Adopted Levels, Gammas

		7	Гуре	Author	Hi (story Citation	Literature (Cutoff Date
		Full E	valuation	N. Nica	NDS 1	76, 1 (2021)	1-May	7-2021
$Q(\beta^{-}) = -3290 \ 15$ S(2n)=15407.9 2	S(n) = 3, $S(2p)$	8576.5 <i>14</i> ; S(p)= =13560.4 <i>10</i> (20	7428.8 <i>11</i> ; 21Wa16).	$Q(\alpha)=438$	8.0 10	2021Wa16		
					¹⁶⁰ Dy	Levels		
				Cross	Reference	ce (XREF) Flag	gs	
		A 160 Tb β^{-} B 160 Ho ε d C 158 Gd(α ,2 D 158 Gd(7 Li E 158 Dy(t,p)	decay decay (25.6 $(2n\gamma)$, ¹⁶⁰ Gd($(1,p4n\gamma)$	160 Gd(37 Cl, 160 Dy(γ,γ') 160 Dy(p,p') 160 Dy(d,d') 161 Dy(d,t γ)	xnγ) K L M	161 Dy(3 He, α) 162 Dy(p,t) Coulomb excitation		
E(level) [†]	J ^π ‡	T _{1/2}	XREF	7			Con	nments
0.0#	0+	stable	ABCDEFGHI	IJ LM P F	Possible α from optic fm ²) for 7; λ (¹⁶² recent c respectiv From cc fm ²) λ (evaluativ fm <i>31</i> .	decay: $T_{1/2} \ge 8$ cal isotope-shift the nuclear pa $Dy^{-160}Dy)=0.1$ ompilation of size vely, for these ombined x-ray $^{160}Dy^{-158}Dy)=$ on of nuclear r	3.5×10^{15} y (2 it measuremeter, λ (\approx 129 8; and λ such data, 19 quantities: 0 and optical-s 0.126 11 and ms charge ra	2011Be18). ents, 1990Wa25 report the values (in $\approx \Delta < r^2 >$): $\lambda ({}^{160}\text{Dy} - {}^{158}\text{Dy}) = 0.127$ (${}^{161}\text{Dy} - {}^{160}\text{Dy}) = 0.0345$ 21. In a 287Au06 give the following values, .132 12; 0.134 12; and 0.036 4. shift information, 1974Bo60 give (in d $\lambda ({}^{162}\text{Dy} - {}^{160}\text{Dy}) = 0.134$ 11. In an adii, 2013An02 report $< r^2 > {}^{1/2} = 5.20$
86.7877 [#] 3	2+	2.02 ns <i>1</i>	ABCDEFGHI	LJKLM µ µ C J ⁷ T	x = +0.728 :: weighte (1984Si time-dej): from 2 π : E2 tran $T_{1/2}$: from by 2001	18; Q=1.8 4 d average of tl 07) from 2014 pendent perturb 016St14 compti- nsition to g.s. h^{160} Tb β^- dec Ra27. Other: 2	ne values +0 StZZ compil bed angular o lation (TDP/ ay. This is e 2.26 ns 16, f	0.74 2 (1973Ka25) and +0.70 3 ation (both measured by correlation (TDPAC)). AC). ssentially the same as that given from B(E2) in Coul, ex.
283.8219 [#] 11	4+	104 ps 4	ABCDEF HI	LJKLM μ μ J ⁱ T	$g=+1.41 \ \ell$ $g=+0.32 \ data \ set$ integral $\delta \ (1996 \ \pi) \ E2 \ train T_{1/2}: weig11, from$	ted by the eval 50 20, from 19 5 and +0.359 3 perturbed angu Al02) and +1.6 asition to 2^+ st ghted average of $B(E2)(2+\rightarrow 4)$	uator from g 96A102, as d 0, from 1997 ilar correlation 50 <i>12</i> (1997 ate. Member of: 103 ps <i>5</i> , ⁺), in Coul.	g=+0.353 <i>19</i> , a weighted average of: liscussed in the ¹⁶⁰ Tb β ⁻ Decay 7Al04 (α ,2n γ) (both references by on (IPAC)). 2014StZZ list μ =+1.40 Al04). r of g.s. rotational band. from ¹⁶⁰ Tb β ⁻ decay; and 110 ps ex.
581.066 [#] <i>17</i>	6+	18.6 ps <i>10</i>	ABCDEF HI	LJKLM μ J ⁷ μ	π = +2.11 μ π : E2 tran I2, from of their here). 2 (1997A)	bisition to 4 ⁺ le ted from $g=+0$ n $g=+0.188 20$ reported value 014StZZ list μ 04, without co	vel. Member .352 <i>17</i> , 199 (1997A104, , +0.242 <i>20</i> , =+2.11 <i>10</i> (rrection).	r of g.s. rotational band. 99Br43 (Coul. ex., TF). Other: +1.13 IPAC in $(\alpha, 2n\gamma)$) (after correction for the different T _{1/2} value used 1999Br43) and +1.45 <i>12</i>
681.3? 7	(0+)		В	T E	a K-she	$B(E2)(4+\rightarrow 6)$ evel reported in a electron line	n 2009Ad04 correspondin	ex. (ε decay) from the observation of ng to transition energy of 681.3 keV.

¹⁶⁰Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments				
703.0?	(0+)		В	E(level): from 2010BoZZ (ε decay) based on their observance of 703.0 transition, presumably E0; by their assignment of 1594.5 transition (previously unplaced) at existing 2297.5, 2 ⁺ level; and by postulating 616.2 transition from this level to the 86.8, 2 ⁺ level (with existing 616.18 γ from 2701.0, 1 ⁻ level, this would be a doublet with).				
966.1687 [@] 13	2+	1.31 ps 9	ABCDEFGHIJ LM	$ \mu =+0.80 5 $ $ J^{\pi}: E2 \text{ transition to g.s.} $ $ \mu: \text{ From g=0.401 } 27 \text{ from 1999Br43 (Coul. ex., TF). } \mu =+0.65 5, $ $ \text{ from g=+0.324 } 25, \text{ computed by the evaluator from g=+0.317 } 13 \text{ as } $ $ \text{ reported by 1995Al22 (IPAC, after correction for the different T_{1/2} $ $ \text{ value adopted here). See "^{160}Dy Levels from ^{160}Tb \beta^{-} Decay" for $ $ \text{ a discussion. 2014StZZ also report +0.80 } 5 (1999Br43), \text{ together } $ $ \text{ with +0.63 } 2 (1995Al22) \text{ and +0.34 } 9 (1969Si01, 1975Kh03) \text{ for } \mu. $ $ T_{1/2}: \text{ from B(E2) and adopted branching.} $				
966.83 [#] 5	8+	3.8 ps <i>3</i>	BCDF KM	μ=+2.48 <i>18</i> $J^{π}$: E2 transition to 6 ⁺ level. Coulomb-excited; member of g.s. band. μ: From g=+0.310 22, 1999Br43, (Coul. ex., TF), computed by the evaluator from their reported value, g=0.343 22, after correction for the different T _{1/2} value used here. Other $μ$ values (also listed by 2014StZZ): 2.4 8, from g=+0.301 95 (1997Al04, IPAC from ($α$,2n $γ$)); +2.7 2 (1999Br43). T _{1/2} : from Doppler-broadened line shape and B(E2)(6+→8 ⁺), both in Coul. ex.				
1049.1018 ^{&} 17	3+		ABC J M	J^{π} : E2+M1 transitions to 2 ⁺ and 4 ⁺ levels.				
1155.841 [@] 8	4+		ABCDEF HIJ M	J^{π} : E2 and E2+M1 transitions to the 2 ⁺ and 4 ⁺ members, respectively, of the g.s. band. Energy considerations suggest this is a member of the γ -vibrational band.				
1264.7472 ^{<i>a</i>} 16	2-	≤10 ps	ABC J	J^{π} : E1 transitions to 2 ⁺ and 3 ⁺ levels, but not to 4 ⁺ . $\gamma\gamma(\theta)$ results consistent with J=2.				
1279.942 ^e 23	0+		B L	XREF: L(1275). J^{π} : E0 transition to g.s.				
1285.604 ^{<i>d</i>} 12	1-		ABC JK M	J^{π} : E1 transition to g.s. Head of $K^{\pi}=1^{-}$ band.				
1286.713 ⁶ 13	3-	0.22 ps 6	ABC E HIJ M	B(E3) \uparrow =0.171 10 J ^{π} : E1 transitions to 2 ⁺ and 4 ⁺ levels. T _{1/2} : from Doppler-broadened line shape in Coul. ex. (1981Mc06). B(E3) \uparrow : from Coul. ex.				
1288.665 ^{&} 11	5+		ABCD	J^{π} : E2 transitions to the 4 ⁺ and 6 ⁺ members of the g.s. band and the 3 ⁺ member of the γ -vibrational band. Energy considerations and this decay pattern suggest this is the 5 ⁺ member of the γ -vibrational band				
1349.758 ^e 17	2+	1.20 ps 11	B E G I LM	$B(E2)\uparrow=0.0184 \ I5$ XREF: L(1339). $T_{1/2}: \text{ from B(E2) in Coul. ex.}$				
1358.670 ^{<i>c</i>} 4	2-	2.70 ns 14	АВС Н ЈК	 J[*]: E2 transition to g.s. J^π: E1 γ to 2⁺ and 3⁺ levels indicate J^π=2⁻,3⁻. E1 γ from 1⁺ rules out 3⁻. T_{1/2}: from β⁻ decay (1972Ab09). Note that the B(E1)(W.u.) values from this T_{1/2} value are considerably smaller than one might expect from the decay of a state with this proposed J^π and configuration 				
1386.458 ^{<i>a</i>} 12	4-		ABCD J	assignment. XREF: J(1381). J^{π} : E1 components in transitions to 3 ⁺ and 4 ⁺ levels. Energy agrees well with expected position of 4 ⁻ member of $K^{\pi}=2^{-}$ octupole band.				

¹⁶⁰Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XR	EF	Comments			
1398.964 ^d 12	3-		ABC E	JK M	B(E3)↑=0.064 J ^{π} : E1 γ 's to 2 ⁺ and 4 ⁺ levels. B(E3)↑: from Coul ex			
1408.47 <mark>b</mark> 4	5-		BCD	IJ M	J^{π} : E1 to 4 ⁺ indicates $J^{\pi}=3^{-},4^{-},5^{-}$. γ to 6 ⁺ rules out 3 ⁻ and 4 ⁻ .			
1427.89 [#] 7	10^{+}	1.56 ps 7	CD F	М	$\mu = +3.1 \ 3$			
					 J^π: decays only via E2 to 8⁺ member of the g.s. band. Coulomb excited. Member of g.s. band. T_{1/2}: Doppler-broadened line shape in Coulomb excitation (1977Ke06). Other: 1.20 ps <i>12</i>, from B(E2). μ: From g=+0.306 <i>31</i>, 1999Br43 (Coul. ex., by TF); same μ value is also listed by 2014StZZ compilation. 			
1438.554 [@] 23	6+		BCD	М	J^{π} : E2 γ 's to 4 ⁺ members of the g.s. and γ -vibrational bands and an E2+M1 γ to the 6 ⁺ member of the g.s. band. Energy consistent with expected position of the 6 ⁺ member of the γ -vibrational band. Population in Coul. ex. indicates collective character.			
1456.752^{f} 20	0^{+}		ΒE		J^{π} : L=0 in (t,p).			
1489.500 ^{<i>n</i>} 22	1-	6.8 fs 8	B G		J^{π} : E1 transition to 0^+ .			
1518.419 ^{<i>f</i>} 14	2+		ΒE		XREF: E(1513). I^{π} : γ' s to 0 ⁺ and 4 ⁺ levels			
1522.33 ^e 3	4+		В		J^{π} : γ' 's to 2^+ and 6^+ levels.			
1535.150 ^c 12	4-		ABC	JK	J^{π} : E1 γ 's to 3 ⁺ and 5 ⁺ levels.			
1556.59 10	1+,2+		Α		J^{π} : transitions to g.s. and first 2 ⁺ level require J=1 or $J^{\pi}=2^+$. log <i>ft</i> =11.66 from 3 ⁻ rules out 1 ⁻ .			
1586.744 ^{<i>a</i>} 21	5-		В	I	XREF: I(1578). J ^{π} : E1 to 4 ⁺ , γ from 3 ⁻ , levels and member of octupole-vibrational band.			
1594.42 ^a 7	6-		BCD		J^{π} : E1 to 5 ⁺ , γ from 8 ⁻ , levels.			
1603.78 5	4+		В		J^{π} : E1 γ from 5 ⁻ , γ to 2 ⁺ , levels.			
1606.84 6	6+		В		J^{π} : E2 γ to 4 ⁺ and (E2) γ to 8 ⁺ .			
1607.86 ⁷ 6	4+		В	K	J ^{<i>x</i>} : E2 γ to 4 ⁺ , γ 's to 2 ⁺ and 5 ⁺ members of the γ band. Value based on comparison of shape of the angular distribution in (³ He, α) with that of transitions to known levels. Band assignment is that proposed in (³ He, α) and ¹⁶⁰ Ho ε decay.			
1613.98 ^b 4	7-		BCDe		XREF: C(1614.2)e(1617). J^{π} : E1 transition to the 6 ⁺ member of the g.s. band. Energy consistent with the expected 7 ⁻ member of the $K^{\pi}=2^{-}$ band			
1617.27 ^{&} 4	7 ⁺		BCDe		XREF: $e(1617)$. I^{π} : F2+M1 transitions to 6 ⁺ and 8 ⁺ levels			
1643.27 ^{<i>n</i>} 4	3-		В	ΙM	B(E3) \uparrow =0.065 <i>10</i> J ^{π} : Coulomb excited via an E3 transition (1981Mc06). Possibly the 3 ⁻ member of a K^{π} =0 ⁻ (octupole) band. B(E3) \uparrow : from Coulomb			
1650.874 24	4-,5-		Ве	i K	XREF: $e(1657)i(1656)$. J^{π} : E1 γ 's to 4 ⁺ and 5 ⁺ levels. See, also, the J^{π} comment for the 1651.95 level.			
1651.95 22	4+,5,6+		Ве	i K	XREF: e(1657)i(1656). J^{π} : γ 's to 4 ⁺ and 6 ⁺ levels. Possible excitation in (d,d') may indicate natural parity. 1981Ji01 assign this level as the $J^{\pi}=5^-$ member of the $K^{\pi}=1^-$ octupole band, while 1987Gr37 assign this state as the bandhead of a $K^{\pi}=5^-$ band with configuration=(v 5/2[642] + v 5/2[523]).			
1653.66 4			Ве	i	XREF: e(1657)i(1656).			

¹⁶⁰Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XR	EF	Comments
1654.99 <i>3</i>	2+,3+,4+		Ве	i	XREF: $e(1657)i(1656)$. I^{π} : E1 γ to 3^{-}
1676.1 <i>10</i> 1694.360 ^g <i>11</i>	4+	180 ps <i>35</i>	C BCD		J^{π} : E2 transitions to 2 ⁺ and 5 ⁺ levels establish π =+ and J=3 or 4. The allowed-unhindered (au) ε transition (log <i>f</i> =4.69, see 1996Re22) from the ¹⁶⁰ Ho g.s. (J^{π} =5 ⁺) uniquely establishes the assigned two-quasineutron configuration (and, hence, J^{π} =4 ⁺) for this state.
1708.14 ^j 4	0^{+}		ΒE		J^{π} : L=0 in (t,p).
1720.36 ^f 20	6+		BC	K	XREF: C(1726.9)K(1723). J^{π} : L=6 in (³ He, α). The strength of this peak, together with the relative cross sections to other ¹⁶⁰ Dy levels, suggests that this is the 6 ⁺ member of the S band.
1756.918 21	2^{+}		ΒE		J^{π} : E1 γ 's to 1 ⁻ and 3 ⁻ levels.
1784.688 ^{<i>n</i>} 22	4-		В	K	XREF: K(1785). J ^{π} : E1 to 4 ⁺ level indicates π = (d,t) population pattern for the proposed band members is consistent with the indicated K^{π} =4 ⁻ configuration.
1787.79 ^{<i>c</i>} 7	6-		BCD		XREF: C(?). E(level): this level was proposed to deexcite via 252.2 and 498.6 γ 's by 1987Ri08, (α ,2n γ). No 192.6 and 233 γ 's were reported by 1987Ri08. γ data are from ¹⁶⁰ Ho ε decay. J ^{π} : E1 transition from 5 ⁺ level indicates π =–. E2 γ to 4 ⁻ and expected band structure.
1800.35 [@] 6	8+		BCD		XREF: B(1801.16)C(1801.6). J^{π} : E2 transitions to the 6 ⁺ members of the g.s. and γ -vibrational bands and E2(+M1) transition to the 8 ⁺ member of the g.s. band. Level energy is that expected for the 8 ⁺ member of the γ band
1802.224 ^g 12	5+		BCD		J^{π} : M1 component in transitions to 4 ⁺ and from 6 ⁺ levels requires $J^{\pi}=5^+$. Level energy suggests that it is the 5 ⁺ member of the $K^{\pi}=4^+$ band.
1804.669 ⁱ 14	1+		В		J ^{π} : M1 transition to the g.s. Head of a $K^{\pi}=1^+$ band.
1860.18 ^h 6	5-		BC	JK	XREF: C(1861.6). J^{π} : E1 transitions to 4 ⁺ and 6 ⁺ levels.
1869.513 ^{<i>i</i>} 21	2+		ΒE	I	XREF: E(1875)I(1875). J^{π} : E2 transitions to 0 ⁺ and 4 ⁺ levels.
1882.31 ^{<i>a</i>} 7	8-		BCD		XREF: B(1882.62).
1898.23 ^{<i>a</i>} 16	7-		D		
1900.87 ⁰ 8	9-		BCD		J ^{π} : (E1) transition to 8 ⁺ member of the g.s. band. Level energy consistent with that expected for the 9 ⁻ member of the $K^{\pi}=2^{-}$ band.
1903.204^{i} 20 1929 1768 19	3^+ 6^+		B BCD	I	J^{π} : E1 transition from 2 ⁻ , E2 transitions to 2 ⁺ and 4 ⁺ levels.
1727.110° 17	0				considerations, together with the occurrence of transitions to the 4^+ and 5^+ members of the 4^+ band at 1694, indicate that this is the 6^+ member of this band.
1932			E		
1950.17 [#] 9	12+	0.89 ps 4	CD F	Μ	$\begin{array}{l} \mu=+3.6\ 7\\ \text{XREF: } C(1951.5)F(1952).\\ J^{\pi}: \text{ decays only via an E2 transition to the }10^+ \text{ member of the g.s.}\\ \text{ band. Coulomb excited. Member of the g.s. band.}\\ T_{1/2}: \text{ from Doppler-broadened line shape in Coulomb excitation} \end{array}$

¹⁶⁰Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XR	EF	Comments
				 (1977Ke06). Other: 0.54 ps 24, from B(E2). μ: From g=+0.302 60, 1999Br43 (Coul. ex., by TF); same value is also listed by 2014StZZ complication.
1952.310 3	0^{+}	В		J^{π} : E0 transition to g.s.
1954.4 ^{<i>h</i>} 5	(6)-	BC	JK	XREF: C(1958)J(1958)K(1948). J^{π} : π =-, from L=5 in (³ He, α). Transition to the 5 ⁺ member of the γ band. From considerations of rotational-band structure, this level is assigned as the 6 ⁻ member of the indicated K^{π} =4 ⁻ band.
1978.2 ^{<i>f</i>} 10	(8)+	С	K	XREF: K(1974). J^{π} : E2 transition to 6 ⁺ member of g.s. band indicates π =+. The strength of this L=6 transition and the relative cross sections of the (³ He, α) transitions to other ¹⁶⁰ Dy levels suggest that this is the 8 ⁺ member of the S band.
2009.531 <i>19</i> 2012.85 ⁰ 21	$1^{-},2^{-}$ 2^{+}	B B		J^{π} : E1 γ to 2 ⁺ indicates $J^{\pi}=1^{-},2^{-},3^{-}$. γ to g.s. rules out 3 ⁻ . J^{π} : γ 's to 0 ⁺ and 4 ⁺ levels.
2021.64 ^{&} 8	9+	BCD		XREF: C(2022.7)D(2020.6). J ^{π} : E2 transitions to 7 ⁺ member of the γ band and 8 ⁺ member of the g.s. band. These decay modes and the level energy are consistent with the assignment of this level as the 9 ⁺ member of the γ band.
2043.7? ^h	(7 ⁻)	С		J^{π} : from (α ,2n γ), (1987Ri08) based on the interpretation of an otherwise unplaced γ as a crossover transition to the 5 ⁻ member of this band.
2046		E		
2049.50 6	2+,3	В		J^{π} : γ 's to 2 ⁺ and 4 ⁺ levels suggest $J^{\pi}=2^+,3,4^+$. γ from 2 ⁻ makes J=4 less likely.
2068.08 3	1	В		J^{π} : El transition to g.s.
2074.098 11	7 ⁺	BCD	K	J ^{<i>n</i>} : γ 's to 5 ⁺ and 8 ⁻ levels and expected band structure. 1981Ji01, in (³ He, α), report L=5 transfer to this level and interpret it as the bandhead of a K^{π} =3 ⁻ band.
2077.36 3	$\frac{3}{1+2+}$	В		J^{n} : γ 's to 1 and 5 levels. Possible $K^{n}=3$ bandhead.
2084.809 21	1,2	В		$J^*: MI, E2$ transition to 0^+ .
2088.83 3	1, 2, 3 $2^{-}2^{-}$	D D		J^* . E1 γ to 2^+ and 2^+ levels
2090.00 4	2,3	D		$J = LT \gamma to 2 , \gamma s to 2 and 5 levels.$
2096.889° 14 2112.42 [°] 13	4 ' 8 ⁻	B BCD	J	J [*] : γ 's to 2' and 6' levels. XREF: C(2113.3). I^{π} : from γ 's to 6 ⁻ and 9 ⁺ levels and expected band structure.
2113.69 10		В		
2126.37 4	3-	В	IK	XREF: I(2129). J^{π} : E2 γ from 1 ⁻ , γ 's to 2 ⁺ and 4 ⁺ levels.
2130.579 23	3-	В		J^{π} : E1 γ to 2 ⁺ , γ to 4 ⁺ .
2138.20 3	2+	В	i	XREF: $i(2143)$. J^{π} : E2 γ to 0 ⁺ .
2140.15 3	(3)	В	i	XREF: i(2143). J^{π} : γ' s to 2 ⁺ and 4 ⁺ levels. Level fed by γ' s from 2 ⁻ and 5 ⁻ levels. Mult(1091.1 γ)=(E1) and mult(1856.38 γ)=(E2,M1), proposed by 2002Ad34 in ε decay give opposite parities for this state
2141.67 15	2+,3,4+	В	i	XREF: i(2143). J^{π} : γ' s to 2 ⁺ and 4 ⁺ levels.
2143.73 7	4-	В		J^{π} : E1 γ to 5 ⁺ and γ to 3 ⁺ levels.
2144.56? 5		В		
2149.84 13	1,2	В		J^{π} : γ 's to 0 ⁺ and 2 ⁺ levels.
2155.33 20		В		
2165.41 10		В	J	XREF: J(2163).
2175.3 10	4+ 5+ C+	C	2.1	VDEE: :(2100)1-(2190)
2187.00 0	4',5',6'	в	1 K	J^{π} : E2 γ to 6 ⁺ indicates positive parity. γ 's to 4 ⁺ and 6 ⁺ levels.
2191.03 /	-+	В	1 K	AKEF: $1(2190)K(2188)$.
2194.43 ^{k} 3	5	В		J^{α} : γ to 3^{+} , El γ from 6 ⁻ .

¹⁶⁰Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XRI	EF	Comments
2200.82 4	$2^+.3.4^+$,	В		J^{π} : γ' s to 2 ⁺ and 4 ⁺ .
2208.36^{i} 7	,ε,. ⊿+		R		I^{π} : F2 γ to 2^+ Eed by γ from 6^+
2208.79 6	$(2)^{-}$		B		J^{π} : γ to 2 ⁺ is sole mode of decay. Level is fed via an E1 from a
	(-)		_		positive-parity state, indicating $\pi = -$.
2214			E		
2221.48 [@] 8	10^{+}		CD		XREF: C(2223.1).
2230.52 8	2+		В		J^{π} : γ' s to 0^+ and 4^+ levels.
2241.95 ^{<i>a</i>} 8	10-		CD		XREF: C(2243.2).
2244.93 4	$2^+,3,4^+$		В		J^{π} : γ 's to 2 ⁺ and 4 ⁺ .
2255.67.6	1',2'		В		J': E2,M1 γ to 2' gives π =+. γ 's to 0' and 2'.
2263.99 ^{<i>a</i>} 11	9-		D		
2264.23 ^b 10	11-		CD F		XREF: C(2264.9)F(2265). J^{π} : γ 's to 9 ⁻ and 10 ⁺ levels; and level-spacing considerations.
2265.0 ^{<i>f</i>} 10	(10 ⁺)		С		J^{π} : γ to 8 ⁺ and possible γ to 10 ⁺ members, respectively, of the g.s. band. Together with rotational-band considerations, this suggests that this level is the 10 ⁺ member of the indicated band.
2266.98 <i>4</i> 2271.246 <i>23</i>	3 ⁻ 2 ⁻		B B		J^{π} : E1 transitions to 2 ⁺ and 4 ⁺ levels. J ^{π} : E1 transitions to 2 ⁺ levels indicate J ^{π} =1 ⁻ ,2 ⁻ ,3 ⁻ . Absence of
					transitions to 3^+ and 1^+ suggests J^{π} is probably not 1^- or 3^- .
2279.06 10			В		
2287.8 ¹ 6	8-		С	K	XREF: K(2279).
					J ^{α} : E1 transition to / ⁺ and γ 's to 8 ⁺ levels indicate π =- and J=/ or 8. Strong L=5 transition in (³ He, α) consistent with assigned configuration, indicating J=8.
2297.48 4	2+		ΒE	J	XREF: E(2296)J(2294). I^{x} , E2 γ to 2^{+} γ to 0^{+} . Excitation in (t p) indicates natural parity.
2309.90 <i>11</i> 2321	2+,3,4+		В	1	J^{π} : γ' s to 2 ⁺ and 4 ⁺ . γ to 2 ⁻ rules out 4 ⁻ .
2323.08 3	$1^{+}.2^{+}$		В	5	J^{π} : E2 γ to 3 ⁺ , γ to 0 ⁺ .
2325.24 9	$1^+, 2^+$		В		J^{π} : E2,M1 γ to 0 ⁺ .
2327.70 4	2+		В		J^{π} : γ 's to 0^+ and 4^+ levels. E2 γ to 2^+ .
2347				J	
2354.625 17	2+		В	-	J^{π} : E1 γ to 2 ⁻ level indicates π =+. γ 's to 0 ⁺ and 4 ⁺ .
2339	2+ 3+ 4+		R	1	I^{π} : F2 or to 2 ⁺ indicates $\pi - \pm \alpha's$ to 2 ⁺ and 4 ⁺ levels
2372 305 24	2,3,4 6 ⁻		B	У	I^{π} : E1 γ from 5 ⁺ indicates I^{π} =4 ⁻ 5 ⁻ 6 ⁻ γ to 7 ⁺ rules out 4 ⁻ 5 ⁻
2374.50 <i>5</i> 2380	0		B	1	
2383.69.3	6-		В	2	J^{π} : E1 γ from 5 ⁺ indicates $J^{\pi}=4^{-}.5^{-}.6^{-}$. γ to 7 ⁺ rules out 4 ⁻ .5 ⁻ .
2386.88 3	2+,3+		В		J^{π} : E1 γ to 2 ⁻ indicates $J^{\pi}=1^+,2^+,3^+$. γ 's to 3 ⁻ levels rule out 1 ⁺ .
2393.54 6	2,3-		В		J^{π} : γ 's to 1^{-} and 4^{+} levels.
2396.92 <i>21</i> 2405	1,2		В	J	J^{π} : γ 's to 0 ⁺ and 2 ⁺ levels.
2444				K	
2450.25 5	1-		В		J ^{π} : M1 γ from 2 ⁻ , E1 γ to 0 ⁺ .
2469.51 3	3-		В		J^{π} : E1 γ to 4 ⁺ indicates $\pi = -$. γ 's to 2 ⁺ and 4 ⁺ .
24/4.9/ 10	2+,3,4+		В		J^{n} : γ' s to 2^{+} and 4^{+} levels.
2485.64 [∞] 10	11+		CD		XREF: C(2486.9). J^{π} : E2 transition to 9 ⁺ member of the γ band and E2+M1 to 10 ⁺ member of the g.s. band. Together with rotational-band spacings, these support the assignment of this level as the 11 ⁺ member of the γ -vibrational band.
2503.80 9	$1^+, 2^+$		В		J^{π} : M1 γ to 2 ⁺ and γ to (0 ⁺).
2513.36 [#] 12	14+	0.62 ps +7-14	CD F	М	XREF: D(2513.0)F(2516).

