890 848 829

Band(B): Triaxial SD-2 band

J2+22		_13398.5+y
J2+20	1568	11830.4+y
J2+18	1470	10360.3+y
J2+16	1387	8973.1+y
J2+14	1305	7668.0+y
J2+12	1243	6425.2+y
J2+10	1186	5239.6+y
J2+8	1138	4101.6+y
J2+6	1098	3003.3+y
J2+4	1054	1948.9+y
J2+2	1002	947.0+y
J2≈(33)	947	y

<u>J1+26</u>		_17043.2+x_
<u>J1+24</u>	1666	_15377.2+x_
J1+22	1593	13784.2+x
J1+20	1532	12251.9+x
J1+18	1474	10777.7+x
J1+16	1407	9370.8+x
J1+14	1346	8024.6+x
J1+12	1286	6738.4+x
J1+10	1233	5505.0+x
J1+8	1186	4319.4+x
J1+6	1140	3179.0+x
J1+4	1100	2079.0+x
J1+2	1062	1017.3+x
J1≈(33)	1017	x

¹⁶⁰₆₈Er₉₂