¹⁶⁰Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
2514 57 16		K	J^{π} : E2 transition to 12 ⁺ member of the g.s. band. Population in Coulomb excitation indicates that this is the 14 ⁺ member of the g.s. band. $T_{1/2}$: from Doppler-broadened line shape following Coulomb excitation (1977Ke06).
2520.17 ^c 15 2523.8 7	10 ⁻ 3 ⁺	CD J	XREF: C(2521.5). The large (d,t) strength to the 2524 level indicates the presence of the ν 1/2 ⁺ [400] Nilsson orbital. Hence this level contains a significant component of the two-quasineutron state having configuration=(ν 5/2 ⁺ [642] + ν 1/2 ⁺ [400]). J ^{π} : gammas to the 2 ⁺ and 4 ⁺ members of the g.s. band. The indicated configuration has K^{π} =3 ⁺ . Hence this level should have J^{π} =3 ⁺ .
2553.5 3 2556.72 5 2560.02 9 2572.4 3 2574.37 20 2577 15	3 ⁻ ,4 ⁻ ,5 ⁻ 2 ⁺ ,3,4 ⁺ 3 ⁺ ,4 ⁺ ,5 ⁺ 1 ⁻ ,2 ⁻ ,3 ⁻ 3 ⁺ to 9 ⁺	B B B B K	J^{π} : E1 γ to 4 ⁺ level. J^{π} : γ' s to 2 ⁺ and 4 ⁺ levels. J^{π} : M1 γ to 4 ⁺ . J^{π} : M1,E2 γ to 1 ⁻ level. J^{π} : L=6 pickup from an i13/2-related initial state (the ν 5/2 ⁺ [642] Nilsson orbital) in (³ He, α).
2593.64 ^f 14 2602.67 4 2605.77 8 2610.01 10 2630.24 5 2630.705 11 2634.73 11	12 ⁺ 1 ⁻ ,2 ⁻ 2 ⁺ ,3 ⁺ ,4 ⁺ 2 ⁺ (1,2) ⁺ 1 ⁻	D B B B B B B	J ^{π} : E2 γ to 3 ⁻ level indicates π = γ 's to 0 ⁺ and 3 ⁻ levels. J ^{π} : E2,M1 γ to 4 ⁺ level indicates π =+. γ 's to 2 ⁺ and 4 ⁺ levels. J ^{π} : E2 γ to 3 ⁺ level indicates π =+. γ 's to 0 ⁺ and 4 ⁺ levels. J ^{π} : E1 γ 's to 1 ⁻ and (2 ⁻) levels. J ^{π} : E1 γ 's to 0 ⁺ and 2 ⁺ levels.
2645.88 22 2647.30 24 2661.511 13 2665.78 5 2666.30 ^a 11 2674.716 20	3 ⁻ (3) ⁻ 2 ⁻ 2 ⁺ ,3 ⁺ ,4 ⁺ 12 ⁻ 1 ⁻	B B B CD B	J ^{π} : E1 γ 's to 2 ⁺ and 4 ⁺ levels. J ^{π} : E1 γ to 2 ⁺ indicates π = γ 's to 2 ⁺ and 4 ⁺ levels suggest J=3. J ^{π} : E1 γ 's to 1 ⁺ and 3 ⁺ levels. J ^{π} : γ with $\Delta \pi$ =no to 4 ⁺ indicates π =+. γ 's to 2 ⁺ and 4 ⁺ . XREF: C(2668.0). J ^{π} : E1 transition to g.s. (J ^{π} =0 ⁺).
2681.822 ^{<i>i</i>} 23 2696.30 ^{<i>d</i>} 16 2696.41 3	5+ 11 ⁻ 2 ⁻ ,3 ⁻	B D B	J ^{π} : E1 transitions to 5 ⁻ and 6 ⁻ levels indicate π =+. γ 's to 4 ⁻ and 6 ⁻ indicate J=5. J ^{π} : E2 transitions to 2 ⁻ and 3 ⁻ levels indicate π = γ 's to 2 ⁺ and 3 ⁺ levels indicate J^{π} =2 ⁻ ,3 ⁻ .
2697.31 ^b 11 2697.821 18 2701.044 ^m 15 2704.215 21	13 ⁻ 2 ⁺ 1 ⁻ 2 ⁻ 2 ⁻	CD F B B	XREF: C(2698.3)F(2698). J^{π} : in-band transition to 11 ⁻ of 2 ⁻ octupole-vibrational band. J^{π} : γ' s to 0 ⁺ and 4 ⁺ levels indicate J=2. E2 γ to 2 ⁺ gives π =+. J^{π} : E1 γ to 0 ⁺ . M_{π} : E1 to 2 ⁺ indicates M_{π} =1 ⁻ 2 ⁻ 2 ⁻ γ to 2 ⁺ rules out 1 ⁻ 2002 Ad24 report M_{π} =2 ⁻
2704,213 21 2707.77 [@] 9 2717.225 21 2719.02 5 2720.57 ^m 4 2727.21 10	$2^{+},5^{-}$ 12^{+} 2^{-} 3^{-} (4)	B D B B B B	J ^{π} : E1 to 2 ⁺ indicates J ^{π} =1 ⁻ , 2 ⁻ , 3 ⁻ . γ to 3 ⁺ fulles out 1 ⁻ . 2002Ad34 report J ^{π} =2 ⁻ . J ^{π} : $E1 \gamma$ to 2 ⁺ indicates J ^{π} =1 ⁻ , 2 ⁻ , 3 ⁻ . γ 's to 1 ⁺ and 3 ⁺ rule out 3 ⁻ and 1 ⁻ . J ^{π} : E1 γ 's to 3 ⁺ and 4 ⁺ levels indicate J ^{π} =3 ⁻ , 4 ⁻ . γ to 2 ⁺ rules out 4 ⁻ . L: γ to 6 ⁺ level and possible γ to 2 ⁺ .
2729.824 24 2734.718 25 2755.04 20 2756.3 3 2757.13 9	2- 1-	B B B B	J^{π} : E1 transition to 2 ⁺ level indicates $J^{\pi}=1^{-},2^{-},3^{-}$. γ 's to 1 ⁺ and 4 ⁻ rule out 3 ⁻ and 1 ⁻ . J^{π} : E1 transition to 0 ⁺ level.
2760.46 7 2763.05 5 2767.70 5	1 ⁺ ,2 ⁺ 1 ⁻	B B B	J ^{π} : E2,M1 1410.7 γ to 2 ⁺ indicates π =+. γ 's to 0 ⁺ and 2 ⁺ levels. J ^{π} : E1 transition to 2 ⁺ level indicates π = γ 's to 0 ⁺ and 2 ⁺ levels.

¹⁶⁰Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	2	KREF	Comments
2772.10 20			В		
2777.62 4	$2^+, 3^+, 4^+$		В		J ^{π} : E2,M1 to 4 ⁺ indicates π =+. γ 's to 2 ⁺ and 4 ⁺ levels.
2822.23 20	1+	3.1 fs 4	В	G	J^{π} : excited in (γ, γ') via an M1 transition from the g.s.
2022.05.15			_		$T_{1/2}$: from (γ, γ') .
2833.85 17	2,3,4		В		J^{π} : γ 's to 2' and 4' levels.
2851.73.3	1		В		J [*] : E1 γ to 2 ⁺ indicates $\pi = -$. γ 's to 0 ⁺ and 2 ⁺ levels.
2855.09 12			В		
2636.17 11	1+		D D	C	$\mathbf{VDEE} \cdot \mathbf{C}(2864)$
2801.102 23	1		Б	9	J^{π} : M1+E2 transition to 2 ⁺ level indicates π =+. Excited in (γ, γ') via a dipole transition.
2877.094 21	1-		В	G	J ^{π} : E1 transition to g.s. Excited in (γ , γ') via a dipole transition.
2879.46 10	2		В		J^{π} : γ 's to 0 ⁺ and 4 ⁺ levels.
2885.58 4			В		
2896.28 4	2^{+}		В		J ^{π} : E2,M1 γ to g.s. indicates π =+. γ 's to 0 ⁺ and 4 ⁺ levels.
2904.36 8	2,3,4		В		J^{π} : γ' s to 2 ⁺ and 4 ⁺ levels.
2931.76 5			В		and the second se
2941.96 8	4,5,6		В		J^{π} : γ to 4^+ level.
2958.55 5	1.2		В		
2969.03 17	1,2		В		$J^{\prime\prime}$: γ' s to 0 ⁺ and 2 ⁻ levels.
2969.90 0			В		
2977.550	12-		Б		
2984.84 10	12		ע		
2988.76 12	13'		ע		T^{π} / (2^+) (4^+))
2994.69 8	2,3,4		В		J^{*} : γ 's to 2^{+} and 4^{+} levels.
5004.55 10	1,2		Б		J^{*} , γ s to 0^{*} and 2^{*} levels.
3007.467 13	14+		D		
3024.52 17	1,2		В		J'' : γ 's to 0' and 2' levels.
3033.7 3			В		
3060.44 <i>14</i> 3061.82 <i>5</i>	1+		В	G	J ^{π} : E1 to 2 ⁻ indicates π =+. Excitation in (γ , γ') then indicates J ^{π} =1 ⁺ as
					does mult=(M1) for the 3061 γ . 1775 γ to 3 ⁻ may disfavor 1 ⁺ .
					2002Ad34, ε decay, suggest $J^{\pi}=(1,2^+)$.
3081.4 4			В		J^{n} : 2002Ad34, ε decay, suggest $J^{n} = (4,5,6)$.
3089.49 [#] 12	16+		CD	F	XREF: C(3091.9)F(3093).
3098.82 ¹ 9	6+		В		J^{π} : E2 γ' s to 7 ⁺ , 8 ⁺ levels require π =+. γ' s to 4 ⁺ and 8 ⁺ levels indicate J=6. In their table 1, 2002Ad34 show J^{π} =7 ⁻ for this level, but elsewhere J^{π} =6 ⁺ is shown, 7 ⁻ is probably a misprint.
3111.1 11			С		E(level): from energy sum based on placement of 596.5 γ . 1987Ri08 give E(level)=3113 and do not show it in their level scheme.
3148.50 ^a 15	14-		CD		XREF: C(3149.6).
3188.20 ^d 19	13-		D		
3192.87 ^b 13	15-		D	F	XREF: F(3195).
$3220.16^{@}$ 12	14^{+}		D		
3452.1?			c		
3452.7 10			С		
3508.22 ^{&} 13	15^{+}		D		
3510.64 [°] 21	14-		D		
3526 56 15	16+		л П		
2660 65# 11	10+			F	VDEE: $C(2672.4)E(267.4)$
3009.03" 14	18		Û	r	J^{π} : E2 transition to 16 ⁺ member of the g.s. band. This, and energy-spacing considerations, indicates that this is the 18 ⁺ member of the g.s. band.

¹⁶⁰Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3681.31 ^{<i>a</i>} 18	16-	D	
3730.6 ^d 3	15-	D	
3744.53 ^b 13	17^{-}	D F	XREF: F(3747).
3767.63 [@] 14	16+	D	
4044.15 ^{&} 14	17^{+}	D	
4078.3 ^c 3	16-	D	
4160.82 ^f 16	18^{+}	D	
4257.01 ^{<i>a</i>} 21	18-	D	
4278.39 [#] 15	20^{+}	D F	XREF: F(4283).
4317.0 ^{<i>d</i>} 4	17-	D	
4348.04 ^b 17	19-	D F	XREF: F(4350).
4349.95 [@] 15	18^{+}	D	
4618.29 ^{&} 15	19^{+}	D	
4872.61 ^{<i>a</i>} 23	20^{-}	D	
4875.09 ^{<i>f</i>} 16	20^{+}	D	
4935.60 [#] 18	22^{+}	D F	XREF: F(4940).
4936.8 ^{<i>d</i>} 4	19-	D	
4975.00 [@] 18	20^{+}	D	
5001.54 ^b 20	21-	D	
5241.09 ^{&} 17	21^{+}	D	
5528.2 ^{<i>a</i>} 3	22^{-}	D	
5602.1 [@] 11	22^{+}	D	
5647.30 [#] 21	24^{+}	D F	XREF: F(5652).
5705.2 ^b 3	23-	D	
5916.5 ^{&} 3	23^{+}	D	
6219.8 <mark>a</mark> 4	24-	D	
6412.5 [#] 3	26^{+}	D F	XREF: F(6419).
6458.0 ^b 4	25^{-}	D	
6642.7 ^{&} 4	25^{+}	D	
6966.3 ^{<i>a</i>} 5	26^{-}	D	
7230.3 [#] 4	28^{+}	DF	XREF: F(7237).

[†] Listed values were calculated from a least-squares fit of the γ -ray energies. Where no uncertainties are given for the E γ values, a value of 1 keV was assumed in this calculation. In these situations, no value is given for the uncertainty in the corresponding level energy. Normalized $\chi^2 = 2.7 > \text{critical } \chi^2 = 1.1$.

[‡] For those levels populated only in the heavy ion-induced reactions, the listed values are based on the usual considerations of expected rotational-band structure as employed in these studies. In these cases, specific arguments for the J^{π} values are not listed.

[#] Band(A): Ground-state band. A=14.58 keV, B=-19.5 eV (from 0^+ , 2^+ , and 4^+ levels). For J \leq 16, α =-0.0015 16, where $(g)/(g(g.s.))=1+\alpha J^2$ (1989Ra17).

[@] Band(B): γ -vibrational band, signature=0 branch. A=14.00 keV, B=-22.7 eV, and A₄=-1.93 eV (from 2⁺ through 5⁺ levels).

& Band(b): γ -vibrational band, signature=1 branch. See the comment for the signature=0 branch.

XREF: F(7237).

^a Band(C): $K^{\pi}=2^{-}$ octupole-vibrational band, signature=0 branch. The energy spacings within this band are affected by strong Coriolis mixing, which makes the listing of rotational-band parameters of little use. The dominant two-quasiparticle component in this band has $(\pi 7/2[523] - \pi 3/2[411])$ for the configuration assignment.

^b Band(c): 2⁻ octupole-vibrational band, signature=1 branch. See the comment for the signature=0 branch.

¹⁶⁰Dy Levels (continued)

- ^c Band(D): $K^{\pi}=1^{-}$ octupole-vibrational band, signature=0 branch. The energy spacings within this band are affected by strong Coriolis mixing, which makes the listing of rotational-band parameters of little use. The two-quasiparticle state with configuration=(v 5/2[642] v 3/2[521]) is the major component in the makeup of this band.
- ^d Band(d): $K^{\pi}=1^{-}$ octupole-vibrational band, signature=1 branch. See the comment for the signature=0 branch.
- ^e Band(E): First excited $K^{\pi}=0^+$ band. A=11.4 keV, B=+35 eV (from 0^+ , 2^+ , and 4^+ levels).
- ^{*f*} Band(F): S, or 'Super', band, second excited $K^{\pi}=0^+$ band. The energy spacings within this band are somewhat irregular, making the quoting of band parameters for the band problematic. See 2003AdZY for a discussion of the energy spacings within this band.
- ^g Band(G): $K^{\pi}=4^+$ band. Configuration=($\nu 5/2[523] + \nu 3/2[521]$) A=10.96 keV, B=-9.4 eV (from 4⁺, 5⁺, and 6⁺ levels).
- ^h Band(H): $K^{\pi}=4^{-}$ band. Configuration=(ν 5/2[642] + ν 3/2[521]) A=7.30 keV, B=+13.7 eV (from 4⁻, 5⁻, and 6⁻ levels).
- ^{*i*} Band(I): $K^{\pi}=1^+$ band. Configuration=(ν 5/2[523] ν 3/2[521]) from the energies of the 1⁺ through the 4⁺ members of this band, one computes A=5.64 keV, B=+0.633 keV and A₂=-3.39 keV. These parameters seem unreasonable and, also, lead to poor estimates of the energies of the remaining band members. This may suggest that some of the band members are misassigned or that this band is strongly mixed with other bands.
- ^{*j*} Band(J): bandhead of the third excited $K^{\pi}=0^{+}$ band.
- ^k Band(K): Second K^{π}=4⁺ band. Possible Configuration=(π 5/2[413] + π 3/2[411]) A=9.75 keV.
- ^{*l*} Band(L): $K^{\pi}=8^{-}$ bandhead. Possible Configuration=(ν 5/2[642] + ν 11/2[505]).
- ^{*m*} Band(M): proposed (1987Gr37) two-phonon quadrupole (β)-octupole state.
- ^{*n*} Band(N): Possible $K^{\pi}=0^{-}$ (octupole?) band. A=15.4 keV (from 1⁻ and 3⁻ levels). The dominant two-quasiparticle component most likely has configuration=(ν 5/2[642] ν 5/2[523]).
- ^{*o*} Band(O): Fourth excited $K^{\pi}=0^+$ band. A=10.09 keV (from 0^+ and 2^+ levels).

 $\gamma(^{160}\text{Dy})$

For E0 transitions the following quantities (relative to a E2 transition decaying the same level as the E0) are listed in the table (according to 2005Ki02 evaluation): $q_{K}^{2}(E0/E2)=I(ce(K))(E0)/I(ce(K))(E2)$; X(E0/E2)=B(E0)/B(E2).

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\#b}$	α^{a}	$I_{(\gamma+ce)}$	Comments
86.7877	2+	86.7877 [‡] 3	100	0.0	0+	E2		4.63		$\alpha(K)=1.565\ 22;\ \alpha(L)=2.35\ 4;\ \alpha(M)=0.565\ 8$ $\alpha(N)=0.1266\ 18;\ \alpha(O)=0.01511\ 22;\ \alpha(P)=6.50\times10^{-5}\ 9$ B(E2)(W.u.)=195.8\ 25
283.8219	4+	197.0341 [‡] <i>10</i>	100	86.7877	2+	E2		0.248		α (K)=0.1659 24; α (L)=0.0638 9; α (M)=0.01495 21 α (N)=0.00338 5; α (O)=0.000426 6; α (P)=7.89×10 ⁻⁶ 11 B(F2)(W µ)=285 11
581.066	6+	297.24 8	100	283.8219	4+	E2		0.0664		B(E2)(W.u.)=238 +14-12 $\alpha(K)=0.0496$ 7; $\alpha(L)=0.01297$ 19; $\alpha(M)=0.00299$ 5 $\alpha(N)=0.000679$ 10; $\alpha(O)=8.92\times10^{-5}$ 13; $\alpha(P)=2.58\times10^{-6}$ 4 E : from Coul. ex
681.3?	(0+)	594.5 ^e	100	86.7877	2+	[E2]		0.00979		$\alpha(K)=0.00800 \ 12; \ \alpha(L)=0.001395 \ 20; \ \alpha(M)=0.000312 \ 5 \ \alpha(N)=7.15\times10^{-5} \ 10; \ \alpha(O)=1.000\times10^{-5} \ 14; \ \alpha(P)=4.54\times10^{-7} \ 7$
		681.3 ^e		0.0	0+	(E0)			9.0	I _γ : estimate from 2009Ad04 (ε decay). E _γ ,Mult.: K-shell conversion electrons observed by 2009Ad04 (ε decay), with no observed γ ray that could produce the K-shell conversion electrons. I _(γ+ce) : calculated by evaluator based on measured I(ce(K)) and ratio of electronic factors Ω _K (E0)\Ω(E0)=0.875. X(E0/E2) > 0.3 (2009Ad04, ε decay); the E2 transition is 1193.2γ.
703.0?	(0+)	616.2 ^e		86.7877	2+	[E2]		0.00897		α(K)=0.00735 11; α(L)=0.001264 18; α(M)=0.000282 4 $ α(N)=6.47\times10^{-5} 9; α(O)=9.07\times10^{-6} 13; α(P)=4.18\times10^{-7} 6 $ γ transition postulated by 2010BoZZ (ε decay, unobserved member of doublet).
		703.0 ^e		0.0	0^{+}	(E0)				Mult.: from K-shell electron peak corroborated with no intensities at the corresponding $E\gamma$ (2010BoZZ, ε decay).
966.1687	2+	682.31 [‡] 4	1.98 [‡] 3	283.8219	4+	E2		0.00704		B(E2)(W.u.)=0.602 +46-40 α(K)=0.00581 9; α(L)=0.000962 14; α(M)=0.000214 3 α(N)=4.91×10 ⁻⁵ 7; α(O)=6.94×10 ⁻⁶ 10; α(P)=3.32×10 ⁻⁷ 5 δ: 1989Ma39 report δ(M3/E2)=+0.004 17 for this transition. From RUL, one expects δ(M3/E2)<0.001.
		879.378 [‡] 2	100.0 [‡] 2	86.7877	2+	E2+M1	-16.6 [‡] 5	0.00400		B(M1)(W.u.)= $4.80 \times 10^{-5} + 48 - 41$; B(E2)(W.u.)= $8.5.6$ α (K)= $0.00335.5$; α (L)= $0.000513.8$; α (M)= $0.0001132.16$

From ENSDF

						Adopte	d Levels, Gammas (o	continued)	
							γ ⁽¹⁶⁰ Dy) (continued	<u>l)</u>	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	$\delta^{\#b}$	α^{a}	Comments
									$\frac{\alpha(N)=2.61\times10^{-5} \ 4; \ \alpha(O)=3.73\times10^{-6} \ 6; \ \alpha(P)=1.93\times10^{-7}}{3}$
966.1687	2+	966.166 [‡] 2	83.4 [‡] 4	0.0	0+	E2		0.00327	<i>α</i> : from ¹⁰⁰ Ho ε decay, <i>δ</i> =−13 +3−5. B(E2)(W.u.)=4.46 +33−29 <i>α</i> (K)=0.00274 4; <i>α</i> (L)=0.000411 6; <i>α</i> (M)=9.05×10 ⁻⁵ 13 <i>α</i> (N)=2.09×10 ⁻⁵ 3; <i>α</i> (O)=3.00×10 ⁻⁶ 5; <i>α</i> (D)=1.582×10 ⁻⁷ 23
966.83	8+	385.68 10	100	581.066	6+	E2		0.0307	$\begin{array}{l} \alpha(P)=1.585\times10^{-1}25\\ B(E2)(W.u.)=328+28-25\\ \alpha(K)=0.0240 \ 4; \ \alpha(L)=0.00523 \ 8; \ \alpha(M)=0.001190 \ 17\\ \alpha(N)=0.000271 \ 4; \ \alpha(O)=3.66\times10^{-5} \ 6; \ \alpha(P)=1.303\times10^{-6}\\ 19\\ E_{\gamma}: \ from \ Coul. \ ex. \ (1974Sa03). \end{array}$
1049.1018	3+	82.96 5	<0.018	966.1687	2+	M1+E2	0.65 [@]	4.52	Mult.: from $(\alpha, 2n\gamma)$. $\alpha(K)=2.945; \alpha(L)=1.22218; \alpha(M)=0.2864$ $\alpha(N)=0.064610; \alpha(O)=0.0081912; \alpha(P)=0.000172825$ I_{γ} : from $I_{\gamma}(82.9\gamma)/I_{\gamma}(962\gamma)$ in ¹⁶⁰ Ho ε decay, and $I_{\gamma}(962\gamma)$.
		765.28 [‡] 4	21.81 [‡] <i>12</i>	283.8219	4+	E2+M1	-13.8 [‡] 9	0.00544	$\alpha(K)=0.00452\ 7;\ \alpha(L)=0.000720\ 10;\ \alpha(M)=0.0001595\ 23$ $\alpha(N)=3.67\times10^{-5}\ 6;\ \alpha(O)=5.21\times10^{-6}\ 8;\ \alpha(P)=2.60\times10^{-7}$ 4 δ : from ¹⁶⁰ Ho ε decay, δ =-13 +4-10.
		962.311 [‡] 3	100.0 [‡] 9	86.7877	2+	E2+M1	-13.8 [‡] 3	0.00331	$\alpha(K)=0.00278 \ 4; \ \alpha(L)=0.000416 \ 6; \ \alpha(M)=9.17\times10^{-5} \ 13$ $\alpha(N)=2.11\times10^{-5} \ 3; \ \alpha(O)=3.04\times10^{-6} \ 5;$ $\alpha(P)=1.603\times10^{-7} \ 23$ δ : from ¹⁶⁰ Ho ε decay, δ =-12.8 +23-36.
1155.841	4+	106.86 ^{&} 2	0.028 14	1049.1018	3+	(M1)		1.98	$\alpha(K)=1.667\ 24;\ \alpha(L)=0.245\ 4;\ \alpha(M)=0.0538\ 8$ $\alpha(N)=0.01245\ 18;\ \alpha(Q)=0.00182\ 3;\ \alpha(P)=0.0001039\ 15$
		189.66 <i>3</i>	0.54 7	966.1687	2+	E2		0.282	$\alpha(K) = 0.01245 \ 10, \ \alpha(C) = 0.00102 \ 5, \ \alpha(I) = 0.0001055 \ 15$ $\alpha(K) = 0.186 \ 3; \ \alpha(L) = 0.0745 \ 11; \ \alpha(M) = 0.01751 \ 25$ $\alpha(N) = 0.00395 \ 6; \ \alpha(O) = 0.000497 \ 7; \ \alpha(P) = 8.75 \times 10^{-6} \ 13$
		574.73 ^d 5	1.1 ^d 3	581.066	6+	E2		0.01064	$\alpha(K) = 0.00867 \ 13; \ \alpha(L) = 0.001534 \ 22; \ \alpha(M) = 0.000343 \ 5 \\ \alpha(N) = 7.87 \times 10^{-5} \ 11; \ \alpha(O) = 1.098 \times 10^{-5} \ 16; \\ \alpha(P) = 4.91 \times 10^{-7} \ 7$
		872.02 2	100 3	283.8219	4+	E2+M1	+5.0 [@] +20-11	0.00419 10	α(K)=0.00351 9; α(L)=0.000536 11; α(M)=0.0001181 25 α(N)=2.72×10-5 6; α(O)=3.90×10-6 9; α(P)=2.03×10-7 6 δ: from 1989Ma39, 160Tb β- decay, δ=-0.95 +8-11. These authors state that this value may be wrong, since the transition is very weak and is probably affected by the near-lying strong 879 γ.

Т

						Adopted I	evels, Gamma	s (continued)		
						<u> </u>	(¹⁶⁰ Dy) (contin	ued)		
E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ ^{#b}	α^{a}	$I_{(\gamma+ce)}$	Comments
1155.841	4+	1069.04 ^{<i>d</i>} 3	45.6 ^d 11	86.7877	2+	E2		0.00265		α(K)=0.00223 4; α(L)=0.000328 5; α(M)=7.20×10-5 10 α(N)=1.659×10-5 24; α(O)=2.39×10-6 4; α(P)=1.290×10-7 18 Mult.,δ: see comment on δ for this transition in the 160Ho ε Decay (25.6 m+5.02 h) data set.
1264.7472	2-	215.6452 [‡] 11	15.38 [‡] 6	1049.1018	3+	E1		0.0399		α(K)=0.0337 5; α(L)=0.00486 7; α(M)=0.001063 15 α(N)=0.000243 4; α(O)=3.44×10-5 5; α(P)=1.721×10-6 24 Mult.,δ: see comment on δ for this transition in the 160Tb β- decay data set.
		298.5783 [‡] <i>17</i>	100.0 [‡] 7	966.1687	2+	El		0.01740		α(K)=0.01475 21; α(L)=0.00208 3; α(M)=0.000455 7 α(N)=0.0001044 15; α(O)=1.489×10-5 21; α(P)=7.77×10-7 11 δ: 1989Ma39 report δ(M2/E1)=+0.0188 24 for this transition. This leads to B(M2)(W.u.)≥6.6, which exceeds RUL of 1. From 160Ho ε decay, 1998Kr21 report δ(M2/E1)=-0.04 +30-24.
		1177.954 [‡] <i>3</i>	56.9 [‡] 2	86.7877	2+	E1+M2	-0.0207 23	9.44×10 ⁻⁴		$\alpha(K)=0.000795 \ 12; \ \alpha(L)=0.0001048 \ 15; \alpha(M)=2.27\times10^{-5} \ 4 \alpha(N)=5.24\times10^{-6} \ 8; \ \alpha(O)=7.67\times10^{-7} \ 11; \alpha(P)=4.45\times10^{-8} \ 7; \ \alpha(IPE)=1.557\times10^{-5} \ 22$
1279.942	0+	1193.17 3	100 4	86.7877	2+	(E2)		0.00213		$\alpha(K) = 0.00180 \ 3; \ \alpha(L) = 0.000258 \ 4; \alpha(M) = 5.66 \times 10^{-5} \ 8 \alpha(N) = 1.305 \times 10^{-5} \ 19; \ \alpha(O) = 1.89 \times 10^{-6} \ 3; 0.000258 \ 4 = 0.000258 $
		1280.0 <i>3</i>		0.0	0+	E0			0.44 8	$\alpha(P)=1.038 \times 10^{-7}$ 15; $\alpha(IPF)=4.64 \times 10^{-6}$ 7 X(E0/E2): 0.27 10 (2005Ki02 evaluation), 0.3 (2009Ad04, ε decay); q ² _K (E0/E2): 2.2 8 (2005Ki02 evaluation), 2.1 6 (2009Ad04, ε decay); the E2 transition is 1193.2 γ .
1285.604	1-	1198.84 ^{<i>d</i>} 4	80 ^d 3	86.7877	2+	E1		9.20×10 ⁻⁴		$\begin{aligned} &\alpha(\mathbf{K}) = 0.000768 \ 11; \ \alpha(\mathbf{L}) = 0.0001011 \ 15; \\ &\alpha(\mathbf{M}) = 2.19 \times 10^{-5} \ 3 \\ &\alpha(\mathbf{N}) = 5.06 \times 10^{-6} \ 7; \ \alpha(\mathbf{O}) = 7.40 \times 10^{-7} \ 11; \\ &\alpha(\mathbf{P}) = 4.29 \times 10^{-8} \ 6; \ \alpha(\mathbf{IPF}) = 2.31 \times 10^{-5} \ 4 \end{aligned}$
		1285.60 2	100 2	0.0	0+	E1		8.55×10 ⁻⁴		α (K)=0.000678 <i>10</i> ; α (L)=8.91×10 ⁻⁵ <i>13</i> ; α (M)=1.93×10 ⁻⁵ <i>3</i>

Т

	Adopted Levels, Gammas (continued)													
							$\gamma(^{160}\text{Dy})$ (cont	tinued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ ^{#b}	α^{a}	Comments					
1286.713	3-	130.87 2	0.031 9	1155.841	4+	[E1]		0.1502	$\begin{aligned} \alpha(N) &= 4.46 \times 10^{-6} \ 7; \ \alpha(O) &= 6.53 \times 10^{-7} \ 10; \\ \alpha(P) &= 3.80 \times 10^{-8} \ 6; \ \alpha(IPF) &= 6.25 \times 10^{-5} \ 9 \\ B(E1)(W.u.) &= 1.00 \times 10^{-4} \ +49 - 34 \\ \alpha(K) &= 0.1260 \ 18; \ \alpha(L) &= 0.0189 \ 3; \ \alpha(M) &= 0.00414 \ 6 \\ \alpha(N) &= 0.000944 \ 14; \ \alpha(O) &= 0.0001306 \ 19; \\ \alpha(P) &= 6.04 \times 10^{-6} \ 9 \\ I_{\gamma}: \ from \ I_{\gamma}(130\gamma)/I_{\gamma}(1002\gamma) \ in \ \varepsilon \ decay \ and \\ I_{\gamma}(130\gamma). \end{aligned}$					
		237.65 9	0.25 [‡] 9	1049.1018	3+	E1		0.0311	B(E1)(W.u.)= $1.3 \times 10^{-4} + 8-5$ α (K)= $0.0263 4$; α (L)= $0.00376 6$; α (M)= $0.000822 12$ α (N)= $0.000188 3$; α (O)= $2.67 \times 10^{-5} 4$; α (P)= $1.353 \times 10^{-6} 19$					
		320.50 ^d 7	0.31 ^{<i>d</i>} 18	966.1687	2+	(E1)		0.01460	B(E1)(W.u.)= $7 \times 10^{-5} + 5 - 3$ $\alpha(K)=0.01238 \ 18; \ \alpha(L)=0.001743 \ 25; \ \alpha(M)=0.000380 \ 6$ $\alpha(N)=8.73 \times 10^{-5} \ 13; \ \alpha(O)=1.248 \times 10^{-5} \ 18;$ $\alpha(P)=6.56 \times 10^{-7} \ 10$ I _{γ} : from I $\gamma(320\gamma)$ /I $\gamma(1002\gamma)$ in ¹⁶⁰ Ho ε decay and I $\gamma(320\gamma)$					
		1002.90 [‡] 5	43.6 [‡] 3	283.8219	4+	E1+M2	-0.013 [‡] 9	1.24×10 ⁻³	$\alpha(K)=0.001063 \ 16; \ \alpha(L)=0.0001411 \ 21; \alpha(M)=3.06\times10^{-5} \ 5 \alpha(N)=7.06\times10^{-6} \ 11; \ \alpha(O)=1.032\times10^{-6} \ 15; \alpha(P)=5.93\times10^{-8} \ 9 B(E1)(W,u,)=0.00031 \ +12-7; \ B(M2)(W,u,)=0.24 \ +52-18 $					
		1199.89 <i>4</i>	100.0 5	86.7877	2+	E1+M2	-0.008 [‡] 3	9.19×10 ⁻⁴	$\alpha(K)=0.000767 \ 11; \ \alpha(L)=0.0001010 \ 15; \alpha(M)=2.19\times10^{-5} \ 3 \alpha(N)=5.05\times10^{-6} \ 7; \ \alpha(O)=7.40\times10^{-7} \ 11; \alpha(P)=4.29\times10^{-8} \ 6; \ \alpha(IPF)=2.35\times10^{-5} \ 4 B(E1)(Wu)=0.00042 + 16 \ 0; \ B(M2)(Wu)=0.00 + 0 \ 5 $					
1288.665	5+	239.57 8	2.38 10	1049.1018	3+	E2		0.1308	$\begin{array}{l} \alpha(\mathrm{K}) = 0.00042 + 10^{-9}, \ \mathrm{B(M2)}(\mathrm{W.d.}) = 0.09 + 9^{-5} \\ \alpha(\mathrm{K}) = 0.0930 \ 13; \ \alpha(\mathrm{L}) = 0.0293 \ 5; \ \alpha(\mathrm{M}) = 0.00680 \ 10 \\ \alpha(\mathrm{N}) = 0.001541 \ 22; \ \alpha(\mathrm{O}) = 0.000198 \ 3; \ \alpha(\mathrm{P}) = 4.63 \times 10^{-6} \\ 7 \end{array}$					
		707.60 2	24.3 5	581.066	6+	E2,M1		0.0094 <i>30</i>	$\alpha(K)=0.0079\ 26;\ \alpha(L)=0.00117\ 30;\ \alpha(M)=0.00026\ 7$ $\alpha(N)=5.9\times10^{-5}\ 15;\ \alpha(O)=8.6\times10^{-6}\ 23;\ \alpha(P)=4.7\times10^{-7}$ 17					
		1004.86 ^d 2	100 ^{<i>d</i>} 3	283.8219	4+	E2+M1	-13 [@] +3-7	0.00303	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00254 \ 4; \ \alpha(\mathrm{L}) = 0.000378 \ 6; \ \alpha(\mathrm{M}) = 8.30 \times 10^{-5} \\ & 12 \\ &\alpha(\mathrm{N}) = 1.91 \times 10^{-5} \ 3; \ \alpha(\mathrm{O}) = 2.76 \times 10^{-6} \ 4; \\ &\alpha(\mathrm{P}) = 1.468 \times 10^{-7} \ 22 \\ &\delta: \ \mathrm{from} \ ^{160}\mathrm{Ho} \ \varepsilon \ \mathrm{decay}, \ 1994\mathrm{SIZZ} \ \mathrm{report} \ \delta = +7.1 \\ &+8 - 10. \end{aligned}$					
1349.758	2^{+}	69.82 5	2.2 11	1279.942	0^{+}	[E2]		10.85	$\alpha(K)=2.31$ 4; $\alpha(L)=6.57$ 10; $\alpha(M)=1.579$ 23					

						Adopted Lev	vels, Gammas (c	continued)	
						$\gamma(^{16}$	⁶⁰ Dy) (continued	<u>l)</u>	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	$\delta^{\#b}$	α^{a}	Comments
	_				<u> </u>				α(N)=0.353 5; α(O)=0.0418 6; α(P)=0.0001044 15 B(E2)(W.u.)=4.2×104 +19-18 BE2W=4.2E+4 +19-18 exceeds recommended upper limit of 1000. Iγ: from Iγ(69.8γ)/Iγ(1066γ) in 160Ho ε decay and Iγ(1066γ).
1349.758	2+	1066.0 1	72 5	283.8219	4+	E2		0.00267	B(E2)(W.u.)=1.64 +21-18 α (K)=0.00225 4; α (L)=0.000330 5; α (M)=7.24×10 ⁻⁵ 11 α (N)=1.669×10 ⁻⁵ 24; α (O)=2.41×10 ⁻⁶ 4; α (P)=1.297×10 ⁻⁷ 19 I_{γ} : from Coul. ex.
		1262.83 ^d 6	100 ^d 7	86.7877	2+	E0+E2+M1	-1.5 +7-20		$\alpha(\exp)=0.017\ 6$ $B(M1)(W.u.)=0.0010\ +10-7;\ B(E2)(W.u.)=0.68\ +22-31$ $\alpha(K)=0.0019\ 3;\ \alpha(L)=0.00027\ 4;\ \alpha(M)=5.9\times10^{-5}\ 9\ \alpha(N)=1.35\times10^{-5}\ 20;\ \alpha(O)=2.0\times10^{-6}\ 3;\ \alpha(P)=1.12\times10^{-7}\ 19;\ \alpha(IPF)=1.41\times10^{-5}\ 7\ \alpha:\ calculated\ by\ evaluator\ in\ \varepsilon\ decay\ dataset.$ $I_{\gamma}:\ from\ Coul.\ ex.$ $\delta:\ from\ Coul.\ ex.\ Listed\ value\ is\ \delta(E2/M1).\ From\ 160Ho\ \varepsilon\ decay,\ 1994SIZZ\ report\ \delta(E2/M1)=-1.0\ +\infty-4.$ $Y(E0/E2)=0.20\ 6\ (2008Va2U\ c\ dacay)$
		1349.76 10	93 6	0.0	0+	E2		1.70×10 ⁻³	B(E2)(W.u.)=0.65 +8-7 α (K)=0.001414 20; α (L)=0.000199 3; α (M)=4.36×10 ⁻⁵ 7 α (N)=1.006×10 ⁻⁵ 14; α (O)=1.463×10 ⁻⁶ 21; α (P)=8.17×10 ⁻⁸ 12; α (IPF)=2.98×10 ⁻⁵ 5 I _y : average of 86 9 (ε decay) and 97 7 (Coul. ex.). B(E2)(W.u.): from measured B(E2)↑.
1358.670	2-	71.96 6	0.24 12	1286.713	3-	(M1)		6.18	$\alpha(K)=5.20 \ 8; \ \alpha(L)=0.770 \ 11; \ \alpha(M)=0.1692 \ 24$ $\alpha(N)=0.0391 \ 6; \ \alpha(O)=0.00572 \ 9; \ \alpha(P)=0.000325 \ 5$ $B(M1)(W.u.)=3.9\times10^{-5} +20-17$ $I_{\gamma}: \text{ from } I_{\gamma}(71\gamma)/I_{\gamma}(93.9\gamma) \text{ in } {}^{160}\text{Ho } \varepsilon \text{ decay and} I_{\gamma}(93.9\gamma).$
		73.00 6	<0.20	1285.604	1-	(E2)		9.08	$\alpha(K)=2.17 \ 3; \ \alpha(L)=5.31 \ 8; \ \alpha(M)=1.277 \ 19 \ \alpha(N)=0.286 \ 5; \ \alpha(O)=0.0339 \ 5; \ \alpha(P)=9.51\times10^{-5} \ 14 \ B(E2)(W.u.)<3.01 \ I_{\gamma}: \text{ from } I_{\gamma}(73\gamma)/I_{\gamma}(93.9\gamma) \text{ in } {}^{160}\text{Ho } \varepsilon \text{ decay and} \ I_{\gamma}(93.9\gamma).$
		93.919 [‡] 6	0.760 [‡] 24	1264.7472	2^{-}	E2		3.43	$\alpha(K)=1.307 \ 19; \ \alpha(L)=1.632 \ 23; \ \alpha(M)=0.391 \ 6$

From ENSDF

Т

						Adopted	Levels, Gamma	s (continued)	
							$\gamma(^{160}\text{Dy})$ (contin	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f} .	\mathbf{J}_{f}^{π}	Mult. [†]	δ ^{#b}	α^{a}	Comments
									α (N)=0.0877 <i>13</i> ; α (O)=0.01051 <i>15</i> ; α (P)=5.40×10 ⁻⁵ 8 B(E2)(W.u.)=3.10 <i>19</i>
1358.670	2-	309.561 [‡] <i>15</i>	11.59 [‡] 5	1049.1018	3+	E1+M2	-0.013 [‡] 7	0.01598 25	B(E1)(W.u.)= 2.44×10^{-7} 13; B(M2)(W.u.)= 0.0020 + $28-14$ α (K)= 0.01354 21; α (L)= 0.00191 3; α (M)= 0.000418 7
			÷				±		α (N)=9.58×10 ⁻⁵ 16; α (O)=1.369×10 ⁻⁵ 22; α (P)=7.17×10 ⁻⁷ 12
		392.514‡ 26	17.95 [‡] 12	966.1687 2	2+	E1+M2	+0.018 [‡] 6	0.00902 14	B(E1)(W.u.)=1.85×10 ⁻⁷ <i>10</i> ; B(M2)(W.u.)=0.0018 +14-10 α (K)=0.00766 <i>12</i> ; α (L)=0.001067 <i>17</i> ; α (M)=0.000233 <i>4</i> α (N)=5.35×10 ⁻⁵ <i>9</i> ; α (O)=7.69×10 ⁻⁶ <i>12</i> ; α (P)=4 13×10 ⁻⁷ 7
		1074.85 4	0.006 2	283.8219	4+	M2		0.01097	B(M2)(W.u.)=1.19×10 ⁻⁵ 39 α (K)=0.00923 13; α (L)=0.001363 19; α (M)=0.000300 5 α (N)=6.95×10 ⁻⁵ 10; α (O)=1.019×10 ⁻⁵ 15; α (P)=5.86×10 ⁻⁷ 9
		1271.873 [‡] 5	100.0 [‡] 3	86.7877 2	2+	E1+M2	+0.0166 [‡] 25	8.65×10 ⁻⁴	$\alpha(K)=0.000693 \ 10; \ \alpha(L)=9.11\times10^{-5} \ 13; \alpha(M)=1.97\times10^{-5} \ 3 \alpha(N)=4.56\times10^{-6} \ 7; \ \alpha(O)=6.67\times10^{-7} \ 10; \alpha(P)=3.88\times10^{-8} \ 6; \ \alpha(IPF)=5.58\times10^{-5} \ 8 B(E1)(W.u.)=3.04\times10^{-8} \ 16; B(M2)(W.u.)=2.4\times10^{-5} + 8 \ 7 \ 7 \ 10^{-5} + 10^{-5} \ 10^{$
1386.458	4-	99.8 <i>3</i>	7.7 6	1286.713	3-	(E2)		2.73 5	$\alpha(K)=1.128 \ l8; \ \alpha(L)=1.234 \ 25; \ \alpha(M)=0.295 \ 6$ $\alpha(N)=0.0663 \ l3; \ \alpha(O)=0.00796 \ l6;$
		121.7 <i>1</i>	0.8 3	1264.7472	2-	(E2)		1.322	$\alpha(\mathbf{K}) = 4.07 \times 10^{-8} \text{ s}$ $\alpha(\mathbf{K}) = 0.670 \ 10; \ \alpha(\mathbf{L}) = 0.502 \ 8; \ \alpha(\mathbf{M}) = 0.1197 \ 18$ $\alpha(\mathbf{N}) = 0.0269 \ 4; \ \alpha(\mathbf{O}) = 0.00327 \ 5; \ \alpha(\mathbf{P}) = 2.85 \times 10^{-5}$
		230.628 [‡] <i>13</i>	15.1 22	1155.841	4+	(E1)		0.0335	$\alpha(K)=0.0284 \ 4; \ \alpha(L)=0.00407 \ 6; \ \alpha(M)=0.000890$ I3 $\alpha(N)=0.000204 \ 3; \ \alpha(O)=2.88\times10^{-5} \ 4;$
		337.36 2	58 <i>3</i>	1049.1018	3+	E1+M2	+0.028 [‡] 13	0.0131 4	$\alpha(P)=1.457\times10^{-6} 2I$ $\alpha(K)=0.0111 3; \ \alpha(L)=0.00157 5; \ \alpha(M)=0.000343$ II $\alpha(N)=7.87\times10^{-5} 24; \ \alpha(O)=1.13\times10^{-5} 4;$
		1102.60 4	100 4	283.8219	4+	E1+M2	+0.0049 [‡] 12	1.04×10^{-3}	$\alpha(P)=5.96\times10^{-7}$ 19 $\alpha(K)=0.000892$ 13; $\alpha(L)=0.0001179$ 17;

	Adopted Levels, Gammas (continued)													
							$\gamma(^{160}\text{Dy})$ (cont	tinued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\#b}$	α^{a}	Comments					
1206 450		1200 2 2 3	0.04 [†] .0	06 2022					$\begin{array}{l} \alpha(\mathrm{M}) = 2.56 \times 10^{-5} \ 4 \\ \alpha(\mathrm{N}) = 5.90 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 8.63 \times 10^{-7} \ 12; \\ \alpha(\mathrm{P}) = 4.99 \times 10^{-8} \ 7; \ \alpha(\mathrm{IPF}) = 1.86 \times 10^{-6} \ 3 \end{array}$					
1386.458 1398.964	4 3 ⁻	243.15 <i>10</i>	0.94# 9 0.31 <i>3</i>	86.7877 1155.841	2+ 4+	E1		0.0293	α (K)=0.0248 4; α (L)=0.00354 5; α (M)=0.000774 11 α (N)=0.0001773 25; α (O)=2.51×10 ⁻⁵ 4; α (P)=1.279×10 ⁻⁶ 18					
		349.86 <i>3</i>	0.50 3	1049.1018	3+	[E1]		0.01179	$\alpha(K) = 0.01000 \ 14; \ \alpha(L) = 0.001402 \ 20; \ \alpha(M) = 0.000306$ 5 $\alpha(K) = 7.02 \times 10^{-5} \ 10; \ \alpha(O) = 1.006 \times 10^{-5} \ 14;$ $\alpha(P) = 5.34 \times 10^{-7} \ 8$					
		432.80 4	0.8 [‡] 3	966.1687	2^{+}									
		1115.16 <i>3</i>	57 1	283.8219	4+	E1(+M2)	+0.001 3	1.02×10^{-3}	$\alpha(K)=0.000874 \ 13; \ \alpha(L)=0.0001154 \ 17; \ \alpha(M)=2.50\times10^{-5} \ 4$					
									α (N)=5.78×10 ⁻⁶ 8; α (O)=8.45×10 ⁻⁷ 12; α (P)=4.89×10 ⁻⁸ 7; α (IPF)=2.87×10 ⁻⁶ 4 δ : from Coul. ex.					
		1312.16 2	100 2	86.7877	2+	E1+M2	-0.015 3	8.42×10 ⁻⁴	$\alpha(\mathbf{K})=0.000656 \ 10; \ \alpha(\mathbf{L})=8.61\times10^{-5} \ 12; \\ \alpha(\mathbf{M})=1.87\times10^{-5} \ 3 \\ \alpha(\mathbf{N})=4.31\times10^{-6} \ 6; \ \alpha(\mathbf{O})=6.31\times10^{-7} \ 9; \\ \alpha(\mathbf{N})=4.31\times10^{-6} \ 9; \ \alpha(\mathbf{O})=6.31\times10^{-7} \ 9; \\ \alpha(\mathbf{N})=4.31\times10^{-6} \ 9; \ \alpha(\mathbf{O})=6.31\times10^{-7} \ 9; \\ \alpha(\mathbf{N})=4.31\times10^{-6} \ 9; \ \alpha(\mathbf{O})=6.31\times10^{-7} \ 9; \ \alpha(\mathbf$					
									$\alpha(P)=3.67\times10^{-6} 6; \alpha(IPF)=7.63\times10^{-5} 11$					
1408 47	5-	827 4 3	27.2	581.066	6+				δ : from Coul. ex. From ¹⁰⁰ Ho ε decay, δ =+0.07 5.					
1100.17	5	1124.68 ^{<i>d</i>} 4	100 ^d 19	283.8219	4 ⁺	E1		1.01×10^{-3}	$\alpha(K)=0.000861 \ 12; \ \alpha(L)=0.0001136 \ 16; \ \alpha(M)=2.46\times10^{-5} \ 4 \ \alpha(N)=5.69\times10^{-6} \ 8; \ \alpha(\Omega)=8.32\times10^{-7} \ 12;$					
									$\alpha(P)=4.81\times10^{-8}$ 7: $\alpha(IPF)=3.91\times10^{-6}$ 6					
1427.89	10+	461.88 <i>13</i>	100	966.83	8+	E2		0.0187	B(E2)(W.u.)=329 15 α (K)=0.01492 21; α (L)=0.00293 5; α (M)=0.000661 10					
									α (N)=0.0001512 22; α (O)=2.07×10 ⁻⁵ 3; α (P)=8.28×10 ⁻⁷ 12 E _Y : from Coul. ex.					
1438.554	6+	282.84 9	7.3 7	1155.841	4+	E2		0.0773	Mult.: from $(\alpha, 2n\gamma)$. $\alpha(K)=0.0573 \ 8; \ \alpha(L)=0.01557 \ 22; \ \alpha(M)=0.00360 \ 5$ $\alpha(N)=0.000816 \ 12; \ \alpha(O)=0.0001067 \ 15;$ $\alpha(P)=2.05\times10^{-6} \ 5$					
		857.6 2	100 26	581.066	6+	E2+M1	+5 [@] +6-2	0.00435 23	$\alpha(K) = 0.00364 \ 20; \ \alpha(L) = 0.000557 \ 24; \ \alpha(M) = 0.000123 6 \alpha(N) = 2.83 \times 10^{-5} \ 12; \ \alpha(O) = 4.06 \times 10^{-6} \ 19; \alpha(P) = 2.10 \times 10^{-7} \ 13$					

$\gamma(^{160}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	δ ^{#b}	α^{a}	$\mathbf{I}_{(\gamma+ce)}$	Comments
1438.554	6+	1154.68 9	34 4	283.8219	4+	E2	_	0.00227		$\alpha(K)=0.00192 \ 3; \ \alpha(L)=0.000277 \ 4; \\ \alpha(M)=6.08\times10^{-5} \ 9 \\ \alpha(N)=1.401\times10^{-5} \ 20; \ \alpha(O)=2.03\times10^{-6} \ 3; \\ \alpha(P)=1.107\times10^{-7} \ 16; \ \alpha(IPF)=1.80\times10^{-6} \ 3$
1456.752	0+	490.62 ^{<i>d</i>} 4	4 ^{<i>d</i>} 1	966.1687	2+	[E2]		0.01592		$\alpha(K)=0.01279 \ 18; \ \alpha(L)=0.00243 \ 4; \ \alpha(M)=0.000548 \\ 8 \\ \alpha(N)=0.0001255 \ 18; \ \alpha(O)=1.728\times10^{-5} \ 25; \\ \alpha(P)=7.15\times10^{-7} \ 10$
		1369.90 ^d 4	100 ^d 8	86.7877	2+	E2		1.66×10 ⁻³		$\alpha(K)=0.001374\ 20;\ \alpha(L)=0.000193\ 3;\alpha(M)=4.23\times10^{-5}\ 6\alpha(N)=9.76\times10^{-6}\ 14;\ \alpha(O)=1.420\times10^{-6}\ 20;\alpha(P)=7\ 94\times10^{-8}\ 12;\ \alpha(IPF)=3\ 46\times10^{-5}\ 5$
		1456.7 ^e		0.0	0+	[E0]				presumably conversion electrons from this transition were observed by 2008VaZU (ε decay) who also reports X(E0/E2) < 0.0022.
1489.500	1-	224.4 ^d 3	0.08 ^{<i>d</i>} 4	1264.7472	2-	E2,M1		0.20 5		$\alpha(K)=0.161\ 48;\ \alpha(L)=0.034\ 4;\ \alpha(M)=0.0077\ 11$ $\alpha(N)=0.00177\ 23;\ \alpha(O)=0.000240\ 16;$ $\alpha(P)=9.2\times10^{-6}\ 37$
		1402.7 2	100 10	86.7877	2+	E1		8.14×10 ⁻⁴		B(E1)(W.u.)=0.0078 +11-9 α (K)=0.000583 9; α (L)=7.64×10 ⁻⁵ 11; α (M)=1.655×10 ⁻⁵ 24 α (N)=3.82×10 ⁻⁶ 6; α (O)=5.60×10 ⁻⁷ 8; α (P)=3.27×10 ⁻⁸ 5; α (IPF)=0.0001329 19
		1489.51 <i>3</i>	56 2	0.0	0+	E1		8.07×10 ⁻⁴		B(E1)(W.u.)=0.0037 +6-4 $\alpha(K)$ =0.000527 8; $\alpha(L)$ =6.88×10 ⁻⁵ 10; $\alpha(M)$ =1.490×10 ⁻⁵ 21 $\alpha(N)$ =3.44×10 ⁻⁶ 5; $\alpha(O)$ =5.05×10 ⁻⁷ 7; $\alpha(P)$ =2.95×10 ⁻⁸ 5; $\alpha(IPF)$ =0.000193 3 Additional information 1
1518.419	2+	119.43 7	0.8 3	1398.964	3-	(E1)		0.192		$\alpha(\mathbf{K})=0.1608\ 23;\ \alpha(\mathbf{L})=0.0244\ 4;\ \alpha(\mathbf{M})=0.00534\ 8$ $\alpha(\mathbf{N})=0.001216\ 18;\ \alpha(\mathbf{O})=0.0001673\ 24;$ $\alpha(\mathbf{P})=7\ 61\times10^{-6}\ 11$
		231.7 1	3.1 6	1286.713	3-	E1		0.0332		$\alpha(K) = 0.01 \times 10^{-11}$ $\alpha(K) = 0.0280 \ 4; \ \alpha(L) = 0.00402 \ 6; \ \alpha(M) = 0.000879 \ 13$ $\alpha(N) = 0.000201 \ 3; \ \alpha(O) = 2.85 \times 10^{-5} \ 4;$ $\alpha(D) = 1.441 \times 10^{-6} \ 21$
		232.84 13	2.8 5	1285.604	1-	E1		0.0327		$\alpha(\mathbf{r}) = 1.441 \times 10^{-6} 21$ $\alpha(\mathbf{K}) = 0.0277 \ 4; \ \alpha(\mathbf{L}) = 0.00397 \ 6; \ \alpha(\mathbf{M}) = 0.000867 \ 13$ $\alpha(\mathbf{N}) = 0.000199 \ 3; \ \alpha(\mathbf{O}) = 2.81 \times 10^{-5} \ 4;$ $\alpha(\mathbf{P}) = 1.423 \times 10^{-6} \ 20$
		552.36 8	3.2 5	966.1687	2+	[M1,E2]		0.0174 57		$\alpha(K) = 0.0145 \ 50; \ \alpha(L) = 0.0022 \ 6; \ \alpha(M) = 0.00049 \ 11$ $\alpha(N) = 0.00011 \ 3; \ \alpha(O) = 1.64 \times 10^{-5} \ 42;$ $\alpha(P) = 8.6 \times 10^{-7} \ 33$
		1234.60 <i>3</i>	64.2 15	283.8219	4+	E2		0.00200		$\alpha(K) = 0.001680 \ 24; \ \alpha(L) = 0.000240 \ 4; \ \alpha(M) = 5.26 \times 10^{-5} \ 8$

18

From ENSDF

						Adopted	l Levels, Gammas ((continued)	
							$\gamma(^{160}\text{Dy})$ (continue	ed)	
E _i (level)	J_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [†]	δ ^{#b}	α^{a}	Comments
	_		4		_				$\alpha(N)=1.213\times10^{-5} \ 17; \ \alpha(O)=1.760\times10^{-6} \ 25; \\ \alpha(P)=9.71\times10^{-8} \ 14; \ \alpha(IPF)=9.44\times10^{-6} \ 14$
1518.419	2+	1431.66 ^{<i>a</i>} 3	100 ^{<i>a</i>} 12	86.7877	2+	E2+M1	+2.9 ^w +21-10	0.00162 9	$\alpha(K)=0.00133 \ 8; \ \alpha(L)=0.000186 \ 10; \\ \alpha(M)=4.06\times10^{-5} \ 22 \\ \alpha(N)=9.4\times10^{-6} \ 5; \ \alpha(O)=1.37\times10^{-6} \ 8; \\ \alpha(P)=7.8\times10^{-8} \ 5; \ \alpha(IPF)=5.26\times10^{-5} \ 12 $
		1518.41 ^d 3	19 ^d 4	0.0	0+	E2		1.41×10 ⁻³	$\alpha(K)=0.001131 \ 16; \ \alpha(L)=0.0001571 \ 22; \alpha(M)=3.43\times10^{-5} \ 5 \alpha(N)=7.92\times10^{-6} \ 11; \ \alpha(O)=1.155\times10^{-6} \ 17; \alpha(P)=6.53\times10^{-8} \ 10; \ \alpha(IPF)=7.93\times10^{-5} \ 12$
1522.33	4+	556.23 4	15 4	966.1687	2+	[E2]		0.01154	$\alpha(K) = 0.00938 \ 14; \ \alpha(L) = 0.001683 \ 24; \alpha(M) = 0.000377 \ 6 \alpha(N) = 8.64 \times 10^{-5} \ 13; \ \alpha(O) = 1.203 \times 10^{-5} \ 17; \alpha(P) = 5.30 \times 10^{-7} \ 8$
		941.3 1	29 12	581.066	6 ⁺	E2		0.00345	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00290 \ 4; \ \alpha(\mathbf{L}) = 0.000437 \ 7; \\ &\alpha(\mathbf{M}) = 9.62 \times 10^{-5} \ 14 \\ &\alpha(\mathbf{N}) = 2.21 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 3.18 \times 10^{-6} \ 5; \\ &\alpha(\mathbf{P}) = 1.669 \times 10^{-7} \ 24 \end{aligned}$
		1238.6 2 1435.6 1	82 12 100 24	283.8219 86.7877	4 · 2+				
1535.150	4-	136.16 4	0.54 25	1398.964	3-	[M1,E2]		0.94 6	α (K)=0.66 18; α (L)=0.214 92; α (M)=0.050 23 α (N)=0.0113 51; α (O)=0.00146 55; α (P)=3.7×10 ⁻⁵ 16 L: from ¹⁶⁰ Ho ε decay.
		148.71 4	13 <i>3</i>	1386.458	4-	E2		0.650	α (K)=0.380 6; α (L)=0.208 3; α (M)=0.0493 7 α (N)=0.01110 16; α (O)=0.001369 20; α (P)=1.688×10 ⁻⁵ 24 L: from ¹⁶⁰ Ho ε decay
		176.49 <i>3</i>	8.2 25	1358.670	2-	E2		0.360	$\begin{aligned} &\alpha(\mathbf{K}) = 0.230 \ 4; \ \alpha(\mathbf{L}) = 0.1005 \ 14; \ \alpha(\mathbf{M}) = 0.0237 \ 4 \\ &\alpha(\mathbf{N}) = 0.00534 \ 8; \ \alpha(\mathbf{O}) = 0.000667 \ 10; \\ &\alpha(\mathbf{P}) = 1.065 \times 10^{-5} \ 15 \\ &\mathbf{I}_{\gamma}: \ \text{from} \ ^{160}\text{Ho} \ \varepsilon \ \text{decay.} \\ &\text{Mult.: \ from} \ (\alpha, 2n\gamma). \end{aligned}$
		246.489 [‡] 16	19.6 [‡] 9	1288.665	5+	E1		0.0283	$\alpha(K)=0.0239 \ 4; \ \alpha(L)=0.00342 \ 5; \ \alpha(M)=0.000747 \ II \ \alpha(N)=0.0001711 \ 24; \ \alpha(O)=2.43\times10^{-5} \ 4; \ \alpha(P)=1 \ 237\times10^{-6} \ I8$
		248.41 3	32	1286.713	3-	E2		0.1164	$\alpha(K) = 0.0836 \ l2; \ \alpha(L) = 0.0254 \ 4; \ \alpha(M) = 0.00591 \ 9$ $\alpha(N) = 0.001338 \ l9; \ \alpha(O) = 0.0001727 \ 25;$ $\alpha(P) = 4.19 \times 10^{-6} \ 6$ I _{\gamma} : from ¹⁶⁰ Ho \varepsilon decay.

From ENSDF

¹⁶⁰₆₆Dy₉₄-19

¹⁶⁰₆₆Dy₉₄-19

						Adopted Lo	evels, Gamm	as (continued)	
						$\gamma^{(1)}$	¹⁶⁰ Dy) (conti	nued)	
E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ ^{#b}	α^{a}	Comments
1535.150	4-	379.41 [‡] 8 486.06 [‡] 5	13.4 [‡] 6 79.8 [‡] 14	1155.841 1049.1018	4+ 3+	E1+M2	+0.04 [‡] 3	0.0056 4	α (K)=0.0048 3; α (L)=0.00066 5; α (M)=0.000144 10 α (N)=3.32×10 ⁻⁵ 24; α (O)=4.8×10 ⁻⁶ 4; α (P)=2.63×10 ⁻⁷ 19
		1251.28 4	100 7	283.8219	4+	E1(+M2)	-0.01 [‡] 3	8.78×10 ⁻⁴ 16	$\alpha(K) = 0.000712 \ 13; \ \alpha(L) = 9.36 \times 10^{-5} \ 18; \alpha(M) = 2.03 \times 10^{-5} \ 4 \alpha(N) = 4.68 \times 10^{-6} \ 9; \ \alpha(O) = 6.86 \times 10^{-7} \ 14;$
1556.59	1+,2+	1468.6 8	88 25	86.7877	2+	(E2)		1.48×10 ⁻³	$\alpha(P)=3.99\times10^{-8} \ 8; \ \alpha(IPF)=4.61\times10^{-5} \ 7$ $\alpha(K)=0.001204 \ 17; \ \alpha(L)=0.0001680 \ 24; \alpha(M)=3.67\times10^{-5} \ 6$ $\alpha(N)=8.47\times10^{-6} \ 12; \ \alpha(O)=1.234\times10^{-6} \ 18; \alpha(P)=6.96\times10^{-8} \ 10; \ \alpha(IPF)=6.29\times10^{-5} \ 10$
1586.744	5-	1556.6 <i>1</i> 298.15 ^d 7	100 <i>13</i> 100 ^d 20	0.0 1288.665	0+ 5+	(E1)		0.01747	$\alpha(K)=0.01480\ 21;\ \alpha(L)=0.00209\ 3;\ \alpha(M)=0.000457$
		431.15 ^d 25	6 ^{<i>d</i>} 2	1155.841	4+	[E1]		0.00719	$\alpha(N)=0.0001048 \ 15; \ \alpha(O)=1.495\times10^{-5} \ 21; \\ \alpha(P)=7.80\times10^{-7} \ 11 \\ \alpha(K)=0.00611 \ 9; \ \alpha(L)=0.000846 \ 12; \\ \alpha(M)=0.000184 \ 3 \\ \alpha(N)=4.24\times10^{-5} \ 6; \ \alpha(O)=6.11\times10^{-6} \ 9; \\ \alpha(P)=3.31\times10^{-7} \ 5 $
		1302.84 ^{<i>d</i>} 3	40 ^{<i>d</i>} 10	283.8219	4+	E1		8.45×10 ⁻⁴	$\alpha(K) = 0.000663 \ 10; \ \alpha(L) = 8.70 \times 10^{-5} \ 13; \alpha(M) = 1.89 \times 10^{-5} \ 3 \alpha(N) = 4.35 \times 10^{-6} \ 6; \ \alpha(O) = 6.38 \times 10^{-7} \ 9;$
1594.42	6-	207.9 2	8.0 12	1386.458	4-	E2		0.208	$\begin{aligned} &\alpha(P)=3.71\times10^{-8} \ 6; \ \alpha(IPF)=7.13\times10^{-5} \ 10 \\ &\alpha(K)=0.1414 \ 21; \ \alpha(L)=0.0513 \ 8; \ \alpha(M)=0.01200 \ 18 \\ &\alpha(N)=0.00271 \ 4; \ \alpha(O)=0.000344 \ 5; \ \alpha(P)=6.81\times10^{-6} \\ & 10 \\ &I_{\gamma}: \ from \ I_{\gamma}(207.9\gamma)/I_{\gamma}(1013\gamma) \ in \ (\alpha,2n\gamma) \ and \\ &I_{\gamma}(1013\gamma). \ \gamma \ not \ reported \ in \ ^{160}Ho \ \varepsilon \ decay. \end{aligned}$
		306.2 4	77 34	1288.665	5+	E1+M2	-0.20 10	0.033 19	Mult.: from $(\alpha, 2n\gamma)$. $\alpha(K)=0.027 \ 16; \ \alpha(L)=0.0044 \ 28; \ \alpha(M)=9.8\times10^{-4} \ 64$ $\alpha(N)=2.3\times10^{-4} \ 15; \ \alpha(O)=3.2\times10^{-5} \ 22;$ $\alpha(P)=1.7\times10^{-6} \ 12$ Mult., δ : from $(\alpha, 2n\gamma)$. Mult=E1 is reported in ¹⁶⁰ He a dayay
		1013.22 15	100 <i>30</i>	581.066	6+	E1(+M2)	-0.2 7	0.0017 48	

From ENSDF

 $^{160}_{66}\mathrm{Dy}_{94}$ -20

Adopted Levels, Gammas (continued) $\underline{\gamma(^{160}Dy) \text{ (continued)}}$ $\underline{E_f}$ $\underline{J_f}$ Mult.[†] $\delta^{\#b}$ α^a Comments288.665 5^+ [M1,E2] $0.077\ 22$ $\alpha(K)=0.063\ 21;\ \alpha(L)=0.0112\ 8;\ \alpha(M)=\alpha(N)=0\ 00058\ 4;\ \alpha(Q)=8\ 1\times10^{-5}\ 9;\ \alpha(Q)=8\ 1\times10^{-5}\ 1\times1$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ ^{#b}	α^{a}	Comments
1603.78	4+	315.33 ^d 21	11 ^{<i>d</i>} 7	1288.665	5+	[M1,E2]		0.077 22	α (K)=0.063 21; α (L)=0.0112 8; α (M)=0.00252 12 α (N)=0.00058 4; α (O)=8.1×10 ⁻⁵ 9; α (P)=3.7×10 ⁻⁶ 15
		448.05 ^d 9	67 ^d 33	1155.841	4+	E2		0.0203	$\alpha(K)=0.01614\ 23;\ \alpha(L)=0.00322\ 5;\ \alpha(M)=0.000728\ 11$ $\alpha(N)=0\ 0001664\ 24;\ \alpha(Q)=2\ 27\times10^{-5}\ 4;\ \alpha(P)=8\ 93\times10^{-7}\ 13$
		554.59 7	78 9	1049.1018	3+	E2,M1		0.0172 56	$\alpha(N)=0.0001004\ 24,\ \alpha(O)=2.27\times10^{-4},\ \alpha(T)=0.95\times10^{-1}\ 15$ $\alpha(K)=0.0144\ 50;\ \alpha(L)=0.0022\ 6;\ \alpha(M)=0.00049\ 11$ $\alpha(N)=0.00011\ 3;\ \alpha(O)=1\ 62\times10^{-5}\ 41;\ \alpha(P)=8\ 6\times10^{-7}\ 33$
		637.8 4	100 33	966.1687	2^{+}				
		1319.95 ^d 25	67 ^d 33	283.8219	4+	E2		1.77×10^{-3}	$\alpha(K)=0.001476\ 21;\ \alpha(L)=0.000209\ 3;\ \alpha(M)=4.57\times10^{-5}\ 7$ $\alpha(N)=1.054\times10^{-5}\ 15;\ \alpha(O)=1.532\times10^{-6}\ 22;$ $\alpha(D)=8\ 52\times10^{-8}\ 12;\ \alpha(D)=1.532\times10^{-5}\ 4$
1606.84	6+	640.1 <i>1</i>	63	966.83	8+	(E2)		0.00819	$\alpha(\mathbf{F}) = 8.33 \times 10^{-5} \ 12; \ \alpha(\mathbf{FF}) = 2.33 \times 10^{-5} \ 4$ $\alpha(\mathbf{K}) = 0.00673 \ 10; \ \alpha(\mathbf{L}) = 0.001140 \ 16; \ \alpha(\mathbf{M}) = 0.000254 \ 4$ $\alpha(\mathbf{N}) = 5.83 \times 10^{-5} \ 9; \ \alpha(\mathbf{O}) = 8.20 \times 10^{-6} \ 12; \ \alpha(\mathbf{P}) = 3.83 \times 10^{-7} \ 6$
		1025.76 7	44 4	581.066	6+			2	5
		1322.86 23	100 12	283.8219	4+	E2		1.76×10 ⁻³	$\alpha(K)=0.001469\ 21;\ \alpha(L)=0.000208\ 3;\ \alpha(M)=4.55\times10^{-5}\ 7$ $\alpha(N)=1.049\times10^{-5}\ 15;\ \alpha(O)=1.525\times10^{-6}\ 22;$ $\alpha(P)=8\ 49\times10^{-8}\ 12;\ \alpha(IPF)=2.39\times10^{-5}\ 4$
1607.86	4+	85.5 1	<20	1522.33	4+	(E2)		4.90	$\alpha(K) = 1.616\ 23;\ \alpha(L) = 2.53\ 4;\ \alpha(M) = 0.606\ 10$ $\alpha(N) = 0.1358\ 21;\ \alpha(O) = 0.01620\ 25;\ \alpha(P) = 6\ 72\times10^{-5}\ 10$
		319.19 9	31 15	1288.665	5+	(E2)		0.0535	$a(K)=0.0405\ 6;\ a(L)=0.01004\ 14;\ a(M)=0.00230\ 4$ $a(K)=0.000524\ 8;\ a(C)=6.031045\ 10^{-5}\ 10^{-5}\ 2$
		452.0 <i>3</i>	33 12	1155.841	4+	E2		0.0198	$\alpha(N)=0.00524$ 8, $\alpha(O)=0.95\times10^{-10}$, $\alpha(P)=2.15\times10^{-5}$ $\alpha(K)=0.01577$ 23; $\alpha(L)=0.00313$ 5; $\alpha(M)=0.000708$ 10
		558.8 2	65 9	1049.1018	3+	[M1,E2]		0.0169 55	$\alpha(N)=0.0001618\ 23;\ \alpha(O)=2.21\times10^{-2}\ 4;\ \alpha(P)=8.74\times10^{-7}\ 13$ $\alpha(K)=0.0141\ 49;\ \alpha(L)=0.0022\ 5;\ \alpha(M)=0.00048\ 11$
		641.7 <i>1</i>	100 5	966.1687	2^{+}	(E2)		0.00814	$\alpha(N)=0.00011 \ 3; \ \alpha(O)=1.59\times10^{-5} \ 41; \ \alpha(P)=8.4\times10^{-7} \ 32$ $\alpha(K)=0.00669 \ 10; \ \alpha(L)=0.001132 \ 16; \ \alpha(M)=0.000252 \ 4$ $\alpha(N)=5.70\times10^{-5} \ 0; \ \alpha(Q)=8.14\times10^{-6} \ 12; \ \alpha(D)=2.81\times10^{-7} \ 6$
1613.08	7-	61732	0.5	066.83	Q+				$\alpha(N)=5.79\times10^{\circ}$ 9; $\alpha(O)=8.14\times10^{\circ}$ 12; $\alpha(P)=5.81\times10^{\circ}$ 0 From ¹⁶⁰ Ho c decay
1015.96	/	1022.84d 7	$\frac{9}{100}\frac{d}{27}$	591.066	6 6+	E1 + M2	>0.0	0.0067.55	$\alpha(K) = 0.0056 47; \alpha(L) = 8.2 \times 10^{-4} 70; \alpha(M) = 1.8 \times 10^{-4} 16$
		1032.84	100* 27	381.000	0	E1+W12	>0.0	0.0007 55	$\alpha(\text{N})=0.0050 47, \alpha(\text{L})=0.5\times10^{-7} 70, \alpha(\text{M})=1.8\times10^{-1} 70$ $\alpha(\text{N})=4.2\times10^{-5} 36; \alpha(\text{O})=6.2\times10^{-6} 52; \alpha(\text{P})=3.5\times10^{-7} 30$ Mult δ : from (α 2nv)
1617.27	7+	328.6 1	479	1288.665	5+	E2		0.0490	$\alpha(K)=0.0373 \ 6; \ \alpha(L)=0.00905 \ 13; \ \alpha(M)=0.00208 \ 3 \ \alpha(N)=0.000472 \ 7; \ \alpha(O)=6.27\times10^{-5} \ 9; \ \alpha(P)=1.98\times10^{-6} \ 3 \ Mult.; \ from \ (\alpha,xn\gamma).$
		650.5 1	13 2	966.83	8+	E2+M1	58	0.0082 71	$\alpha(K)=0.0067\ 63;\ \alpha(L)=0.00112\ 70;\ \alpha(M)=2.5\times10^{-4}\ 15$ $\alpha(N)=5.7\times10^{-5}\ 35;\ \alpha(O)=8.1\times10^{-6}\ 55;\ \alpha(P)=3.9\times10^{-7}\ 41$ Mult δ : from (α 2nv)
		1036.22 5	100 9	581.066	6+	E2+M1	7.2 10	0.00287 5	$\alpha(K)=0.00241 \ 4; \ \alpha(L)=0.000355 \ 6; \ \alpha(M)=7.81\times10^{-5} \ 12$ $\alpha(N)=1.80\times10^{-5} \ 3; \ \alpha(O)=2.60\times10^{-6} \ 4; \ \alpha(P)=1.394\times10^{-7}$
1643.27	3-	486	100	1155.841	4+				Mult., δ : from $(\alpha, 2n\gamma)$. E _{γ} : from Coul. ex. γ not reported in ¹⁶⁰ Ho ε decay.

						Adopted	Levels,	Gammas (con	ntinued)	
							γ(¹⁶⁰ Dy	y) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ ^{#b}	α ^{<i>a</i>}	$I_{(\gamma+ce)}$	Comments
							_			I _{γ} : value relative to I γ =100 for the 486 γ . This scale is different from that of the two highest-energy γ 's.
1643.27	3-	593	16	1049.1018	3+					 E_γ: from Coul. ex. γ not reported in ¹⁶⁰Ho ε decay. I_γ: value relative to Iγ=100 for the 486 γ. This
		676	48	966 1687	2+					scale is different from that of the two highest-energy γ 's.
		070	-0	200.1007	2					 by: from court exit γ not reported in a from a decay. I_γ: value relative to Iγ=100 for the 486 γ. This scale is different from that of the two
		1359.5 2	96 14	283.8219	4+	E1		8.23×10 ⁻⁴		highest-energy γ' s. $\alpha(K)=0.000616 \ 9; \ \alpha(L)=8.07\times10^{-5} \ 12;$ $\alpha(M)=1.748\times10^{-5} \ 25$
		1556.48 6	100 5	86.7877	2+	E1		8.12×10 ⁻⁴		$\alpha(N)=4.04\times10^{-6} \ 6; \ \alpha(O)=5.92\times10^{-7} \ 9; \\ \alpha(P)=3.45\times10^{-8} \ 5; \ \alpha(IPF)=0.0001044 \ 15 \\ \alpha(K)=0.000489 \ 7; \ \alpha(L)=6.38\times10^{-5} \ 9; \\ \alpha(D=1.282\times10^{-5} \ 20)$
1650.874	4 ⁻ ,5 ⁻	362.20 12	10 <i>1</i>	1288.665	5+	E1		0.01085		$\alpha(M) = 1.382 \times 10^{-20} = 20$ $\alpha(N) = 3.19 \times 10^{-6} 5; \ \alpha(O) = 4.68 \times 10^{-7} 7;$ $\alpha(P) = 2.74 \times 10^{-8} 4; \ \alpha(IPF) = 0.000242 4$ $\alpha(K) = 0.00920 \ 13; \ \alpha(L) = 0.001287 \ 18;$
										α (M)=0.000281 4 α (N)=6.45×10 ⁻⁵ 9; α (O)=9.25×10 ⁻⁶ 13; α (P)=4.92×10 ⁻⁷ 7
		495.03 <i>3</i>	100 5	1155.841	4+	E1		0.00525		$\alpha(\mathbf{K}) = 0.00447 \ 7; \ \alpha(\mathbf{L}) = 0.000614 \ 9; \\ \alpha(\mathbf{M}) = 0.0001337 \ 19 \\ \alpha(\mathbf{N}) = 3.08 \times 10^{-5} \ 5; \ \alpha(\mathbf{O}) = 4.44 \times 10^{-6} \ 7; \\ 0.0000000000000000000000000000000000$
1651.95	4+,5,6+	1070.8 <i>3</i> 1368.2 <i>3</i>	46 <i>6</i> 100 <i>20</i>	581.066 283.8219	6+ 4+					$\alpha(P)=2.44\times10^{-7}$ 4
1653.66 1654.99	2+,3+,4+	1369.90 ^{<i>d</i>} 4 368.26 4	100 ^{<i>a</i>} 23.0 <i>17</i>	283.8219 1286.713	4+ 3-	E1		0.01042		α (K)=0.00885 <i>13</i> ; α (L)=0.001236 <i>18</i> ; α (M)=0.000270 <i>4</i>
		606.0 <i>3</i>	53	1049.1018	3+					α (N)=6.19×10 ⁻⁵ 9; α (O)=8.88×10 ⁻⁶ 13; α (P)=4.74×10 ⁻⁷ 7
		1371.31 ^d 7	100 ^d 17	283.8219	4+	E2		1.65×10 ⁻³		$\alpha(K)=0.001371 \ 20; \ \alpha(L)=0.000193 \ 3; \alpha(M)=4.22\times10^{-5} \ 6 \alpha(N)=9.74\times10^{-6} \ 14; \ \alpha(O)=1.417\times10^{-6} \ 20; \alpha(P)=7.92\times10^{-8} \ 11; \ \alpha(IPF)=3.50\times10^{-5} \ 5 $
1676.1		1568.3 <i>4</i> 1095.0	5.8 <i>13</i> 100	86.7877 581.066	2^+ 6 ⁺					

						Adopt	ed Levels, Gammas	(continued)		
							$\gamma(^{160}\text{Dy})$ (continu	ed)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	$\delta^{\#b}$	α^{a}	$I_{(\gamma+ce)}$	Comments
1694.360	4+	308.2 <i>3</i>	0.02 1	1386.458	4-	E1		0.01609		B(E1)(W.u.)= $5.2 \times 10^{-9} + 32 - 24$ α (K)=0.01363 20; α (L)=0.00192 3; α (M)=0.000420 6 α (N)= 9.64×10^{-5} 14: α (O)= 1.376×10^{-5}
		405.70 2	1.24 3	1288.665	5+	E2		0.0266		$\begin{array}{l} 20; \ \alpha(\mathrm{P})=7.20\times10^{-7} \ 11\\ \mathrm{B(E2)(W.u.)}=0.041 \ +10-7\\ \alpha(\mathrm{K})=0.0210 \ 3; \ \alpha(\mathrm{L})=0.00442 \ 7;\\ \alpha(\mathrm{M})=0.001005 \ 14\\ \alpha(\mathrm{N})=0.000229 \ 4; \ \alpha(\mathrm{O})=3.10\times10^{-5} \ 5; \end{array}$
		538.54 2	13.8 <i>3</i>	1155.841	4+	E2+M1	+11.8 [@] +44-20	0.01261 <i>19</i>		$\alpha(P)=1.145\times10^{-6} \ 16$ B(M1)(W.u.)=4.6×10 ⁻⁷ +24-22; B(E2)(W.u.)=0.111 +26-18 $\alpha(K)=0.01023 \ 15; \ \alpha(L)=0.00186 \ 3;$ $\alpha(M)=0.000416 \ 6$
		645.24 <i>3</i>	49.9 <i>13</i>	1049.1018	3+	E2+M1	-4.38 [@] 22	0.00841 <i>13</i>		$\alpha(N) = 9.53 \times 10^{-5} \ 14; \ \alpha(O) = 1.324 \times 10^{-5}$ $19; \ \alpha(P) = 5.77 \times 10^{-7} \ 9$ $\alpha(K) = 0.00693 \ 11; \ \alpha(L) = 0.001152 \ 17;$ $\alpha(M) = 0.000256 \ 4$ $\alpha(N) = 5.89 \times 10^{-5} \ 9; \ \alpha(O) = 8.31 \times 10^{-6} \ 12;$ $\alpha(P) = 3.98 \times 10^{-7} \ 6$
		728.17 2	100 2	966.1687	2+	E2		0.00606		B(M1)(W.u.)= $6.8 \times 10^{-6} + 18 - 12$; B(E2)(W.u.)= $0.155 + 38 - 26$ B(E2)(W.u.)= $0.179 + 43 - 29$ α (K)= $0.00502 7$; α (L)= $0.000813 12$; α (M)= $0.000180 3$ α (N)= $4.15 \times 10^{-5} 6$; α (O)= $5.88 \times 10^{-6} 9$;
		1410.5 <i>3</i>	0.495 24	283.8219	4+	E2,M1		0.0020 4		$\alpha(\mathbf{N}) = 4.15 \times 10^{-7} 4$ $\alpha(\mathbf{P}) = 2.88 \times 10^{-7} 4$ $\alpha(\mathbf{K}) = 0.0016 4; \ \alpha(\mathbf{L}) = 0.00023 5;$ $\alpha(\mathbf{M}) = 5.0 \times 10^{-5} 10$ $\alpha(\mathbf{N}) = 1.15 \times 10^{-5} 23; \ \alpha(\mathbf{O}) = 1.7 \times 10^{-6} 4;$ $\alpha(\mathbf{P}) = 0.7 \times 10^{-8} 23; \ \alpha(\mathbf{D}) = -4.0 \times 10^{-5} 4.5$
		1607.6 <i>3</i>	0.036 12	86.7877	2^{+}	[E2]				$B(E2)(W.u.)=1.2\times10^{-6} 5$
1708.14	0+	1621.36 5	100 3	86.7877	2+	E2		1.29×10 ⁻³		$\alpha(K)=0.001000 \ 14; \ \alpha(L)=0.0001380 \ 20; \\ \alpha(M)=3.01\times10^{-5} \ 5 \\ \alpha(N)=6.95\times10^{-6} \ 10; \ \alpha(O)=1.015\times10^{-6} \\ 15; \ \alpha(P)=5.78\times10^{-8} \ 8; \\ \alpha(IPF)=0.0001172, \ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17$
		1708.2		0.0	0+	(E0)			0.30 1	X(E0/E2)=0.6 (2009Ad04, ε decay); $q_{\rm K}^2$ (E0/E2)=2.8 9 (2009Ad04, ε
1720.36	6+	564.48 25	100	1155.841	4+	[E2]		0.01112		decay); the E2 transition is 1621.4 γ . α (K)=0.00905 13; α (L)=0.001614 23; α (M)=0.000362 5

From ENSDF

	Adopted Levels, Gammas (continued)													
						$\gamma(1)$	⁶⁰ Dy) (c	continued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ ^{#b}	α^{a}	Comments					
									$\alpha(N)=8.28\times10^{-5}$ 12; $\alpha(O)=1.154\times10^{-5}$ 17; $\alpha(P)=5.12\times10^{-7}$ 8					
1756.918	2^{+}	234.81 ^{d&} 6	3 ^d 1	1522.33	4+	(E2)		0.1395	α (K)=0.0986 14; α (L)=0.0316 5; α (M)=0.00737 11					
		267.45 10	2.2 3	1489.500	1-	E1		0.0230	$\alpha(N)=0.001667 24; \ \alpha(O)=0.000214 3; \ \alpha(P)=4.89\times10^{-6} 7 \\ \alpha(K)=0.0194 3; \ \alpha(L)=0.00276 4; \ \alpha(M)=0.000604 9 \\ \alpha(N)=0.0001384 20; \ \alpha(O)=1.97\times10^{-5} 3; \ \alpha(P)=1.013\times10^{-6} \\ 15 $					
		357.92 11	3.6 7	1398.964	3-	E1		0.01116	$\alpha(K)=0.00947 \ 14; \ \alpha(L)=0.001325 \ 19; \ \alpha(M)=0.000289 \ 4$ $\alpha(N)=6.64\times10^{-5} \ 10; \ \alpha(O)=9.52\times10^{-6} \ 14; \ \alpha(P)=5.06\times10^{-7}$					
		470.0 2	12 <i>I</i>	1286.713	3-	E1		0.00590	$\alpha(K)=0.00502\ 7;\ \alpha(L)=0.000692\ 10;\ \alpha(M)=0.0001507\ 22$ $\alpha(N)=3.47\times10^{-5}\ 5;\ \alpha(Q)=5.00\times10^{-6}\ 7;\ \alpha(P)=2.73\times10^{-7}\ 4$					
		471.0 ^{<i>d</i>} 3	7.1 ^d 10	1285.604	1-	E1		0.00587	$\alpha(K) = 0.00500 \ 7; \ \alpha(L) = 0.00689 \ 10; \ \alpha(M) = 0.001500 \ 22$					
		1473.06 <i>3</i>	100 2	283.8219	4+	E2		1.47×10 ⁻³	$ \begin{array}{l} \alpha(N) = 3.45 \times 10^{-5} 5; \ \alpha(O) = 4.98 \times 10^{-5} 7; \ \alpha(P) = 2.72 \times 10^{-5} 4 \\ \alpha(K) = 0.001197 \ 17; \ \alpha(L) = 0.0001670 \ 24; \ \alpha(M) = 3.65 \times 10^{-5} 6 \\ \alpha(N) = 8.41 \times 10^{-6} \ 12; \ \alpha(O) = 1.226 \times 10^{-6} \ 18; \end{array} $					
		1670.14 <i>13</i>	47 7	86.7877	2+	E2		1.25×10 ⁻³	$\alpha(P)=6.92\times10^{-8} \ 10; \ \alpha(IPF)=6.43\times10^{-5} \ 9$ $\alpha(K)=0.000947 \ 14; \ \alpha(L)=0.0001302 \ 19; \ \alpha(M)=2.84\times10^{-5} \ 4$ $\alpha(N)=6.55\times10^{-6} \ 10; \ \alpha(O)=9.57\times10^{-7} \ 14; \ \alpha(P)=5.47\times10^{-8}$					
1784.688	4-	90.33 2	100 2	1694.360	4+	E1		0.405	8; $\alpha(\text{IPF})=0.0001508\ 20$ $\alpha(\text{K})=0.337\ 5;\ \alpha(\text{L})=0.0531\ 8;\ \alpha(\text{M})=0.01165\ 17$ $\alpha(\text{N})=0.00264\ 4;\ \alpha(\text{O})=0.000358\ 5;\ \alpha(\text{P})=1\ 532\times10^{-5}\ 22$					
		628 95 17	6.2	1155 841	4+				$u(1)=0.002044, u(0)=0.0003505, u(1)=1.352\times10^{-22}$					
		735.69.25	11.3	1049.1018	3+									
		1500.7 4	3.7.12	283.8219	4+									
1787.79	6-	137.0 2	40 20	1650.874	4-,5-	[M1,E2]		0.92 6	$\alpha(K)=0.65\ 18;\ \alpha(L)=0.209\ 89;\ \alpha(M)=0.049\ 23$ $\alpha(N)=0.0110\ 49;\ \alpha(O)=0.00142\ 53;\ \alpha(P)=3\ 6\times10^{-5}\ 16$					
		193.4 2	40 20	1594.42	6-	[M1,E2]		0.32 6	$\alpha(K) = 0.245 \ 70; \ \alpha(L) = 0.057 \ 12; \ \alpha(M) = 0.013 \ 3 \ \alpha(K) = 0.003 \ 7; \ \alpha(M) = 0.00040 \ 6; \ \alpha(R) = 1.39 \times 10^{-5} \ 56$					
		201.2 2	60 20	1586.744	5-	[M1,E2]		0.28 6	$\alpha(K) = 0.01967$, $\alpha(C) = 0.000406$, $\alpha(K) = 0.011424$ $\alpha(K) = 0.02066$; $\alpha(L) = 0.000355$; $\alpha(M) = 0.011424$					
		252.8 3	40 20	1535.150	4-	E2		0.1101	$\alpha(N)=0.00250$, $\alpha(O)=0.000353$, $\alpha(1)=1.25\times10^{-1}51$ $\alpha(K)=0.0794$ 12; $\alpha(L)=0.0238$ 4; $\alpha(M)=0.00552$ 9 $\alpha(N)=0.001250$ 19; $\alpha(O)=0.0001616$ 24; $\alpha(P)=4.00\times10^{-6}$ 6 Mult.: from (α ,xny).					
		499.3 <i>3</i>	100 40	1288.665	5+									
		1206.7 1	40 20	581.066	6+									
1800.35	8+	362.0 1	25 4	1438.554	6+	E2		0.0369	α (K)=0.0285 4; α (L)=0.00647 9; α (M)=0.001477 21 α (N)=0.000337 5; α (O)=4.51×10 ⁻⁵ 7; α (P)=1.535×10 ⁻⁶ 22 Mult.: from (α .2ny).					
		834.0 1	100 4	966.83	8+	E2(+M1)	>1.5	0.0051 6	$\alpha(K)=0.0042 5; \alpha(L)=0.00064 7; \alpha(M)=0.000141 14$ $\alpha(N)=3.3\times10^{-5} 3; \alpha(O)=4.7\times10^{-6} 5; \alpha(P)=2.5\times10^{-7} 4$ Mult., δ : from (α ,2n γ).					

From ENSDF

 $^{160}_{66}\mathrm{Dy}_{94}$ -24

γ (¹⁶⁰Dy) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\#b}$	α^{a}	$I_{(\gamma+ce)}$	Comments
1800.35	8+	1219.6 2	32 4	581.066	6+	E2		0.00204		$\alpha(K)=0.001721 \ 24; \ \alpha(L)=0.000247 \ 4; \\ \alpha(M)=5.40\times10^{-5} \ 8 \\ \alpha(N)=1.245\times10^{-5} \ 18; \ \alpha(O)=1.81\times10^{-6} \ 3; \\ \alpha(P)=9.94\times10^{-8} \ 14; \ \alpha(IPF)=7.53\times10^{-6} \ 11 \\ Mult : from (\alpha 2n\alpha)$
1802.224	5+	107.87 2	6.63 11	1694.360	4+	M1+E2	0.40	1.94		$\alpha(K) = 1.526\ 22;\ \alpha(L) = 0.325\ 5;\ \alpha(M) = 0.0737\ 11$ $\alpha(N) = 0.01685\ 24;\ \alpha(O) = 0.00230\ 4;\ \alpha(P) = 9.25 \times 10^{-5}$ 13
		279.76 ^c 15	0.20 ^c 3	1522.33	4+	E2		0.0800		α (K)=0.0591 <i>9</i> ; α (L)=0.01622 <i>23</i> ; α (M)=0.00375 <i>6</i> α (N)=0.000850 <i>12</i> ; α (O)=0.0001110 <i>16</i> ; α (P)=3.04×10 ⁻⁶ <i>5</i>
		363.66 3	4.20 12	1438.554	6+	E2,M1		0.052 16		α (K)=0.043 <i>15</i> ; α (L)=0.0073 <i>10</i> ; α (M)=0.00163 <i>18</i> α (N)=0.00037 <i>5</i> ; α (O)=5.3×10 ⁻⁵ <i>9</i> ; α (P)=2.5×10 ⁻⁶ <i>10</i>
		513.51 4	44 2	1288.665	5+	E2		0.01414		α (K)=0.01141 <i>16</i> ; α (L)=0.00212 <i>3</i> ; α (M)=0.000478 <i>7</i> α (N)=0.0001093 <i>16</i> ; α (O)=1.511×10 ⁻⁵ <i>22</i> ; α (P)=6.40×10 ⁻⁷ <i>9</i>
		646.40 8	96 13	1155.841	4+	E2		0.00800		$\alpha(K)=0.00658 \ 10; \ \alpha(L)=0.001110 \ 16; \alpha(M)=0.000247 \ 4 \alpha(N)=5.68\times10^{-5} \ 8; \ \alpha(O)=7.99\times10^{-6} \ 12; \alpha(P)=3 \ 75\times10^{-7} \ 6$
		753.11 2	100 2	1049.1018	3+	E2		0.00562		$\alpha(K)=0.00466\ 7;\ \alpha(L)=0.000747\ 11;\alpha(M)=0.0001655\ 24\alpha(N)=3.80\times10^{-5}\ 6;\ \alpha(O)=5.40\times10^{-6}\ 8;\alpha(D)=2.67\times10^{-7}\ 4$
		1221.21 5	1.5 2	581.066	6+	E2,M1		0.0027 7		$\alpha(\mathbf{r}) = 2.07 \times 10^{-7} 4^{-7}$ $\alpha(\mathbf{K}) = 0.0023 \ 6; \ \alpha(\mathbf{L}) = 0.00032 \ 7; \ \alpha(\mathbf{M}) = 6.9 \times 10^{-5} \ 15$ $\alpha(\mathbf{N}) = 1.6 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 2.3 \times 10^{-6} \ 6; $ $\alpha(\mathbf{P}) = 1.34 \times 10^{-7} \ 35; \ \alpha(\mathbf{IPF}) = 8.3 \times 10^{-6} \ 7$
		1518.41 ^d 3	2.4 ^{<i>d</i>} 2	283.8219	4+	(E2)		1.41×10 ⁻³		$\alpha(K)=0.001131 \ 16; \ \alpha(L)=0.0001571 \ 22; \alpha(M)=3.43\times10^{-5} \ 5 \alpha(N)=7.92\times10^{-6} \ 11; \ \alpha(O)=1.155\times10^{-6} \ 17; \alpha(P)=6 \ 53\times10^{-8} \ 10; \ \alpha(IPE)=7.93\times10^{-5} \ 12$
1804.669	1+	315.33 ^d 21	0.4 ^{<i>d</i>} 3	1489.500	1-	[E1]		0.01520		$\alpha(K) = 0.01288 \ I9; \ \alpha(L) = 0.00182 \ 3; \ \alpha(M) = 0.000396 \ 6$ $\alpha(N) = 9.10 \times 10^{-5} \ I3; \ \alpha(O) = 1.300 \times 10^{-5} \ I9;$ $\alpha(P) = 6.82 \times 10^{-7} \ I0$
		445.99 ^d 6	11.3 ^d 5	1358.670	2-	E1		0.00665		α (K)=0.00565 8; α (L)=0.000782 11; α (M)=0.0001703 24 α (N)=3.92×10 ⁻⁵ 6; α (O)=5.64×10 ⁻⁶ 8; α (P)=3.07×10 ⁻⁷ 5
		519.12 3	41.8 10	1285.604	1-	E1		0.00473		$\alpha(L) = 0.00402 \ 6; \ \alpha(L) = 0.000551 \ 8; \ \alpha(M) = 0.0001200$ 17

						Adopte	ed Levels, Gamma	as (continued)	
							$\gamma(^{160}\text{Dy})$ (contin	nued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\#b}$	α^{a}	Comments
1804.669	1+	539.92 15	26 4	1264.7472	2-	E1		0.00433	$ \begin{array}{l} \alpha(\mathrm{N}) = 2.76 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 3.99 \times 10^{-6} \ 6; \\ \alpha(\mathrm{P}) = 2.20 \times 10^{-7} \ 3 \\ \alpha(\mathrm{K}) = 0.00369 \ 6; \ \alpha(\mathrm{L}) = 0.000505 \ 7; \ \alpha(\mathrm{M}) = 0.0001099 \\ 16 \end{array} $
		838.57 4	7.8 5	966.1687	2+	E2,M1		0.0063 19	$\alpha(N)=2.53\times10^{-3} 4; \ \alpha(O)=3.66\times10^{-6} 6; \alpha(P)=2.02\times10^{-7} 3 \alpha(K)=0.0053 17; \ \alpha(L)=7.7\times10^{-4} 20; \ \alpha(M)=0.00017 5$
		1717.92 <i>3</i>	100 <i>3</i>	86.7877	2+	M1+E2	-2.1 [@] +9-13	0.00130 <i>11</i>	$\alpha(N)=3.89\times10^{-5} 98; \ \alpha(O)=5.7\times10^{-6} 15; \alpha(P)=3.2\times10^{-7} 11 \alpha(K)=0.00097 9; \ \alpha(L)=0.000132 11; \alpha(L)=0.00013 11; \alpha(L)=0.000132 11; \alpha(L)=0.000132 11; \alpha(L$
		1804.68 <i>4</i>	46.6 <i>13</i>	0.0	0+	M1		1.55×10 ⁻³	$\alpha(M) = 2.88 \times 10^{-5} 24$ $\alpha(N) = 6.6 \times 10^{-6} 6; \ \alpha(O) = 9.7 \times 10^{-7} 9; \ \alpha(P) = 5.6 \times 10^{-8}$ $6; \ \alpha(IPF) = 0.000162 7$ $\alpha(K) = 0.001126 \ 16; \ \alpha(L) = 0.0001528 \ 22;$ $\alpha(M) = 3.33 \times 10^{-5} 5$
1860.18	5-	256.40 <i>14</i>	22 5	1603.78	4+	E1		0.0256	$\alpha(M) = 5.53 \times 10^{-5} J (\alpha(O) = 1.135 \times 10^{-6} I6; \alpha(P) = 6.72 \times 10^{-6} I0; \alpha(IPF) = 0.000230 4 \alpha(K) = 0.0216 3; \alpha(L) = 0.00308 5; \alpha(M) = 0.000674 I0 \alpha(N) = 0.0001544 22; \alpha(O) = 2.19 \times 10^{-5} 3;$
		324.98 ^d 20	14 ^{<i>d</i>} 6	1535.150	4-	[M1,E2]		0.071 21	$\alpha(P)=1.123\times10^{-6} \ 16$ $\alpha(K)=0.058 \ 20; \ \alpha(L)=0.0102 \ 9; \ \alpha(M)=0.00229 \ 14$ $\alpha(N)=0.00053 \ 4; \ \alpha(O)=7.4\times10^{-5} \ 9; \ \alpha(P)=3.4\times10^{-6}$
		1279.2 <i>1</i>	43 7	581.066	6+	E1(+M2)		0.00092 7	$\alpha(K)=0.00074 \ 6; \ \alpha(L)=9.8\times10^{-5} \ 8;$ $\alpha(M)=2.12\times10^{-5} \ 17$ $\alpha(N)=4.9\times10^{-6} \ 4; \ \alpha(O)=7.2\times10^{-7} \ 6; \ \alpha(P)=4.2\times10^{-8}$
		1576.30 8	100 5	283.8219	4+	E1		8.15×10 ⁻⁴	4; α (IPF)=5.88×10 ⁻⁵ 10 Mult.: from (α ,2n γ). α (K)=0.000479 7; α (L)=6.25×10 ⁻⁵ 9; α (M)=1.352×10 ⁻⁵ 19 α (N)=3.12×10 ⁻⁶ 5; α (O)=4.58×10 ⁻⁷ 7; α (P)=2.69×10 ⁻⁸ 4; α (IPF)=0.000257 4 L: from ¹⁶⁰ Ho s decay From (α 2n γ)
1869.513	2+	379.8 <i>3</i>	6.4 <i>18</i>	1489.500	1-	(17.1.)		0.00597	I_{γ} : Irom (III) U decay: From (II,2H)), $I_{\gamma}(1576\gamma)/I_{\gamma}(1279\gamma)=0.56.$
		4/1.0 ⁴⁴ 3	0 ⁴⁴ 3	1398.964	3	[E1]		0.00587	$\alpha(\mathbf{K})=0.00500 \ 7; \ \alpha(\mathbf{L})=0.000689 \ 10; \ \alpha(\mathbf{M})=0.0001500 \ 22 \ \alpha(\mathbf{N})=3.45\times10^{-5} \ 5; \ \alpha(\mathbf{O})=4.98\times10^{-6} \ 7;$
		510.8 <i>1</i>	12 <i>3</i>	1358.670	2-				$\alpha(P)=2.72\times10^{-7} 4$

From ENSDF

						Adopted	Levels, Ga	ammas (contin	nued)
							$\gamma(^{160}\text{Dy})$ (e	continued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	δ ^{#b}	α^{a}	Comments
1869.513	2+	582.70 16	24 4	1286.713	3-	E1		0.00367	$\alpha(K)=0.00313 \ 5; \ \alpha(L)=0.000426 \ 6; \ \alpha(M)=9.28\times10^{-5} \ 13$ $\alpha(N)=2.14\times10^{-5} \ 3; \ \alpha(O)=3.10\times10^{-6} \ 5;$ $\alpha(P)=1.720\times10^{-7} \ 24$
		584.04 ^d 17 605.0 3	5.8 ^d 23 4.0 8	1285.604 1264.7472	$1^{-}_{2^{-}}$				
		820.39 8	5.6 5	1049.1018	3+				
		1585.63 ^d 17	8.8 ^d 18	283.8219	4+	E2		1.33×10 ⁻³	$\alpha(K)=0.001043 \ 15; \ \alpha(L)=0.0001442 \ 21; \alpha(M)=3.14\times10^{-5} \ 5 \alpha(N)=7.26\times10^{-6} \ 11; \ \alpha(O)=1.060\times10^{-6} \ 15; \alpha(P)=6.02\times10^{-8} \ 9; \ \alpha(IPF)=0.0001035 \ 15$
		1782.73 4	100 4	86.7877	2+	E2		1.17×10 ⁻³	$\alpha(K) = 0.000839 \ I2; \ \alpha(L) = 0.0001146 \ I6; \alpha(M) = 2.50 \times 10^{-5} \ 4 \alpha(N) = 5.76 \times 10^{-6} \ 8; \ \alpha(O) = 8.43 \times 10^{-7} \ I2; \alpha(P) = 4.84 \times 10^{-8} \ 7; \ \alpha(IPF) = 0.000185 \ 3$
		1869.55 6	41.5 18	0.0	0+	E2		1.13×10 ⁻³	$\alpha(K)=0.000769 \ 11; \ \alpha(L)=0.0001046 \ 15; \alpha(M)=2.28\times10^{-5} \ 4 \alpha(N)=5.26\times10^{-6} \ 8; \ \alpha(O)=7.70\times10^{-7} \ 11; \alpha(P)=4.44\times10^{-8} \ 7; \ \alpha(IPF)=0.000224 \ 4$
1882.31	8-	265.3 2	<19	1617.27	7+	E1(+M2)	1.5 <i>15</i>	0.50 48	$\alpha(K)=0.40\ 38;\ \alpha(L)=0.076\ 73;\ \alpha(M)=0.017\ 17$ $\alpha(N)=0.0040\ 39;\ \alpha(O)=5.7\times10^{-4}\ 56;\ \alpha(P)=3.1\times10^{-5}\ 30$ $E_{\gamma}:\ from\ ^{160}Ho\ \varepsilon\ decay.\ From\ an\ in-beam\ study,$ $2002Ju08\ report\ E\gamma=268.5.$ L Mult : from (α 2ny)
		287.8 <i>1</i>	100 4	1594.42	6-	E2		0.0733	$\alpha(K)=0.0545 \ 8; \ \alpha(L)=0.01460 \ 21; \ \alpha(M)=0.00337 \ 5 \ \alpha(N)=0.000765 \ 11; \ \alpha(O)=0.0001002 \ 14; \ \alpha(P)=2.81\times10^{-6} \ 4$
		915.6 <i>1</i>	73 4	966.83	8+	E1(+M2)	-1 4	0.0091 71	Mult.: from $(\alpha, 2n\gamma)$. $\alpha(K)=0.0077 \ 60; \ \alpha(L)=0.00115 \ 91; \ \alpha(M)=2.5\times10^{-4} \ 20 \ \alpha(N)=5.8\times10^{-5} \ 47; \ \alpha(O)=8.6\times10^{-6} \ 68; \ \alpha(P)=4.9\times10^{-7} \ 39 \ Mult\delta$: from $(\alpha, 2n\gamma)$.
1898.23	7^{-}	1316.7 2	100	581.066	6^{+}				
1900.87	9-	286.9 2	<19	1613.98	7^{-}				E_{γ}, I_{γ} : from 2002Ju08 (⁷ Li,p4n γ).
		934.1 <i>I</i>	100 4	966.83	8+	(E1+M2)	0.8 8	0.0071 57	$\alpha(K) = 0.0060 \ 48; \ \alpha(L) = 8.8 \times 10^{-4} \ 72; \ \alpha(M) = 1.9 \times 10^{-4} \ 16 \ \alpha(N) = 4.5 \times 10^{-5} \ 37; \ \alpha(O) = 6.6 \times 10^{-6} \ 54; \ \alpha(P) = 3.8 \times 10^{-7} \ 31 \ 27 \ 31 \ 27 \ 31 \ 31 \ 31 \ 31 \ 31 \ 31 \ 31 \ 3$
		1	,						E_{γ} ,Mult.: from 2002Ju08 ('Li,p4n γ).
1903.204	3+	504.15 ^{<i>d</i>} 20	6.2 ^{<i>d</i>} 18	1398.964	3-	(E1)		0.00504	α (K)=0.00429 6; α (L)=0.000589 9; α (M)=0.0001283 18 α (N)=2.95×10 ⁻⁵ 5; α (O)=4.26×10 ⁻⁶ 6; α (P)=2.34×10 ⁻⁷ 4
		516.86 11	15.9 17	1386.458	4-				

						Adopt	ed Leve	ls, Gammas (continued	<u>)</u>
							$\gamma(^{160}]$	Dy) (continued	d)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ ^{#b}	α^{a}	$I_{(\gamma+ce)}$	Comments
1903.204	3+	544.59 8	35.6 21	1358.670	2-	E1		0.00425		$\alpha(\mathbf{K})=0.00362 \ 5; \ \alpha(\mathbf{L})=0.000495 \ 7; \\ \alpha(\mathbf{M})=0.0001078 \ 15 \\ \alpha(\mathbf{N})=2.48 \times 10^{-5} \ 4; \ \alpha(\mathbf{O})=3.59 \times 10^{-6} \ 5; \\ \alpha(\mathbf{D})=1.09 \times 10^{-7} \ 2 \ 300 \ 10^{-7} \ 2 \ 10^{-7} \ 2 \ 10^{-7} \ 2 \ 10^{-7} \ 2 \ 10^{-7} \ 2 \ 10^{-7} \ 2 \ 10^{-7} \ 2 \ 10^{-7} \$
		1619.36 8	66 4	283.8219	4+	E2		1.30×10 ⁻³		$\alpha(\mathbf{F}) = 1.98 \times 10^{-5} \text{ s}$ $\alpha(\mathbf{K}) = 0.001003 \ 14; \ \alpha(\mathbf{L}) = 0.0001383 \ 20;$ $\alpha(\mathbf{M}) = 3.02 \times 10^{-5} \ 5$ $\alpha(\mathbf{N}) = 6.96 \times 10^{-6} \ 10; \ \alpha(\mathbf{O}) = 1.017 \times 10^{-6} \ 15;$
		1816.39 <i>3</i>	100 3	86.7877	2+	E2		1.15×10 ⁻³		$\alpha(P)=5.79\times10^{-6} \; 9; \; \alpha(IPF)=0.0001164 \; 17$ $\alpha(K)=0.000810 \; 12; \; \alpha(L)=0.0001105 \; 16;$ $\alpha(M)=2.41\times10^{-5} \; 4$ $\alpha(N)=5.56\times10^{-6} \; 8; \; \alpha(O)=8.14\times10^{-7} \; 12;$
1929.176	6+	126.94 2	24.2 9	1802.224	5+	M1+E2	0.37	1.203		α (P)=4.68×10 ⁻⁸ 7; α (IPF)=0.000200 3 α (K)=0.970 14; α (L)=0.182 3; α (M)=0.0409 6 α (N)=0.00937 14; α (O)=0.001306 19; α (P)=5.90×10 ⁻⁵ 9
		234.81 ^{<i>d</i>} 6	10 ^{<i>d</i>} 4	1694.360	4+	(E2)		0.1395		$\alpha(K) = 0.0986 \ 14; \ \alpha(L) = 0.0316 \ 5; \ \alpha(M) = 0.00737 \ 11 \ \alpha(N) = 0.001667 \ 24; \ \alpha(O) = 0.000214 \ 3;$
		311.90 6	10.1 8	1617.27	7+	E2,(M1)		0.080 23		$\begin{array}{l} \alpha(P)=4.89\times10^{-6} \ 7 \\ \alpha(K)=0.065\ 22;\ \alpha(L)=0.0116\ 8;\ \alpha(M)=0.00261\ 11 \\ \alpha(N)=0.00060\ 3;\ \alpha(O)=8.4\times10^{-5}\ 9;\ \alpha(P)=3.8\times10^{-6} \\ 16 \end{array}$
		315.33 ^d 21	0.6 ^{<i>d</i>} 6	1613.98	7-	[E1]		0.01520		$\alpha(K)=0.01288 \ 19; \ \alpha(L)=0.00182 \ 3; \ \alpha(M)=0.000396$ $\alpha(N)=9.10\times10^{-5} \ 13; \ \alpha(O)=1.300\times10^{-5} \ 19;$
		334.77 19	5.2 16	1594.42	6-	[E1]		0.01312		$\alpha(P)=6.82\times10^{-7} \ 10$ $\alpha(K)=0.01113 \ 16; \ \alpha(L)=0.001563 \ 22;$ $\alpha(M)=0.000341 \ 5$ $\alpha(N)=7 \ 83\times10^{-5} \ 11; \ \alpha(O)=1 \ 121\times10^{-5} \ 16;$
		490.62 ^d 4	56 ^d 11	1438.554	6+	E2,M1		0.0236 77		$\alpha(P)=5.92\times10^{-7} \ 9$ $\alpha(K)=0.0196 \ 68; \ \alpha(L)=0.0031 \ 7; \ \alpha(M)=0.00068 \ 14$
		640 61 6	100.22	1288 665	5+	(F2)		0.00817		$\alpha(N)=0.00016 \ 4; \ \alpha(O)=2.3\times10^{-5} \ 6; \\ \alpha(P)=1.16\times10^{-6} \ 45 \\ \alpha(K)=0.00671 \ 10; \ \alpha(L)=0.001137 \ 16;$
		0.01 0	100 22	1200.000	5	(12)		0.00017		$\alpha(M) = 0.000254 \ 4$ $\alpha(N) = 5.82 \times 10^{-5} \ 9; \ \alpha(O) = 8.18 \times 10^{-6} \ 12;$
		773.37 8	63.9 27	1155.841	4+	E2		0.00529		$\begin{aligned} &\alpha(P) = 3.83 \times 10^{-7} \ 6 \\ &\alpha(K) = 0.00440 \ 7; \ \alpha(L) = 0.000699 \ 10; \\ &\alpha(M) = 0.0001548 \ 22 \\ &\alpha(N) = 3.56 \times 10^{-5} \ 5; \ \alpha(O) = 5.06 \times 10^{-6} \ 7; \\ &\alpha(P) = 2.52 \times 10^{-7} \ 4 \\ &I_{\gamma}: \ from \ ^{160}Ho \ \varepsilon \ decay. \ In \ (\alpha, 2n\gamma), \\ &I_{\gamma}(773\gamma)/I_{\gamma}(640\gamma) > 2. \end{aligned}$

 $^{160}_{66}\mathrm{Dy}_{94}$ -28

$\gamma(^{160}\text{Dy})$ (continued)

E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α ^{<i>a</i>}	$I_{(\gamma+ce)}$	Comments
1929.176	6+	1348.09 ^d 10	17 ^d 4	581.066	6+				
1950.17	12+	522.6 ^{&} 1	100	1427.89	10+	E2	0.01352		B(E2)(W.u.)=313 <i>14</i> α (K)=0.01093 <i>16</i> ; α (L)=0.00202 <i>3</i> ; α (M)=0.000453 <i>7</i> α (N)=0.0001038 <i>15</i> ; α (O)=1.436×10 ⁻⁵ <i>21</i> ; α (P)=6.14×10 ⁻⁷ <i>9</i>
1952.31	0^{+}	244.1		1708.14	0^+	(E0)		0.44 2	Mult.: from $(\alpha, 2n\gamma)$. $q_{K}^{2}(E0/E2)$: 4.8 <i>19</i> (2009Ad04, ε decay); the E2 transition is 1865 6 γ
		495.6		1456.752	0^+	(E0)		0.74 4	$q_{\rm K}^2$ (E0/E2): 8 3 (2009Ad04, ε decay); the E2 transition is 1865.6 γ .
		666.7 <mark>d</mark> 3	5 <mark>d</mark> 3	1285.604	1-				
		672.3		1279.942	0^{+}	(E0)		0.61 <i>3</i>	q_{K}^{2} (E0/E2): 6.3 24 (for I(ce(K)) mean value of 0.002 (2009Ad04) and 0.0043 (2006Bo37)); the E2 transition is 1865.6 γ .
		986.15 ^d 11	33 ^d 8	966.1687	2^{+}				
		1271.0		681.3?	(0 ⁺)	(E0)		0.44 2	q_{K}^{2} (E0/E2): 4.8 <i>19</i> (2009Ad04, ε decay); the E2 transition is 1865.6 γ .
		1865.56 4	100 5	86.7877	2+	E2	1.13×10 ⁻³		α (K)=0.000722 <i>11</i> ; α (L)=0.0001050 <i>15</i> ; α (M)=2.29×10 ⁻⁵ <i>4</i> α (N)=5.28×10 ⁻⁶ <i>8</i> ; α (O)=7.73×10 ⁻⁷ <i>11</i> ; α (P)=4.46×10 ⁻⁸ 7; α (PEF)=0.000222 <i>4</i>
		1952.6 4		0.0	0+	E0		0.28 4	X(E0/E2): 0.6 3 (2005Ki02 evaluation), 0.9 (2009Ad04, ε decay); q_{K}^{2} (E0/E2): 2.1 8 (2005Ki02 evaluation), 3.0 13 (2009Ad04, ε decay); the E2 transition is 1865.6 γ .
1954.4	(6)-	665.7 5	100	1288.665	5+				(,,,, ,, ,, ,, _,
1978.2	$(8)^{+}$	1011.1 ^e		966.83	8+				
		1397.1		581.066	6+	E2	1.60×10^{-3}		α (K)=0.001323 <i>19</i> ; α (L)=0.000186 <i>3</i> ; α (M)=4.06×10 ⁻⁵ <i>6</i> α (N)=9.37×10 ⁻⁶ <i>14</i> ; α (O)=1.364×10 ⁻⁶ <i>20</i> ; α (P)=7.65×10 ⁻⁸ <i>11</i> : α (IPF)=4.18×10 ⁻⁵ <i>6</i>
2009.531	$1^{-},2^{-}$	355.74 10	1.6 8	1653.66					
		1922.71 4	100 <i>3</i>	86.7877	2+	E1	9.17×10 ⁻⁴		α (K)=0.000345 5; α (L)=4.48×10 ⁻⁵ 7; α (M)=9.69×10 ⁻⁶ 14 α (N)=2.24×10 ⁻⁶ 4; α (O)=3.29×10 ⁻⁷ 5; α (P)=1.94×10 ⁻⁸ 3; α (IPF)=0.000514 8
		2009.6 ^d 3	1.5 <mark>d</mark> 5	0.0	0^{+}				
2012.85	2+	1729.3 5	74 13	283.8219	4+				
		1926.0 <i>3</i>	100 19	86.7877	2+				
2021 (1	0.4	2013.3 5	21 9	0.0	0^+	17 4 3	0.107		
2021.64	9+	120.8 2	55	1900.87	9-	[E1]	0.186		$\alpha(K)=0.1560\ 23;\ \alpha(L)=0.0236\ 4;\ \alpha(M)=0.00518\ 8$ $\alpha(N)=0.001178\ 18;\ \alpha(O)=0.0001622\ 24;\ \alpha(P)=7.39\times10^{-6}\ 11$ Ly: from $I_{\gamma}(120.8\gamma)/I_{\gamma}(404.7\gamma)$ in ε decay and $I_{\gamma}(404.7\gamma)$
		139.3 2	14 10	1882.31	8-	[E1]	0.1271		$\alpha(K)=0.1067 \ I6; \ \alpha(L)=0.01593 \ 24; \ \alpha(M)=0.00349 \ 5$ $\alpha(N)=0.000795 \ I2; \ \alpha(O)=0.0001103 \ I6; \ \alpha(P)=5.16\times10^{-6} \ 8$ I _{γ} : from I $\gamma(139.3\gamma)/I\gamma(404.7\gamma)$ in ε decay and I $\gamma(404.7\gamma)$.

						Adop	ted Levels	, <mark>Gammas</mark> (co	ontinued)
							γ (¹⁶⁰ D	y) (continued)	<u>)</u>
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [†]	δ ^{#b}	α^{a}	Comments
2021.64	9+	220.8 2	19 <i>10</i>	1800.35	8+	[M1,E2]		0.21 5	$\alpha(K)=0.168\ 50;\ \alpha(L)=0.036\ 5;\ \alpha(M)=0.0082\ 13$ $\alpha(N)=0.0019\ 3;\ \alpha(O)=0.000254\ 19;\ \alpha(P)=9.7\times10^{-6}\ 39$ L : from $I_{2}(220\ 8\gamma)I_{2}(404\ 7\gamma)$ in a decay and $I_{2}(404\ 7\gamma)$
		404.7 4	48 <i>3</i>	1617.27	7+	E2		0.0268	$\alpha(K)=0.0211 \ 3; \ \alpha(L)=0.00446 \ 7; \ \alpha(M)=0.001013 \ 15 \ \alpha(N)=0.000231 \ 4; \ \alpha(O)=3.13\times10^{-5} \ 5; \ \alpha(P)=1.153\times10^{-6} \ 17 \ I_{\gamma}: from the in-beam study of 2002Ju08. Mult.: from (\alpha,2n\gamma).$
		1055.2 ^{&} 1	100 7	966.83	8+	E2+M1	7.0 12	0.00276 5	α (K)=0.00233 4; α (L)=0.000341 6; α (M)=7.50×10 ⁻⁵ 12 α (N)=1.73×10 ⁻⁵ 3; α (O)=2.50×10 ⁻⁶ 4; α (P)=1.345×10 ⁻⁷ 21
									I _γ : from the in-beam study of 2002Ju08. From ¹⁶⁰ Ho ε decay, I _γ (1055γ)/I _γ (404γ)=0.2. Mult.,δ: from (α ,2nγ).
2049.50	2+,3	1000.2 <i>4</i> 1765.6 <i>3</i> 1962.7 <i>5</i>	58 <i>19</i> 100 <i>50</i> 33 <i>14</i>	1049.1018 283.8219 86.7877	3+ 4+ 2+				
2068.08	1-	549.63 9 669.1 ^{ce} 2 803.48 22	1.7 5 1.7 ^c 7 2.1 4 62 7	1518.419 1398.964 1264.7472 86 7877	2^+ 3^- 2^- 2^+				
		2068.07 4	100 3	0.0	0^{+}	E1		9.76×10 ⁻⁴	α (K)=0.000307 5; α (L)=3.98×10 ⁻⁵ 6; α (M)=8.61×10 ⁻⁶ 12 α (N)=1.99×10 ⁻⁶ 3; α (O)=2.92×10 ⁻⁷ 4; α (P)=1.727×10 ⁻⁸ 25: α (IPF)=0.000618 9
2074.09	7+	145.0 2	50 25	1929.176	6+	[M1,E2]		0.77 7	$\alpha(K) = 0.55 \ 15; \ \alpha(L) = 0.167 \ 65; \ \alpha(M) = 0.039 \ 17 \ \alpha(N) = 0.0088 \ 36; \ \alpha(O) = 0.00114 \ 39; \ \alpha(P) = 3.1 \times 10^{-5} \ 13$
		191.5 2	75 25	1882.31	8-	[E1]		0.0545	$\alpha(K) = 0.0460\ 7;\ \alpha(L) = 0.00669\ 10;\ \alpha(M) = 0.001462\ 21$ $\alpha(K) = 0.0060324\ 5;\ \alpha(L) = 0.00669\ 10;\ \alpha(M) = 0.001462\ 4$
		272.0 2	55 <i>33</i>	1802.224	5+	[E2]		0.0874	$\alpha(K) = 0.000354 \ 3, \ \alpha(O) = 4.70 \times 10^{-7}, \ \alpha(I) = 2.31 \times 10^{-7} \ 4$ $\alpha(K) = 0.0641 \ 9; \ \alpha(L) = 0.0180 \ 3; \ \alpha(M) = 0.00417 \ 6$ $\alpha(N) = 0.000945 \ 14; \ \alpha(O) = 0.0001231 \ 18; \ \alpha(P) = 3.28 \times 10^{-6} \ 5$
		635.6 2	100 50	1438.554	6^{+}				
2077.36	3-	320.50 ^d 7	7 ^d 3	1756.918	2+	(E1)		0.01460	α (K)=0.01238 <i>18</i> ; α (L)=0.001743 <i>25</i> ; α (M)=0.000380 <i>6</i> α (N)=8.73×10 ⁻⁵ <i>13</i> ; α (O)=1.248×10 ⁻⁵ <i>18</i> ; α (P)=6.56×10 ⁻⁷ <i>10</i>
		382.8 2	41 11	1694.360	4+				
		490.62 ^{<i>d</i>} 4	67 ^d 33	1586.744	5-	[E2]		0.01592	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.01279 \ 18; \ \alpha(\mathrm{L}) = 0.00243 \ 4; \ \alpha(\mathrm{M}) = 0.000548 \ 8 \\ \alpha(\mathrm{N}) = 0.0001255 \ 18; \ \alpha(\mathrm{O}) = 1.728 \times 10^{-5} \ 25; \ \alpha(\mathrm{P}) = 7.15 \times 10^{-7} \\ 10 \end{array} $
		541.9 ^d 3	20 ^d 7	1535.150	4-	[E2,M1]		0.0183 60	α (K)=0.0152 53; α (L)=0.0024 6; α (M)=0.00052 12 α (N)=0.00012 3; α (O)=1.7×10 ⁻⁵ 5; α (P)=9.1×10 ⁻⁷ 35
		669.1 ^{ce} 2	31 [°] 13	1408.47	5-				

From ENSDF

¹⁶⁰₆₆Dy₉₄-30

					Adopt	ed Levels, (Gamma	s (continued)	
						$\gamma(^{160}\text{Dy})$	(contin	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ ^{#b}	α^{a}	Comments
2077.36	3-	678.30 ^d 16 718.70 9 790.7 3 791.8 3 812.6 2 921.50 ^d 16 1028.26 ^d 5 1111.11 ^d 18	$\begin{array}{c} 7d \ 3\\ 54 \ 13\\ 33 \ 13\\ 20 \ 7\\ 20 \ 13\\ 100d \ 20\\ 53d \ 20\\ 93d \ 27\end{array}$	1398.964 1358.670 1286.713 1285.604 1264.7472 1155.841 1049.1018 966.1687	$ \frac{3^{-}}{2^{-}} \\ 3^{-} \\ 1^{-} \\ 2^{-} \\ 4^{+} \\ 3^{+} \\ 2^{+} $				
2084.809	$1^+, 2^+$	431.15 ^{de} 25	1.5 ^d 7	1653.66					
		595.32 ^{<i>a</i>} 10 1998.04 4	3.6 ^{<i>a</i>} 14 65 3	1489.500 86.7877	1^{-} 2 ⁺	M1,E2		0.00123 15	$\alpha(K)=0.00079 \ 11; \ \alpha(L)=0.000106 \ 15; \ \alpha(M)=2.3\times10^{-5} \ 4 \ \alpha(N)=5.4\times10^{-6} \ 8; \ \alpha(O)=7.9\times10^{-7} \ 11; \ \alpha(P)=4 \ 6\times10^{-8} \ 7; \ \alpha(DF)=0.00031 \ 3$
		2084.79 <i>4</i>	100 4	0.0	0+	M1,E2		0.00120 14	$\alpha(\mathbf{K}) = 0.00072 \ 9; \ \alpha(\mathbf{L}) = 9.7 \times 10^{-5} \ 13; \alpha(\mathbf{M}) = 2.1 \times 10^{-5} \ 3 \alpha(\mathbf{N}) = 4.9 \times 10^{-6} \ 7; \ \alpha(\mathbf{O}) = 7.2 \times 10^{-7} \ 10; \alpha(\mathbf{P}) = 4 \ 2 \times 10^{-8} \ 6; \ \alpha(\mathbf{IPF}) = 0.00035 \ 3$
2088.85	1-,2-,3-	2002.01 4	100	86.7877	2+	E1		9.49×10 ⁻⁴	$\alpha(K) = 0.000324 \ 5; \ \alpha(L) = 4.19 \times 10^{-5} \ 6; \alpha(M) = 9.07 \times 10^{-6} \ 13 \alpha(N) = 2.10 \times 10^{-6} \ 3; \ \alpha(O) = 3.08 \times 10^{-7} \ 5; \alpha(P) = 1.82 \times 10^{-8} \ 3; \ \alpha(IPF) = 0.000571 \ 8$
2090.88	2-,3-	1041.94 20	21 3	1049.1018	3+				
		1124.68 ^{<i>d</i>} 4	100 ^d 11	966.1687	$2^+_{2^+}$				
2096.889	4+	2004.1 5 340.4 <i>3</i>	0.47 18	1756.918	2+ 2+	[E2]		0.0441	$\alpha(K)=0.0338\ 5;\ \alpha(L)=0.00800\ 12;\ \alpha(M)=0.00183\ 3$ $\alpha(N)=0.000417\ 6;\ \alpha(O)=5.55\times10^{-5}\ 8;$ $\alpha(P)=1.80\times10^{-6}\ 3$
		402.44 14	1.1 2	1694.360	4+	[M1,E2]		0.040 13	$\alpha(K) = 0.033 \ l2; \ \alpha(L) = 0.0054 \ 9; \ \alpha(M) = 0.00120 \ l8$ $\alpha(N) = 0.00028 \ 5; \ \alpha(O) = 3.9 \times 10^{-5} \ 8;$ $\alpha(P) = 1.93 \times 10^{-6} \ 77$
		445.99 ^d 6	3.8 ^d 3	1650.874	4-,5-	[E1]		0.00665	$\alpha(K)=0.00565 \ 8; \ \alpha(L)=0.000782 \ 11; \\ \alpha(M)=0.0001703 \ 24 \\ \alpha(N)=3.92\times10^{-5} \ 6; \ \alpha(O)=5.64\times10^{-6} \ 8; \\ \alpha(P)=3.07\times10^{-7} \ 5 $
		658.7 <i>3</i>	1.2 2	1438.554	6+				u(1)=3.07×10 - 5
		688.37 ^d 9	0.16 ^d 8	1408.47	5-				
		698.1 4 710 5 3	0.9 5	1398.964	3 ⁻ 4-				
		808.22 4	4.56 23	1288.665	4 5 ⁺				

From ENSDF

$\frac{y(t^{(0)}Dy)(continued)}{2096.889} = \frac{y}{4}^{2} = \frac{E_{f}}{4} - \frac{E_{f}}{810.10/2} - \frac{1}{10^{2}} \frac{E_{f}}{30.3} - \frac{y}{1155.841} - \frac{y}{4}^{2} - \frac{1}{226.713} - \frac{y}{3^{2}} - \frac{Mult}{4} - \frac{\delta^{4b}}{9^{4}} - \frac{a^{a}}{1.000397} - \frac{Conments}{a(K)=0.00226, a(L)=0.00040, 8, a(M)=0.70\times10^{-5} - a(N)=23.810^{-6} 6_{1} - a(N)=1.00010, 0^{-2} 4, a(N)=0.000226, a(L)=0.00040, 8, a(M)=0.70\times10^{-5} - a(N)=23.810^{-6} 6_{1} - a(N)=1.00010, 0^{-2} 4, a(N)=3.0\times10^{-5} 4,$							Adopted Lo	evels, Gammas (cont	tinued)	
$ \frac{F_{f}}{2096.889} \frac{F_{f}}{4^{4}} \frac{F_{f}}{810.10} \frac{F_{f}}{29.41.1} \frac{F_{f}}{30.3} \frac{F_{f}}{1155.841} \frac{F_{f}}{4^{4}} \frac{F_{f}}{32} F_$							$\gamma(1)$	⁶⁰ Dy) (continued)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [†]	<i>δ</i> # <i>b</i>	α ^a	Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2096.889	4+	810.10 <i>12</i> 941.1 <i>1</i>	0.97 <i>19</i> 30 <i>3</i>	1286.713 1155.841	3 ⁻ 4 ⁺	E2+M1	+9 [@] +13-3	0.00349 7	$\alpha(K)=0.00292$ 6; $\alpha(L)=0.000440$ 8; $\alpha(M)=9.70\times10^{-5}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1047 76 3	72 1	1049 1018	3+	E2+M1	$-2.81^{@}+24-26$	0 00299 6	$\alpha(N)=2.23\times10^{-5} \ 4; \ \alpha(O)=3.21\times10^{-6} \ 6; \\ \alpha(P)=1.69\times10^{-7} \ 4 \\ \alpha(K)=0.00252 \ 5; \ \alpha(L)=0.000367 \ 7; \ \alpha(M)=8.05\times10^{-5} $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1011.102	, 2 1	1019.1010	5		2.01 127 20	0.00277 0	$\begin{array}{l} \alpha(\mathbf{x}) & \text{obsect } \mathbf{y}, \alpha(\mathbf{x}) & \text{obsect } \mathbf{y}, \alpha(\mathbf{x}) & \text{obsect } \mathbf{y} \\ I_{15} \\ \alpha(\mathbf{x}) = 1.86 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 2.69 \times 10^{-6} \ 5; \\ \alpha(\mathbf{P}) = 1.47 \times 10^{-7} \ 3 \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1130.71 2	100 3	966.1687	2+	E2		0.00237	$\alpha(K) = 1.47 \times 10^{-5} \text{ s}^{-1}$ $\alpha(K) = 0.00200 3; \ \alpha(L) = 0.000290 4; \ \alpha(M) = 6.36 \times 10^{-5} 9$ $\alpha(N) = 1.466 \times 10^{-5} 21; \ \alpha(O) = 2.12 \times 10^{-6} 3;$ $\alpha(P) = 1.154 \times 10^{-7} 17; \ \alpha(DPE) = 8.56 \times 10^{-7} 12$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1813.1 2	0.8 3	283.8219	4+				$u(1) = 1.13 + 10$ 17, $u(111) = 0.30 \times 10$ 12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2009.6 ^d 3	0.47 ^d 16	86.7877	2^{+}				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2112.42	8-	90.8 2	100 30	2021.64	9+				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			324.98^{a} 20	$40^{a} 20$	1787.79	6^{-}				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			493.4	50 20 60 30	1613.98	7 7-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2113.69		329.0 1	100 17	1784.688	4 ⁻				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1532.6 <i>3</i>	12 4	581.066	6+				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2126.37	3-	776.8 ^d 4	6^d 3	1349.758	2^{+}				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			840.62 24	22 5	1285.604	1-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			970.93	40 4	1155.841	4 · 3+				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1160.2 3	92 14	966.1687	2^{+}				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1842.9 2	13 2	283.8219	4+				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0100 570	2-	2039.7 2	10 2	86.7877	2^{+}				
$475.5 \ 5^{-1} \ 7^{-1} \ 5^{-1} \ 1050.374 \ 4^{-1}, 5^{-1} \ [12] \ 1050.374 \ 4^{-1}, 5^{-1} \ [12] \ 1050.374 \ 4^{-1}, 5^{-1} \ [12] \ 1050.374 \ 4^{-1}, 5^{-1} \ [12] \ 1050.374 \ 4^{-1}, 5^{-1} \ [12] \ 1050.374 \ 4^{-1}, 5^{-1} \ [12] \ 1050.374 \ 4^{-1}, 5^{-1} \ [12] \ 1050.374 \ 4^{-1}, 5^{-1} \ [12] \ 1050.374 \ 4^{-1}, 5^{-1} \ [12] \ 1050.374 \ 4^{-1}, 5^{-1} \ [12] \ 1050.374 \ 4^{-1}, 5^{-1} \ [12] \ 1050.374 \ 4^{-1}, 5^{-1} \ [12] \ 1050.374 \ 4^{-1} \ [12] \ 1050.374 \ 4^{-1} \ [12] \ 1050.374 \ 4^{-1} \ [12] \ 1050.374 \ 4^{-1} \ [12] \ 1050.374 \ 4^{-1} \ [12] \ 1050.374 \ 4^{-1} \ [12] \ 1050.374 \ 4^{-1} \ [12] \ 1050.374 \ 4^{-1} \ [12] \ 1050.374 \ 4^{-1} \ [12] \ 1050.374 \ 4^{-1} \ [12] \ 1050.374 \ 4^{-1} \ [12] \ 1050.374 \ 4^{-1} \ [12] \ 1050.374 \ 4^{-1} \ [12] \ 1050.374 \ 4^{-1} $	2130.579	3	4/1.2 3	/ 3	1653.66	1- 5-	[E2]		0.01601	$\alpha(K) = 0.01356.20; \alpha(I) = 0.00261.4; \alpha(M) = 0.000589.9$
$487.0 \ 3 \qquad 13 \ 4 \qquad 1643.27 \ 3^{-} \qquad [M1,E2] \qquad 0.0240 \ 78 \qquad \alpha(K) = 0.0200 \ 70; \ \alpha(L) = 0.0032 \ 7; \ \alpha(M) = 0.00070 \ 14 \\ \alpha(N) = 0.00016 \ 4; \ \alpha(O) = 2.3 \times 10^{-5} \ 6; \ \alpha(P) = 1.19 \times 10^{-6} \\ 46 \qquad $			ч <i>ту.</i> у у	75	1050.074	т,5	[12]		0.01091	$\alpha(\mathbf{N})=0.001350\ 20,\ \alpha(\mathbf{L})=0.00201\ 4,\ \alpha(\mathbf{M})=0.000389\ 9$ $\alpha(\mathbf{N})=0.0001346\ 19;\ \alpha(\mathbf{O})=1.85\times10^{-5}\ 3;$ $\alpha(\mathbf{P})=7.56\times10^{-7}\ 11$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			487.0 <i>3</i>	13 4	1643.27	3-	[M1,E2]		0.0240 78	α (K)=0.0200 70; α (L)=0.0032 7; α (M)=0.00070 14 α (N)=0.00016 4; α (O)=2.3×10 ⁻⁵ 6; α (P)=1.19×10 ⁻⁶
$595.32^{a} \ 10 13^{a} \ 4 1535.150 4^{-} [M1,E2] \qquad 0.0144 \ 4' \alpha(K)=0.0121 \ 4I; \ \alpha(L)=0.0018 \ 5; \ \alpha(M)=0.00040 \ 10 \\ \alpha(N)=9.3\times10^{-5} \ 22; \ \alpha(O)=1.34\times10^{-5} \ 35; \\ \alpha(P)=7.2\times10^{-7} \ 27 \\ 0.00816 \qquad \alpha(K)=0.00670 \ 10; \ \alpha(L)=0.001135 \ 16; \ \alpha(M)=0.000253 \\ 4 \\ \alpha(N)=5.81\times10^{-5} \ 9; \ \alpha(O)=8.16\times10^{-6} \ 12; \\ \alpha(P)=3.82\times10^{-7} \ 6 \\ \end{array}$			ror and ro	and a						46
641.1 <i>I</i> 28 7 1489.500 1 ⁻ (E2) 0.00816 $\alpha(K) = 0.00670 \ I0; \ \alpha(L) = 0.001135 \ I6; \ \alpha(M) = 0.000253$ $\alpha(N) = 5.81 \times 10^{-5} \ 9; \ \alpha(O) = 8.16 \times 10^{-6} \ I2; \ \alpha(P) = 3.82 \times 10^{-7} \ 6$			595.32 " 10	13" 4	1535.150	4-	[M1,E2]		0.0144 47	$\alpha(\mathbf{K})=0.0121 \ 41; \ \alpha(\mathbf{L})=0.0018 \ 5; \ \alpha(\mathbf{M})=0.00040 \ 10$ $\alpha(\mathbf{N})=9.3\times10^{-5} \ 22; \ \alpha(\mathbf{O})=1.34\times10^{-5} \ 35;$ $\alpha(\mathbf{P})=7.2\times10^{-7} \ 27$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			641.1 <i>1</i>	28 7	1489.500	1-	(E2)		0.00816	$\alpha(K)=0.00670 \ 10; \ \alpha(L)=0.001135 \ 16; \ \alpha(M)=0.000253 $
$\alpha(\mathbf{r})=3.82\times10^{-1}$ 6										$\alpha(N) = 5.81 \times 10^{-5} 9; \alpha(O) = 8.16 \times 10^{-6} 12;$
112.02.20 22 T $1JJ0.070$ 2			772.02 20	22 4	1358.670	2-				$\alpha(\mathbf{r}) = 5.82 \times 10^{-6} 0$

From ENSDF

 $^{160}_{66}\mathrm{Dy}_{94}$ -32

$\gamma(^{160}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [†]	α^{a}	Comments
2130.579	3-	843.95 7	56 7	1286.713	3-	(E2)	0.00436	α (K)=0.00364 5; α (L)=0.000564 8; α (M)=0.0001247 18 α (N)=2.87×10 ⁻⁵ 4; α (O)=4.10×10 ⁻⁶ 6; α (P)=2.10×10 ⁻⁷ 3
		865.82 6	32.8 29	1264.7472	2^{-}			
		1081.50 <i>13</i>	22 6	1049.1018	3+	E1	1.08×10^{-3}	α (K)=0.000924 <i>13</i> ; α (L)=0.0001222 <i>18</i> ; α (M)=2.65×10 ⁻⁵ <i>4</i> α (N)=6.11×10 ⁻⁶ <i>9</i> ; α (O)=8.94×10 ⁻⁷ <i>13</i> ; α (P)=5.16×10 ⁻⁸ <i>8</i>
		1164.35 4	100 4	966.1687	2+	E1	9.56×10 ⁻⁴	$\begin{aligned} &\alpha(\text{K}) = 0.000809 \ 12; \ \alpha(\text{L}) = 0.0001066 \ 15; \ \alpha(\text{M}) = 2.31 \times 10^{-5} \ 4 \\ &\alpha(\text{N}) = 5.33 \times 10^{-6} \ 8; \ \alpha(\text{O}) = 7.81 \times 10^{-7} \ 11; \ \alpha(\text{P}) = 4.52 \times 10^{-8} \ 7; \\ &\alpha(\text{IPF}) = 1.154 \times 10^{-5} \ 17 \end{aligned}$
		1846.9 ^d 2	6^{d} 3	283.8219	4^{+}			
		2043.87 ^d 5	46 ^{<i>d</i>} 7	86.7877	2+	E1	9.66×10 ⁻⁴	$\alpha(K)=0.000313 5; \alpha(L)=4.06\times10^{-5} 6; \alpha(M)=8.77\times10^{-6} 13$ $\alpha(N)=2.03\times10^{-6} 3; \alpha(O)=2.98\times10^{-7} 5; \alpha(P)=1.759\times10^{-8} 25;$
2138.20	2+	443.91 16	11 3	1694.360	4+	[E2]	0.0208	$\alpha(\text{K})=0.0000179$ $\alpha(\text{K})=0.01653\ 24;\ \alpha(\text{L})=0.00332\ 5;\ \alpha(\text{M})=0.000750\ 11$ $\alpha(\text{N})=0.0001713\ 24;\ \alpha(\text{O})=2.34\times10^{-5}\ 4;\ \alpha(\text{P})=9.14\times10^{-7}\ 13$
		484.62 9	62	1653.66	_			
		851.3 2	11 5	1286.713	3-			
		982.33 ^{<i>a</i>} 17	$4^{a}_{a} 2$	1155.841	4+			
		1171.97 <mark>4</mark> 6	33 ^a 8	966.1687	2+			<i>,</i>
		2051.42 5	100 3	86.7877	2+	E2,M1	0.00121 15	$\alpha(K)=0.00074 \ 10; \ \alpha(L)=0.000101 \ 13; \ \alpha(M)=2.2\times10^{-5} \ 3 \\ \alpha(N)=5.1\times10^{-6} \ 7; \ \alpha(O)=7.4\times10^{-7} \ 10; \ \alpha(P)=4.4\times10^{-8} \ 7; \\ \alpha(IPF)=0.00034 \ 3 $
		2138.2 2	24 12	0.0	0+	E2	1.06×10^{-3}	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.000602 \ 9; \ \alpha(\mathrm{L}) = 8.10 \times 10^{-5} \ 12; \ \alpha(\mathrm{M}) = 1.762 \times 10^{-5} \ 25 \\ \alpha(\mathrm{N}) = 4.07 \times 10^{-6} \ 6; \ \alpha(\mathrm{O}) = 5.97 \times 10^{-7} \ 9; \ \alpha(\mathrm{P}) = 3.47 \times 10^{-8} \ 5; \\ \alpha(\mathrm{IPF}) = 0.000350 \ 5 \end{array} $
2140.15	(3)	984.65 ^d 20	8 ^d 4	1155.841	4^{+}			
		1091.1 <i>3</i>	72 10	1049.1018	3+			
		1173.95 ^d 5	100 d 20	966.1687	2^{+}			
		1856.38 5	46 4	283.8219	4^{+}			
2141.67	$2^+, 3, 4^+$	1857.9 2	65 11	283.8219	4+			
0140 70	4-	2054.8 2	100 17	86.7877	2^{+}_{+}			
2143.73	4	449.5 3	13 4	1694.360	4'	F 1	1 (0, 10-3	(T) 0.00140(.01, (T) 0.000100.0, (A) 4.17, (10-5)
		855.0 2	46 14	1288.665	2,	EI	1.68×10 ⁻⁵	$\alpha(\mathbf{K})=0.001436\ 21;\ \alpha(\mathbf{L})=0.000192\ 3;\ \alpha(\mathbf{M})=4.1\times10^{-6}\ 6$ $\alpha(\mathbf{N})=9.61\times10^{-6}\ 14;\ \alpha(\mathbf{O})=1.401\times10^{-6}\ 20;\ \alpha(\mathbf{P})=7.99\times10^{-8}\ 12$
		987.91 ^{<i>a</i>} 11	100 ^{<i>a</i>} 14	1155.841	4+			
0144.563		1094.6 1	46 11	1049.1018	3^+			
2144.56?	1.2	2057.76° 5	100 45	86.7877	2 ⁺			
2149.84	1,2	2003.1 4	33.0	80./8// 0.0	2 · 0+			
2155 33		1871.5 2	100	283 8219	4+			
2165.41		1116.3 1	100	1049.1018	3+			
2175.3		1208.5	100	966.83	8+			

33

¹⁶⁰₆₆Dy₉₄-33

$\gamma(^{160}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α^{a}	Comments
2187.00	4+,5+,6+	580.2 <i>1</i> 748.4 <i>1</i> 1606.0 <i>3</i>	9.5 18 50 14 100 18	1606.84 1438.554 581.066	6 ⁺ 6 ⁺ 6 ⁺	E2	1.31×10 ⁻³	$\alpha(K)=0.001018 \ 15; \ \alpha(L)=0.0001406 \ 20; \ \alpha(M)=3.07\times10^{-5} \ 5 \ \alpha(N)=7.08\times10^{-6} \ 10; \ \alpha(O)=1.034\times10^{-6} \ 15; \ \alpha(P)=5.88\times10^{-8} \ 9; \ \alpha(P)=0.001112 \ 16$
2191.03 2194.43	5+	1903.17 9 1907.20 7 406.7 3	24 2 100 19 4	283.8219 283.8219 1787.79	4 ⁺ 4 ⁺ 6 ⁻	E1	0.00824	α (IPP)=0.0001112 10 α (K)=0.00700 10; α (L)=0.000972 14; α (M)=0.000212 3 α (N)=4.87×10 ⁻⁵ 7; α (O)=7.01×10 ⁻⁶ 10; α (D)=2.77×10 ⁻⁷ 6
		755.6 <i>3</i> 905.76 <i>16</i>	4 <i>1</i> 78 6	1438.554 1288.665	6+ 5+	(E2)	0.00375	$\alpha(K) = 0.00314 \ 5; \ \alpha(L) = 0.000477 \ 7; \ \alpha(M) = 0.0001053 \ 15$ $\alpha(K) = 2.42 \times 10^{-5} \ 4 \times (0) \ 2.47 \times 10^{-6} \ 5 \times (D) \ 1.81 \times 10^{-7} \ 3 \times 10^$
		1038.59 4	100 7	1155.841	4+	E2	0.00281	$\alpha(N)=2.42\times10^{-4}; \ \alpha(O)=3.47\times10^{-5}; \ \alpha(P)=1.81\times10^{-5}; \ \alpha(K)=0.00237 \ 4; \ \alpha(L)=0.000349 \ 5; \ \alpha(M)=7.68\times10^{-5} \ 11 \ \alpha(N)=1.769\times10^{-5} \ 25; \ \alpha(O)=2.55\times10^{-6} \ 4; \ \alpha(P)=1.367\times10^{-7} \ 20$
		1145.33 4	81 3	1049.1018	3+	E2	0.00231	$\alpha(K)=0.00195 \ 3; \ \alpha(L)=0.000282 \ 4; \ \alpha(M)=6.18\times10^{-5} \ 9 \\ \alpha(N)=1.426\times10^{-5} \ 20; \ \alpha(O)=2.06\times10^{-6} \ 3; \ \alpha(P)=1.125\times10^{-7} \ 16; \\ \alpha(IPF)=1 \ 368\times10^{-6} \ 20$
2200.82	2+,3,4+	1910.58 <i>6</i> 1916.95 <i>13</i> 2114.02 <i>4</i>	11.8 <i>13</i> 100 <i>12</i> 97 <i>13</i>	283.8219 283.8219 86.7877	4+ 4+ 2+			
2208.36	4+	1052.63 8 1159.1 <i>3</i>	45 5 90 <i>17</i>	1155.841 1049.1018	4+ 3+	E2	0.00225	α (K)=0.00190 3; α (L)=0.000275 4; α (M)=6.02×10 ⁻⁵ 9 α (N)=1.389×10 ⁻⁵ 20; α (O)=2.01×10 ⁻⁶ 3; α (P)=1.099×10 ⁻⁷ 16;
		1241.9 <i>3</i>	100 10	966.1687	2+	E2	0.00197	$\alpha(\text{IPF})=2.04\times10^{-6} \ 4$ $\alpha(\text{K})=0.001661 \ 24; \ \alpha(\text{L})=0.000237 \ 4; \ \alpha(\text{M})=5.20\times10^{-5} \ 8$ $\alpha(\text{N})=1.198\times10^{-5} \ 17; \ \alpha(\text{O})=1.739\times10^{-6} \ 25; \ \alpha(\text{P})=9.60\times10^{-8} \ 14; \ \alpha(\text{IPF})=1.043\times10^{-5} \ 16$
2208.79	$(2)^{-}$	2122.0 <i>I</i>	100	86.7877	2+			
2221.48	10+	421.6 ^{&} 1	90 <i>10</i>	1800.35	8+	E2	0.0239	$\alpha(K)=0.0189 \ 3; \ \alpha(L)=0.00391 \ 6; \ \alpha(M)=0.000886 \ 13 \ \alpha(N)=0.000202 \ 3; \ \alpha(O)=2.75\times10^{-5} \ 4; \ \alpha(P)=1.039\times10^{-6} \ 15 \ Mult.; \ from \ (\alpha,2n\gamma).$
		793.8 1	100 10	1427.89	10+	E2+M1	0.0072 22	$\alpha(K)=0.0060 \ 19; \ \alpha(L)=8.8\times10^{-4} \ 23; \ \alpha(M)=0.00019 \ 5 \\ \alpha(N)=4.5\times10^{-5} \ 12; \ \alpha(O)=6.5\times10^{-6} \ 18; \ \alpha(P)=3.6\times10^{-7} \ 12$
2230.52	2+	1251.1 ^{&} 2 1946.3 <i>3</i> 2143.8 2 2230.52 8	<50 14 <i>3</i> 42 <i>9</i> 100 <i>9</i>	966.83 283.8219 86.7877 0.0	8 ⁺ 4 ⁺ 2 ⁺ 0 ⁺			E_{γ} : see the comment on this γ in the (⁷ Li,p4n γ) data set.
2241.95	10-	220	94	2021.64	9+	[E1]	0.0379	α(K)=0.0320 5; α(L)=0.00461 7; α(M)=0.001008 15 $α(N)=0.000231 4; α(O)=3.26×10^{-5} 5; α(P)=1.638×10^{-6} 23$ E_{γ} : from 1987Ri08, (α,2nγ). See the comments on the 181 γ for the proposed γ deexcitation of the even-spin members of the $K^{\pi}=2^{-}$ to the γ-vibrational band.

						Ac	lopted Le	vels, Ga	mmas (contin	ued)
							$\gamma(^1$	⁶⁰ Dy) (continued)	
	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ ^{#b}	α^{a}	Comments
										I _y : computed from I(γ +ce)(220 γ)/I(γ +ce)(360.0 γ) from (α ,2n γ) and I γ (359.8 γ). Note that if there is a significant M2 admixture in this γ , α will be somewhat larger and the deduced I γ will be smaller.
	2241.95	10-	341.2 2	<11	1900.87	9-				a. computed assuming man–E1.
			359.8 1	100 5	1882.31	8-				
			813.9 <i>1</i>	14 2	1427.89	10^{+}				
	2244.93	2+,3,4+	1960.9 3	68 <i>14</i>	283.8219	4+ 2+				
	2255 67	1+ 2+	2158.28 15	100 18	80./8//	2 · 2+				
	2233.07	1,2	2168.87 6	100 17	86.7877	2^{+}	E2,M1		0.00118 13	$\alpha(K)=0.00066\ 8;\ \alpha(L)=8.9\times10^{-5}\ 11;\ \alpha(M)=1.95\times10^{-5}$
										α (N)=4.5×10 ⁻⁶ 6; α (O)=6.6×10 ⁻⁷ 9; α (P)=3.9×10 ⁻⁸ 6; α (IPF)=0.00040 4
		-	2255.2 5	10 5	0.0	0^{+}				
	2263.99	9-	365.3 2	<71	1898.23	7-				
			1297.1 ^{&} 2	100 14	966.83	8+				7
35	2264.23	11-	363.4 1	17 2	1900.87	9 ⁻				E_{γ} , I_{γ} : from 2002Ju08, ('Li,p4n γ).
	2265.0	(10^{+})	830.3 I	100 5	1427.89	10+				L computed from the $I(\alpha + \alpha)$ value of 1097D;09
	2203.0	(10)	030.3 1	50.8	1427.09	10				$(\gamma, 2n\gamma)$
			1298.2	100 15	966.83	8+				I_{γ} : computed from the I(γ +ce) value of 1987Ri08 in (α ,2n γ).
	2266.98	3-	1983.15 4	100 3	283.8219	4+	E1		9.41×10 ⁻⁴	$\alpha(K)=0.000329 5; \alpha(L)=4.26\times10^{-5} 6; \alpha(M)=9.21\times10^{-6}$ 13
										$\alpha(N)=2.13\times10^{-6} 3; \alpha(O)=3.13\times10^{-7} 5; \alpha(P)=1.85\times10^{-8} 3; \alpha(IPF)=0.000558 8$
			2180.2 2	91 6	86.7877	2+	E1		1.02×10^{-3}	$\alpha(K)=0.000283 4; \alpha(L)=3.66\times10^{-5} 6; \alpha(M)=7.91\times10^{-6}$ 11
										α (N)=1.83×10 ⁻⁶ 3; α (O)=2.69×10 ⁻⁷ 4; α (P)=1.589×10 ⁻⁸ 23; α (IPF)=0.000695 10
	2271.246	2-	781.86 10	7.9 6	1489.500	1-				
			912.58 ^d 22	2.7 <mark>d</mark> 9	1358.670	2^{-}				
			921.50 ^d 16	3.6 ^d 12	1349.758	2^{+}				
			984.65 ^d 20	0.9 ^d 3	1286.713	3-				
			1006.4 3	3 1	1264.7472	2^{-}				
			1305.18 ^d 5	15 ^d 3	966.1687	2+	E1		8.44×10 ⁻⁴	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000661 \ 10; \ \alpha(\mathbf{L}) = 8.67 \times 10^{-5} \ 13; \\ &\alpha(\mathbf{M}) = 1.88 \times 10^{-5} \ 3 \\ &\alpha(\mathbf{N}) = 4.34 \times 10^{-6} \ 6; \ \alpha(\mathbf{O}) = 6.36 \times 10^{-7} \ 9; \\ &\alpha(\mathbf{P}) = 3.70 \times 10^{-8} \ 6; \ \alpha(\mathbf{IPF}) = 7.25 \times 10^{-5} \ 11 \end{aligned}$

From ENSDF

Т

					A	Adopted Leve	els, Gammas	(continued)					
						$\gamma(^{160}$	⁾ Dy) (continu	ied)					
E _i (level)	\mathbf{J}_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ ^{#b}	α^{a}	Comments				
2271.246	2-	2184.43 4	100 3	86.7877	2+	E1(+M2)	-0.09 10	0.00103 4	$\alpha(K)=0.00029 \ 4; \ \alpha(L)=3.8\times10^{-5} \ 5; \\ \alpha(M)=8.2\times10^{-6} \ 11 \\ \alpha(N)=1.9\times10^{-6} \ 3; \ \alpha(O)=2.8\times10^{-7} \ 4; \\ \alpha(P)=1.65\times10^{-8} \ 22; \ \alpha(IPF)=0.000694 \ 16 \\ \delta; \ from \ ^{160}Ho \ \varepsilon \ decay.$				
2279.06 2287.8	8-	1995.22 <i>10</i> 486.0	100 27 <i>4</i>	283.8219 1802.224	4+ 5+				I _{γ} : the listed value is the undivided intensity from the in-beam studies. It is not possible at present to provide an accurate split of this intensity between the two proposed placements (see the comment on the 486 γ in the "in-beam" data set.).				
		670.2	100 15	1617.27	7+	E1		0.00274	$\alpha(\mathbf{K})=0.00233 \ 4; \ \alpha(\mathbf{L})=0.000316 \ 5; \\ \alpha(\mathbf{M})=6.86 \times 10^{-5} \ 10 \\ \alpha(\mathbf{N})=1.581 \times 10^{-5} \ 23; \ \alpha(\mathbf{O})=2.30 \times 10^{-6} \ 4; \\ \alpha(\mathbf{P})=1.289 \times 10^{-7} \ 18 $				
2297.48	2+	1321 171.1 2	60 9 4.8 7	966.83 2126.37	8+ 3-	[E1]		0.0734	α (K)=0.0619 9; α (L)=0.00907 13; α (M)=0.00198 3 α (N)=0.000453 7; α (O)=6.34×10 ⁻⁵ 9; α (P)=3.07×10 ⁻⁶ 5				
		212.8 1	2.0 5	2084.809	1+,2+	[M1,E2]		0.24 5	$\alpha(\mathbf{K}) = 0.187\ 55;\ \alpha(\mathbf{L}) = 0.041\ 6;\ \alpha(\mathbf{M}) = 0.0093\ 17$ $\alpha(\mathbf{K}) = 0.0021\ 4;\ \alpha(\mathbf{O}) = 0.00029\ 3;\ \alpha(\mathbf{P}) = 1.07 \times 10^{-5}$				
		394.5 <i>4</i>	74	1903.204	3+	[M1,E2]		0.042 13	$\alpha(K)=0.034 \ l2; \ \alpha(L)=0.0057 \ 9; \ \alpha(M)=0.00128 \ l8 \ \alpha(N)=0.00029 \ 5; \ \alpha(O)=4.2\times10^{-5} \ 8; \ \alpha(P)=2.04\times10^{-6} \ 8l$				
		1010.8 2 1032.84 ^d 7 1248.26 5	5.9 <i>12</i> 4 ^{<i>d</i>} <i>1</i> 20 <i>2</i>	1286.713 1264.7472 1049.1018	3- 2- 3+				u(1)=2.04×10 01				
		1331.21 14	100 12	966.1687	2+	E2		1.74×10 ⁻³	$\alpha(K)=0.001452 \ 21; \ \alpha(L)=0.000205 \ 3; \alpha(M)=4.49\times10^{-5} \ 7 \alpha(N)=1.036\times10^{-5} \ 15; \ \alpha(O)=1.506\times10^{-6} \ 21; \alpha(P)=8.39\times10^{-8} \ 12; \ \alpha(IPF)=2.56\times10^{-5} \ 4$				
2309.90	2+,3,4+	2210.8 2 2297.6 4 791.5 2 951.3 3 1260.82 20 2026.0 2 2223 1 3	7 <i>1</i> 4.3 <i>15</i> 100 <i>25</i> 19 <i>2</i> 40 <i>8</i> 13 <i>2</i> 22 <i>3</i>	86.7877 0.0 1518.419 1358.670 1049.1018 283.8219 86.7877	2+ 0+ 2+ 2- 3+ 4+ 2+								
2323.08	1+,2+	370.7 3	4 2	1952.31	$\tilde{0}^+$	[M1,E2]		0.049 15	$\begin{aligned} &\alpha(\mathbf{K}) = 0.041 \ 14; \ \alpha(\mathbf{L}) = 0.0069 \ 10; \ \alpha(\mathbf{M}) = 0.00154 \ 18 \\ &\alpha(\mathbf{N}) = 0.00035 \ 5; \ \alpha(\mathbf{O}) = 5.0 \times 10^{-5} \ 9; \\ &\alpha(\mathbf{P}) = 2.40 \times 10^{-6} \ 96 \end{aligned}$				
	Adopted Levels, Gammas (continued)												
------------------------	------------------------------------	--	-----------------------------	------------------------	----------------------------------	-----------------------------	-----------------------	--	--	--	--	--	--
						$\gamma(^{160}\text{Dy})$ (continued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α^{a}	Comments					
2323.08	1+,2+	1058.25 <i>4</i> 1274.25 <i>1</i> 2	59 <i>3</i> 100 6	1264.7472 1049.1018	2 ⁻ 3 ⁺	E2	0.00188	$\alpha(K)=0.001580\ 23;\ \alpha(L)=0.000225\ 4;\ \alpha(M)=4.92\times10^{-5}\ 7$ $\alpha(N)=1.135\times10^{-5}\ 16;\ \alpha(O)=1.648\times10^{-6}\ 23;$					
		1357.01 5	86 6	966.1687	2+	(E2)	1.68×10^{-3}	$\alpha(P)=9.13\times10^{-6} \ 13; \ \alpha(IPF)=1.520\times10^{-5} \ 22$ $\alpha(K)=0.001399 \ 20; \ \alpha(L)=0.000197 \ 3; \ \alpha(M)=4.31\times10^{-5} \ 6$ $\alpha(N)=9.95\times10^{-6} \ 14; \ \alpha(O)=1.448\times10^{-6} \ 21; \ \alpha(P)=8.09\times10^{-8} \ 12; \ \alpha(IPF)=3.15\times10^{-5} \ 5$					
		2236.21 8	70 10	86.7877	2+	E2	1.05×10 ⁻³	$\alpha(K) = 0.00555 \ 8; \ \alpha(L) = 7.45 \times 10^{-5} \ 11; \alpha(M) = 1.619 \times 10^{-5} \ 23 \alpha(N) = 3.74 \times 10^{-6} \ 6; \ \alpha(O) = 5.49 \times 10^{-7} \ 8; \ \alpha(P) = 3.20 \times 10^{-8} $					
2325.24	1+,2+	2325.22 9	100	0.0	0+	E2,M1	0.00115 11	5; $\alpha(\text{IPF})=0.000397.6$ $\alpha(\text{K})=0.00058.6$; $\alpha(\text{L})=7.7\times10^{-5}.9$; $\alpha(\text{M})=1.68\times10^{-5}.18$ $\alpha(\text{N})=3.9\times10^{-6}.5$; $\alpha(\text{O})=5.7\times10^{-7}.7$; $\alpha(\text{P})=3.4\times10^{-8}.4$; $\alpha(\text{IPF})=0.00048.5$					
2327.70	2^{+}	1361.7 5	32 19	966.1687	2+								
		2043.87 ^d 5	44 ^d 13	283.8219	4+		2						
		2240.89 7	100 9	86.7877	2+	E2	1.05×10^{-3}	$\alpha(K)=0.000553 \ 8; \ \alpha(L)=7.42\times10^{-5} \ 11; \\ \alpha(M)=1.613\times10^{-5} \ 23 \\ \alpha(N)=3.73\times10^{-6} \ 6; \ \alpha(O)=5.47\times10^{-7} \ 8; \ \alpha(P)=3.19\times10^{-8} \\ 5; \ \alpha(IPF)=0.000399 \ 6$					
		2327.4 4	25 8	0.0	0^{+}								
2354.625	2+	955.62 6	20 4	1398.964	3-								
		995.9 3	11.4	1358.670	2-								
		1004.86 ^{<i>a</i>} 2	13 ⁴ 6	1349.758	2 ⁺								
		1067.91	44.5	1280./13	3 1-								
		1069.63 <i>15</i>	23 ²⁰ 0 100 8	1264.7472	1 2 ⁻	E1	1.07×10 ⁻³	α (K)=0.000911 <i>13</i> ; α (L)=0.0001205 <i>17</i> ; α (M)=2.61×10 ⁻⁵ <i>4</i> α (N)=6.03×10 ⁻⁶ <i>9</i> ; α (O)=8.82×10 ⁻⁷ <i>13</i> ; α (P)=5.09×10 ⁻⁸ <i>8</i>					
		1198.84 ^d 4	38 ^d 13	1155.841	4+								
		$1388 0^{d} 4$	6^{d} 3	966 1687	2+								
		2267.73 8	31.8 15	86.7877	2 ⁺	E0+M1+E2		$\alpha(\exp)=0.0028$ 12 α : calculated by evaluator in ε decay.					
		2354.54 7	29 3	0.0	0+	E2	1.05×10 ⁻³	$\begin{aligned} &\alpha(\text{K}) = 0.000506 \ 7; \ \alpha(\text{L}) = 6.77 \times 10^{-5} \ 10; \\ &\alpha(\text{M}) = 1.471 \times 10^{-5} \ 21 \\ &\alpha(\text{N}) = 3.40 \times 10^{-6} \ 5; \ \alpha(\text{O}) = 4.99 \times 10^{-7} \ 7; \ \alpha(\text{P}) = 2.92 \times 10^{-8} \\ &4; \ \alpha(\text{IPF}) = 0.000453 \ 7 \\ &\text{Mult.: } 2002\text{Ad34 report mult} = \text{M1,E2. Placement requires} \\ &\text{E2.} \end{aligned}$					
2367.46	$2^+,\!3^+,\!4^+$	122.53 ^d 2	8 ^d 2	2244.93	$2^+, 3, 4^+$	(M1)	1.340	$\alpha(K)=1.128\ 16;\ \alpha(L)=0.1656\ 24;\ \alpha(M)=0.0364\ 5$					

Adopted Levels, Gammas (continued)

γ (¹⁶⁰Dy) (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α ^{<i>a</i>}	Comments
2367.46	2+,3+,4+	270.65 <i>5</i> 673.09 <i>7</i> 1211.71 <i>6</i>	3.7 <i>3</i> 30 <i>3</i> 32 <i>2</i>	2096.889 1694.360 1155.841	4+ 4+ 4+			α (N)=0.00841 <i>12</i> ; α (O)=0.001231 <i>18</i> ; α (P)=7.03×10 ⁻⁵ <i>10</i>
		1318.21 ^d 5	56 ^d 11	1049.1018	3+	E2	1.77×10^{-3}	α (K)=0.001479 21; α (L)=0.000209 3; α (M)=4.58×10 ⁻⁵ 7 α (N)=1.057×10 ⁻⁵ 15; α (O)=1.536×10 ⁻⁶ 22; α (P)=8.55×10 ⁻⁸ 12; α (IPE)=2 30×10 ⁻⁵ 4
		1401.2 <i>I</i>	100 33	966.1687	2+	E2	1.59×10 ⁻³	$\alpha(K) = 0.001316 \ I9; \ \alpha(L) = 0.000185 \ 3; \ \alpha(M) = 4.04 \times 10^{-5} \ 6$ $\alpha(N) = 9.32 \times 10^{-6} \ I3; \ \alpha(O) = 1.356 \times 10^{-6} \ I9; \ \alpha(P) = 7.61 \times 10^{-8} \ I1;$ $\alpha(IPF) = 4.29 \times 10^{-5} \ 6$
2372.305	6-	570.21 13	19 2	1802.224	5+			
		755.1 <i>3</i>	53	1617.27	7+			
		758.31 ^d 3	15 ^d 5	1613.98	7^{-}			
		933.8 1	20 5	1438.554	6+			
		963.9 1	100 25	1408.47	5-			
		986.15 ^a 11	5^{a} 3	1386.458	4-		2	5
		1083.70 5	90 13	1288.665	5+	E1	1.08×10^{-3}	$\alpha(\mathbf{K})=0.000921 \ I3; \ \alpha(\mathbf{L})=0.0001217 \ I7; \ \alpha(\mathbf{M})=2.64\times10^{-5} \ 4$ $\alpha(\mathbf{N})=6.09\times10^{-6} \ 9; \ \alpha(\mathbf{O})=8.91\times10^{-7} \ I3; \ \alpha(\mathbf{P})=5.14\times10^{-8} \ 8$
2374.50		975.40 ^d 9	33 ^d 16	1398.964	3-			
		2090.71 5	100 8	283.8219	4+			
2383.69	6-	454.7 3	32	1929.176	6^+			
		766.4 I	92 1 2 d	1617.27	/.			
		776.8 ^{<i>a</i>} 4	1.34 6	1606.84	6+			
		975.40 ^{<i>a</i>} 9	6.2^{a} 12	1408.47	5-		2	
		1095.01 ^{<i>a</i>} 3	100 ^{<i>a</i>} 19	1288.665	5+	(E1)	1.06×10^{-3}	α (K)=0.000903 <i>13</i> ; α (L)=0.0001194 <i>17</i> ; α (M)=2.59×10 ⁻⁵ <i>4</i> α (N)=5.97×10 ⁻⁶ <i>9</i> ; α (O)=8.74×10 ⁻⁷ <i>13</i> ; α (P)=5.05×10 ⁻⁸ 7
2386.88	2+,3+	987.91 ^d 11	8 <mark>d</mark> 3	1398.964	3-			
		1028.26 ^d 5	$10^{d} 5$	1358.670	2^{-}			
		1100.14 8	24 5	1286.713	3-			
		1122.10 4	100 3	1264.7472	2-	E1	1.01×10^{-3}	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000864 \ 12; \ \alpha(\mathbf{L}) = 0.0001141 \ 16; \ \alpha(\mathbf{M}) = 2.47 \times 10^{-5} \ 4 \\ &\alpha(\mathbf{N}) = 5.71 \times 10^{-6} \ 8; \ \alpha(\mathbf{O}) = 8.35 \times 10^{-7} \ 12; \ \alpha(\mathbf{P}) = 4.83 \times 10^{-8} \ 7; \\ &\alpha(\mathbf{IPF}) = 3.60 \times 10^{-6} \ 5 \end{aligned}$
		2299.8 4	4.3 12	86.7877	2^{+}			
2393.54	2,3-	994.76 <i>13</i>	100 13	1398.964	3-			
		1106.5 3	38 13	1286.713	3-			
		1107.6 3	40 13	1285.604	1-			
		1128.7 1	20 5	1264.7472	2-			
		1344.4 1	23 13 16 5	283 8210	3 · 1+			
		2307.0 3	13 3	86.7877	2+			

Adopted Levels, Gammas (continued)

γ (¹⁶⁰Dy) (continued)

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [†]	δ ^{#b}	α^{a}	Comments
2396.92	1,2	2310.1 5	100 25	86.7877	2^+				
2450.25	1-	580.83 20	92 21 11 4	1869.513	2^+				
		2363.1 ^{<i>d</i>} 4	50 ^d 13	86.7877	2^{+}				
		2450.25 6	100 25	0.0	0+	E1		1.14×10 ⁻³	$\alpha(K)=0.000236 \ 4; \ \alpha(L)=3.04\times10^{-5} \ 5; \alpha(M)=6.57\times10^{-6} \ 10 \alpha(N)=1.518\times10^{-6} \ 22; \ \alpha(O)=2.23\times10^{-7} \ 4; 0.00000000000000000000000000000000000$
2469.51	3-	372.47 ^{&} 4	100 2	2096.889	4+	E1		0.01014	$\alpha(P)=1.325\times10^{-6} I9; \ \alpha(PF)=0.000870 I3$ $\alpha(K)=0.00861 I2; \ \alpha(L)=0.001202 I7;$ $\alpha(M)=0.000262 4$ $\alpha(N)=6.02\times10^{-5} 9; \ \alpha(O)=8.64\times10^{-6} I3;$
									$\alpha(P)=4.62\times10^{-7}$ 7
		600.2 1	15 6	1869.513	2^{+}				
		665.3 ^{<i>a</i>} 5	30 ^{<i>a</i>} 9	1804.669	1+	[M2]		0.0409	α (K)=0.0340 5; α (L)=0.00535 8; α (M)=0.001187 17 α (N)=0.000275 4; α (O)=4.01×10 ⁻⁵ 6; α (P)=2.26×10 ⁻⁶ 4
		814.57 5	87 <i>3</i>	1654.99	2+,3+,4+				
		816.04 7	62 3	1653.66					
		934.4 ^{<i>a</i>} 3	12 ^{<i>a</i>} 6	1535.150	4-				
0474.07	2+ 2 4+	1111.11 ^{<i>a</i>} 18	39 ^{<i>a</i>} 12	1358.670	2^{-}				
2474.97	2, 3,4	2191.17 10	49 11	283.8219	4 · 2+				
2485.64	11+	464.3 1	100 5	2021.64	9 ⁺	E2		0.0184	$\alpha(K)=0.01472 \ 21; \ \alpha(L)=0.00288 \ 4; \ \alpha(M)=0.000651 \ 10$
									α (N)=0.0001487 21; α (O)=2.04×10 ⁻⁵ 3; α (P)=8.18×10 ⁻⁷ 12 Mult.: from 1987Ri08, (α ,2n γ).
		534.7 <mark>&</mark> 2	<14	1950.17	12^{+}				
		1058.1 2	51 <i>3</i>	1427.89	10+	E2+M1	>0.0	0.00367 97	$\alpha(K)=0.00311\ 83;\ \alpha(L)=0.00044\ 11;$ $\alpha(M)=9.6\times10^{-5}\ 23$ $\alpha(N)=2\ 2\times10^{-5}\ 6;\ \alpha(Q)=3\ 2\times10^{-6}\ 8;$
									$\alpha(P)=1.85\times10^{-7}$ 53
									Mult.: from 1987Ri08, (α ,2n γ).
2503.80	$1^+, 2^+$	634.2 1	52 34	1869.513	2 ⁺			4	
		2417.2 2	100 9	86.7877	2+	M1		1.25×10^{-3}	$\alpha(K)=0.000581 \ 9; \ \alpha(L)=7.82 \times 10^{-5} \ 11; \ \alpha(M)=1.701 \times 10^{-5} \ 24$
									$\alpha(N)=3.94\times10^{-6}$ 6; $\alpha(O)=5.80\times10^{-7}$ 9;
2513.36	14+	563.5 3	100	1950.17	12+	E2		0.01117	$\alpha(P)=5.45\times10^{-5}$; $\alpha(PF)=0.0005/2.8$ $\alpha(K)=0.00909/13$; $\alpha(L)=0.001622/23$; $\alpha(M)=0.000363/6$ $\alpha(N)=8.33\times10^{-5}/12$; $\alpha(O)=1.160\times10^{-5}/17$;

					Ado	opted Leve	els, Gammas (o	continued)
						$\gamma(^{160}$	Dy) (continued	<u>1)</u>
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [†]	α^{a}	Comments
2520 17	10-	279.2.2	.100	2241.05	10-			α (P)=5.14×10 ⁻⁷ 8 B(E2)(W.u.)=3.1×10 ² +8-3 E _{γ} ,Mult.: from (α ,2n γ).
2520.17	10	408.1 2	<100 <100	2241.95 2112.42	10 8 ⁻	E2	0.0262	α (K)=0.0206 <i>3</i> ; α (L)=0.00434 <i>7</i> ; α (M)=0.000985 <i>14</i> α (N)=0.000225 <i>4</i> ; α (O)=3.05×10 ⁻⁵ <i>5</i> ; α (P)=1.128×10 ⁻⁶ <i>16</i> Mult.: from 1987Ri08 (α ,2n γ).
2523.8	3+	2240 2437		283.8219 86.7877	4+ 2+			
2553.5 2556.72	3-,4-,5-	1504.4 ^{<i>d</i>} 3 416.56 6 459.9 1	100 ^d 33.4 23 100 14	1049.1018 2140.15 2096.889	3 ⁺ (3) 4 ⁺	E1	0.00620	$\alpha(K)=0.00527 \ 8; \ \alpha(L)=0.000728 \ 11; \ \alpha(M)=0.0001585 \ 23$
2560.02	2+,3,4+	862.30 <i>12</i> 2276.17 <i>10</i> 2473 3 <i>d</i> 2	54 6 100 4 61 ^d 15	1694.360 283.8219 86.7877	4+ 4+ 2+			$\alpha(N)=3.05\times10^{-6}$; $\alpha(O)=3.20\times10^{-6}$ 8; $\alpha(P)=2.80\times10^{-6}$ 4
2572.4	3+,4+,5+	2475.5 2 2288.6 <i>3</i>	100	283.8219	2 4 ⁺	M1	1.27×10^{-3}	α (K)=0.000656 <i>10</i> ; α (L)=8.85×10 ⁻⁵ <i>13</i> ; α (M)=1.93×10 ⁻⁵ <i>3</i> α (N)=4.45×10 ⁻⁶ <i>7</i> ; α (O)=6.57×10 ⁻⁷ <i>10</i> ; α (P)=3.90×10 ⁻⁸ <i>6</i> ; α (IPF)=0.000500 <i>7</i>
2574.37	1-,2-,3-	506.29 19	100	2068.08	1-	M1,E2	0.0217 71	$\alpha(K)=0.0181\ 63;\ \alpha(L)=0.0028\ 7;\ \alpha(M)=0.00063\ 13$ $\alpha(N)=0.00014\ 3;\ \alpha(O)=2.1\times10^{-5}\ 5;\ \alpha(P)=1.08\times10^{-6}\ 42$
2593.64	12+	645.6 ^{&} 2 1164.1 ^{&} 2	<100 100 20	1950.17 1427.89	12 ⁺ 10 ⁺			E_{γ} : see the comment on this γ in the (⁷ Li,4p γ) data set.
2602.67	1-,2-	699.9^{d} 4 797.82 18 1316 04 ^d 8	$10^{d} 5$ $21 4$ $48^{d} 24$	1903.204 1804.669 1286 713	3 ⁺ 1 ⁺ 3 ⁻			
		1337.8 ^{<i>d</i>} 2	95 ^d 24	1264.7472	2-	E2	1.72×10^{-3}	α (K)=0.001438 21; α (L)=0.000203 3; α (M)=4.44×10 ⁻⁵ 7 α (N)=1.025×10 ⁻⁵ 15; α (O)=1.490×10 ⁻⁶ 21; α (P)=8.31×10 ⁻⁸ 12; α (IPF)=2.71×10 ⁻⁵ 4
		1636.41 9 2515.86 5 2602.65 6	42 2 100 <i>10</i> 36 3	966.1687 86.7877 0.0	2^+ 2^+ 0^+			
2605.77	2+,3+,4+	1639.1 <i>5</i> 2321.94 8	20 <i>10</i> 100 <i>10</i>	966.1687 283.8219	2+ 4+	E2,M1	0.00115 11	α (K)=0.00058 6; α (L)=7.8×10 ⁻⁵ 9; α (M)=1.69×10 ⁻⁵ 18 α (N)=3.9×10 ⁻⁶ 5; α (O)=5.7×10 ⁻⁷ 7; α (P)=3.4×10 ⁻⁸ 4; α (IPF)=0.00048 5
2610.01	2+	2518.7 ^d 9 740.7 3 805.15 ^{de} 12 915.5 ^d 4	$30^{d} 10$ 55 12 $46^{d} 19$ $37^{d} 19$	86.7877 1869.513 1804.669 1694.360	2 ⁺ 2 ⁺ 1 ⁺ 4 ⁺			

From ENSDF

 $^{160}_{66}\mathrm{Dy}_{94}$ -40

γ (¹⁶⁰Dy) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [†]	α ^{<i>a</i>}	Comments
2610.01	2+	1454.2 ^d 3 1560.94 15	56 ^d 19 100 5	1155.841 1049.1018	4 ⁺ 3 ⁺	E2	1.36×10^{-3}	$\alpha(K)=0.001074 \ 15; \ \alpha(L)=0.0001487 \ 21; \ \alpha(M)=3.24\times10^{-5} \ 5 \ \alpha(N)=7.49\times10^{-6} \ 11; \ \alpha(O)=1.093\times10^{-6} \ 16; \ \alpha(P)=6.20\times10^{-8} \ 9; \ \alpha(PF)=9.43\times10^{-5} \ 14$
		1644.0 <i>4</i> 2523.0 <i>2</i>	23 5 45 7	966.1687 86.7877	2+ 2+			<i>y</i> , u(11)- <i>y</i> , y
2630.24	(1,2)+	2610.0 ^{<i>a</i>} 3 421.50 8	46 ^{<i>a</i>} 19 100 9	0.0 2208.79	0^+ (2) ⁻	E1	0.00758	$\alpha(K)=0.00644 \ 9; \ \alpha(L)=0.000893 \ 13; \ \alpha(M)=0.000195 \ 3 \ \alpha(N)=4 \ 47 \times 10^{-5} \ 7; \ \alpha(O)=6 \ 44 \times 10^{-6} \ 9; \ \alpha(P)=3 \ 48 \times 10^{-7} \ 5$
		1140.71 5	67 18	1489.500	1-	E1	9.86×10 ⁻⁴	$\alpha(\mathbf{K}) = 0.000839 \ 12; \ \alpha(\mathbf{L}) = 0.0001107 \ 16; \ \alpha(\mathbf{M}) = 2.40 \times 10^{-5} \ 4 \\ \alpha(\mathbf{N}) = 5.54 \times 10^{-6} \ 8; \ \alpha(\mathbf{O}) = 8.10 \times 10^{-7} \ 12; \ \alpha(\mathbf{P}) = 4.69 \times 10^{-8} \ 7; \\ \alpha(\mathbf{P}\mathbf{E}) = 6.29 \times 10^{-6} \ 9$
2630.705	1-	333.16 10	2.52 25	2297.48	2+	E1	0.01328	$\alpha(M^{-1}) = 0.25 \times 10^{-5}$ $\alpha(K) = 0.01126 \ 16; \ \alpha(L) = 0.001582 \ 23; \ \alpha(M) = 0.000345 \ 5$ $\alpha(N) = 7.93 \times 10^{-5} \ 12; \ \alpha(Q) = 1.134 \times 10^{-5} \ 16; \ \alpha(P) = 5.99 \times 10^{-7} \ 9$
		359.46 15	0.95 13	2271.246	2-	M1,E2	0.054 17	$\alpha(N) = 0.044 \ I5; \ \alpha(L) = 0.0075 \ I0; \ \alpha(M) = 0.00168 \ I8$ $\alpha(N) = 0.0039 \ 5; \ \alpha(D) = 5 \ 5 \ 10^{-5} \ 9; \ \alpha(D) = 26 \ 10^{-6} \ II$
		492.50 4	11.2 7	2138.20	2+	E1	0.00531	$\alpha(N)=0.000395, \alpha(O)=3.3\times10^{-9}, \alpha(T)=2.0\times10^{-11}$ $\alpha(K)=0.004527; \alpha(L)=0.0006219; \alpha(M)=0.000135319$ $\alpha(N)=3.11\times10^{-5}5; \alpha(O)=4.50\times10^{-6}7; \alpha(D)=2.46\times10^{-7}4$
		504.15 ^d 20	0.8 ^{<i>d</i>} 3	2126.37	3-	[E2]	0.01483	$\alpha(\mathbf{K})=0.01195 \ 17; \ \alpha(\mathbf{L})=0.00224 \ 4; \ \alpha(\mathbf{M})=0.000505 \ 7 \\ \alpha(\mathbf{N})=0.0001155 \ 17; \ \alpha(\mathbf{O})=1.595\times10^{-5} \ 23; \ \alpha(\mathbf{P})=6.69\times10^{-7} \\ 10 $
		541.9 ^d 3	3.7 ^d 3	2088.85	1-,2-,3-	E2,M1	0.0183 60	$\alpha(K)=0.0152 53; \alpha(L)=0.0024 6; \alpha(M)=0.00052 12$ $\alpha(K)=0.00012 3; \alpha(Q)=1.7\times10^{-5} 5; \alpha(D)=0.1\times10^{-7} 35$
		545.94 <i>4</i>	24.7 15	2084.809	1+,2+	E1	0.00423	$\alpha(N)=0.00125, \alpha(O)=1.7\times10^{-5}, \alpha(F)=5.1\times10^{-5}$ $\alpha(K)=0.003605; \alpha(L)=0.0004937; \alpha(M)=0.000107215$ $\alpha(N)=0.247\times10^{-5}$ (1, $\alpha(O)=2.57\times10^{-6}$ 5, $\alpha(D)=1.07\times10^{-7}$ 2
		562.59 15	1.52 18	2068.08	1-	[M1,E2]	0.0166 54	$\alpha(N) = 2.47 \times 10^{-5} 4; \ \alpha(O) = 5.57 \times 10^{-5} 5; \ \alpha(P) = 1.97 \times 10^{-5} 5$ $\alpha(K) = 0.0139 \ 48; \ \alpha(L) = 0.0021 \ 5; \ \alpha(M) = 0.00047 \ 11$
		621.24 5	11.3 2	2009.531	1-,2-	E2	0.00880	$\begin{array}{l} \alpha(\mathrm{N}) = 0.000108 \ 25; \ \alpha(\mathrm{O}) = 1.56 \times 10^{-5} \ 40; \ \alpha(\mathrm{P}) = 8.3 \times 10^{-5} \ 31 \\ \alpha(\mathrm{K}) = 0.00721 \ 10; \ \alpha(\mathrm{L}) = 0.001236 \ 18; \ \alpha(\mathrm{M}) = 0.000276 \ 4 \\ \alpha(\mathrm{N}) = 6.33 \times 10^{-5} \ 9; \ \alpha(\mathrm{O}) = 8.88 \times 10^{-6} \ 13; \ \alpha(\mathrm{P}) = 4.10 \times 10^{-7} \ 6 \end{array}$
		678.30 ^d 16	0.7 ^d 4	1952.31	0^{+}			
		761.23 6	28.0 23	1869.513	2+	E1	0.00211	$\alpha(K)=0.00180 \ 3; \ \alpha(L)=0.000242 \ 4; \ \alpha(M)=5.27\times10^{-5} \ 8 \\ \alpha(N)=1.214\times10^{-5} \ 17; \ \alpha(O)=1.766\times10^{-6} \ 25; \\ \alpha(P)=1.000\times10^{-7} \ 14$
		826.11 ^{&} 2	99 <i>3</i>	1804.669	1+	E1	0.00180	$\alpha(K)=0.001535\ 22;\ \alpha(L)=0.000205\ 3;\ \alpha(M)=4.46\times10^{-5}\ 7$ $\alpha(N)=1.029\times10^{-5}\ 15;\ \alpha(O)=1.499\times10^{-6}\ 21;\ \alpha(P)=8.53\times10^{-8}$
		873.88 7	42.3 25	1756.918	2+	E1	1.61×10 ⁻³	$\alpha(K)=0.001377\ 20;\ \alpha(L)=0.000184\ 3;\ \alpha(M)=3.99\times10^{-5}\ 6$ $\alpha(N)=9.20\times10^{-6}\ 13;\ \alpha(O)=1.342\times10^{-6}\ 19;\ \alpha(P)=7.66\times10^{-8}$ 11
		922.5 4	1.7 5	1708.14	0^{+}			
		1112.33 10	18.3 17	1518.419	2+	E1	1.03×10^{-3}	$\alpha(K)=0.000878 \ 13; \ \alpha(L)=0.0001160 \ 17; \ \alpha(M)=2.51\times10^{-5} \ 4$

	Adopted Levels, Gammas (continued)													
							γ(¹⁶⁰ Dy) (c	continued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ ^{#b}	α^{a}	Comments					
2630.705	1-	1141.3 <i>1</i>	1.5 3	1489.500	1-	E2		0.00232	$\alpha(N)=5.80\times10^{-6} \ 9; \ \alpha(O)=8.49\times10^{-7} \ 12; \ \alpha(P)=4.91\times10^{-8} \ 7; \ \alpha(IPF)=2.61\times10^{-6} \ 4 \ \alpha(K)=0.00196 \ 3; \ \alpha(L)=0.000284 \ 4; \ \alpha(M)=6.23\times10^{-5} \ 9 \ \alpha(N)=1.437\times10^{-5} \ 21; \ \alpha(O)=2.08\times10^{-6} \ 3; \ \alpha(D)=1.437\times10^{-5} \ 21; \ \alpha(O)=2.08\times10^{-6} \ 3; \ \alpha(D)=1.437\times10^{-5} \ 21; \ \alpha(D)=1.437\times10^{-5} \ 21; \ \alpha(D)=1.437\times10^{-5} \ 21; \ \alpha(D)=1.437\times10^{-5} \ 21; \ \alpha(D)=1.437\times10^{-6} \ 3; \ \alpha(D)=1.437\times10^{-6} \ 3; \ \alpha(D)=1.437\times10^{-7} \ 40\times10^{-7} \ 40\times10^{-6} \ 3; \ \alpha(D)=1.437\times10^{-7} \ 40\times10^{-7} \ 40$					
		1173.95 ^d 5	27 ^d 5	1456.752	0+	(E1)		9.45×10 ⁻⁴	$\alpha(P)=1.133\times10^{-1}16; \ \alpha(IPF)=1.208\times10^{-5}18$ $\alpha(K)=0.000797 \ 12; \ \alpha(L)=0.0001050 \ 15; \ \alpha(M)=2.28\times10^{-5} \ 4$ $\alpha(N)=5.25\times10^{-6} \ 8; \ \alpha(O)=7.69\times10^{-7} \ 11; \ \alpha(P)=4.46\times10^{-8}$ $7; \ \alpha(IPF)=1.432\times10^{-5} \ 21$					
		1271 89 <mark>d&</mark> 2	$48^{d} 8$	1358 670	2-									
		1280.93 3	14.3 5	1349.758	2+	(E1)		8.57×10 ⁻⁴	$\begin{aligned} &\alpha(\text{K}) = 0.000683 \ 10; \ \alpha(\text{L}) = 8.97 \times 10^{-5} \ 13; \ \alpha(\text{M}) = 1.94 \times 10^{-5} \ 3\\ &\alpha(\text{N}) = 4.49 \times 10^{-6} \ 7; \ \alpha(\text{O}) = 6.57 \times 10^{-7} \ 10; \ \alpha(\text{P}) = 3.82 \times 10^{-8}\\ &6; \ \alpha(\text{IPF}) = 6.02 \times 10^{-5} \ 9 \end{aligned}$					
		1345.08 ^d 4	22 ^{<i>d</i>} 2	1285.604	1-	E2		1.71×10^{-3}	α (K)=0.001423 20; α (L)=0.000201 3; α (M)=4.39×10 ⁻⁵ 7 α (N)=1.013×10 ⁻⁵ 15; α (O)=1.474×10 ⁻⁶ 21; α (P)=8.22×10 ⁻⁸ 12; α (IPF)=2.87×10 ⁻⁵ 4					
		1350.8 <i>1</i>	2.8 5	1279.942	0^+									
		1366.06 5	10.2 8	1264.7472	2^{-}									
		1664.55 <i>3</i>	32.0 13	966.1687	2+	E1		8.33×10 ⁻⁴	$ \begin{aligned} &\alpha(\text{K}) = 0.000437 \ 7; \ \alpha(\text{L}) = 5.70 \times 10^{-5} \ 8; \ \alpha(\text{M}) = 1.233 \times 10^{-5} \ 18 \\ &\alpha(\text{N}) = 2.85 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 4.18 \times 10^{-7} \ 6; \ \alpha(\text{P}) = 2.45 \times 10^{-8} \ 4; \\ &\alpha(\text{IPF}) = 0.000323 \ 5 \end{aligned} $					
		2543.95 5	100 5	86.7877	2+	E1(+M2)	+0.03 9	1.19×10 ⁻³ 2	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000223 \ I3; \ \alpha(\mathbf{L}) = 2.88 \times 10^{-5} \ I8; \ \alpha(\mathbf{M}) = 6.2 \times 10^{-6} \ 4 \\ &\alpha(\mathbf{N}) = 1.44 \times 10^{-6} \ 9; \ \alpha(\mathbf{O}) = 2.12 \times 10^{-7} \ I3; \ \alpha(\mathbf{P}) = 1.26 \times 10^{-8} \\ &8; \ \alpha(\mathbf{IPF}) = 0.000926 \ I5 \end{aligned}$					
		2630.6 ^{<i>d</i>} 3	25 ^d 5	0.0	0+	E1		1.23×10 ⁻³	$\alpha(K)=0.000211 \ 3; \ \alpha(L)=2.72\times10^{-5} \ 4; \ \alpha(M)=5.88\times10^{-6} \ 9$ $\alpha(N)=1.359\times10^{-6} \ 19; \ \alpha(O)=2.00\times10^{-7} \ 3;$ $\alpha(P)=1.188\times10^{-8} \ 17; \ \alpha(IPF)=0.000980 \ 14$					
2634.73		504.15 ^d 20	19 <mark>0</mark> 8	2130.579	3-									
		1276.0 ^d 3	19 ^d 8	1358.670	2^{-}									
		1585.63^{d} 17	100^{d} 15	1049 1018	- 3+									
		1668.3^d 3 2548.2 3	62^{d} 12 27 3	966.1687 86.7877	2+ 2+									
2645.88	3-	2362.0 3	40 13	283.8219	4+	E1		1.11×10 ⁻³	α (K)=0.000250 4; α (L)=3.22×10 ⁻⁵ 5; α (M)=6.96×10 ⁻⁶ 10 α (N)=1.608×10 ⁻⁶ 23; α (O)=2.37×10 ⁻⁷ 4; α (P)=1.402×10 ⁻⁸ 20; α (IPF)=0.000815 12					
		2559.1 3	100 13	86.7877	2+	E1		1.19×10 ⁻³	$\alpha(K)=0.000221 \ 3; \ \alpha(L)=2.84\times10^{-5} \ 4; \ \alpha(M)=6.14\times10^{-6} \ 9$ $\alpha(N)=1.418\times10^{-6} \ 20; \ \alpha(O)=2.09\times10^{-7} \ 3;$ $\alpha(P)=1.239\times10^{-8} \ 18; \ \alpha(IPF)=0.000936 \ 14$					
2647.30	$(3)^{-}$	2363.1 ^d 4	14 d 7	283.8219	4+									
2011.00		2560.7 3	100 13	86.7877	2+	E1		1.19×10^{-3}	$\alpha(K)=0.000220 \ 3; \ \alpha(L)=2.84\times10^{-5} \ 4; \ \alpha(M)=6.13\times10^{-6} \ 9$					

 $^{160}_{66}\mathrm{Dy}_{94}$ -42

Т

Adopted Levels, Gammas (continued)

$\gamma(^{160}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{a}	Comments
								α (N)=1.417×10 ⁻⁶ 20; α (O)=2.09×10 ⁻⁷ 3; α (P)=1.238×10 ⁻⁸ 18; α (IPF)=0.000937 14
2661.511	2^{-}	211.20 ^d 16	0.5 ^d 3	2450.25	1-	M1	0.292	$\alpha(K)=0.246$ 4; $\alpha(L)=0.0358$ 5; $\alpha(M)=0.00786$ 12 $\alpha(N)=0.00182$ 3; $\alpha(Q)=0.000266$ 4; $\alpha(P)=1.528\times10^{-5}$ 22
		390.33 6	6.3 6	2271.246	2-	M1,E2	0.043 14	$\alpha(N)=0.00102 \ 5, \ \alpha(C)=0.000200 \ 4, \ \alpha(T)=1.520\times10^{-22}$ $\alpha(K)=0.035 \ 13; \ \alpha(L)=0.0059 \ 9; \ \alpha(M)=0.00132 \ 18$ $\alpha(N)=0.00030 \ 5; \ \alpha(O)=4.3\times10^{-5} \ 8; \ \alpha(P)=2.09\times10^{-6} \ 84$
		521.50 7 572.63 4	6.2 <i>9</i> 15 <i>1</i>	2140.15 2088.85	(3) 1 ⁻ ,2 ⁻ ,3 ⁻	E2,M1	0.0159 52	$\alpha(K) = 0.0133 \ 46; \ \alpha(L) = 0.0020 \ 5; \ \alpha(M) = 0.00045 \ 11$
		576.58 13	19 2	2084.809	1+,2+	E1	0.00376	$\alpha(N)=0.000105\ 24;\ \alpha(O)=1.49\times10^{-5}\ 58;\ \alpha(P)=7.9\times10^{-5}\ 50$ $\alpha(K)=0.00320\ 5;\ \alpha(L)=0.000436\ 7;\ \alpha(M)=9.50\times10^{-5}\ 14$ $\alpha(N)=2.19\times10^{-5}\ 3;\ \alpha(O)=3.17\times10^{-6}\ 5;\ \alpha(P)=1.758\times10^{-7}\ 25$
		584.04 ^d 17	4 ^{<i>d</i>} 2	2077.36	3-	[M1,E2]	0.0151 49	$\alpha(K)=0.0127 \ 44; \ \alpha(L)=0.0019 \ 5; \ \alpha(M)=0.00043 \ 10 \ \alpha(N)=9.8 \times 10^{-5} \ 23; \ \alpha(O)=1.41 \times 10^{-5} \ 37; \ \alpha(P)=7.5 \times 10^{-7} \ 28$
		593.48 15	2.2 5	2068.08	1-	[M1,E2]	0.0145 47	$\alpha(K) = 0.0122 \ 42; \ \alpha(L) = 0.0018 \ 5; \ \alpha(M) = 0.00041 \ 10$ $\alpha(K) = 9.4 \times 10^{-5} \ 23; \ \alpha(O) = 1.36 \times 10^{-5} \ 35; \ \alpha(P) = 7.2 \times 10^{-7} \ 27$
		651.9 <i>1</i>	2.5 4	2009.531	$1^{-},2^{-}$			
		758.31 ^{<i>d</i>} 3	100 ^d 6	1903.204	3+	E1	0.00213	α (K)=0.00182 3; α (L)=0.000244 4; α (M)=5.31×10 ⁻⁵ 8 α (N)=1.223×10 ⁻⁵ 18; α (O)=1.780×10 ⁻⁶ 25; α (P)=1.008×10 ⁻⁷ 15
		792.0 2	12 2	1869.513	2+			
		856.8 2	78 21	1804.669	1+	E1	1.67×10^{-3}	α (K)=0.001430 20; α (L)=0.000191 3; α (M)=4.15×10 ⁻⁵ 6 α (N)=9.57×10 ⁻⁶ 14; α (O)=1.395×10 ⁻⁶ 20; α (P)=7.95×10 ⁻⁸ 12
		904.6 1	35 <i>3</i>	1756.918	2+	E1	1.51×10^{-3}	α (K)=0.001289 <i>18</i> ; α (L)=0.0001718 <i>24</i> ; α (M)=3.73×10 ⁻⁵ <i>6</i> α (N)=8.60×10 ⁻⁶ <i>12</i> ; α (O)=1.255×10 ⁻⁶ <i>18</i> ; α (P)=7.18×10 ⁻⁸ <i>10</i>
		1018.26 5	14.9 6	1643.27	3-			
		1126.6 3	2.2 5	1535.150	4-			
		1143.04 9	4.0 5	1518.419	2+			
		1171.97 ^d 6	40 ^{<i>d</i>} 3	1489.500	1-	E2,M1	0.0029 8	$\begin{aligned} &\alpha(\mathrm{K}) = 0.0025 \ 7; \ \alpha(\mathrm{L}) = 0.00035 \ 8; \ \alpha(\mathrm{M}) = 7.6 \times 10^{-5} \ 17 \\ &\alpha(\mathrm{N}) = 1.7 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 2.6 \times 10^{-6} \ 6; \ \alpha(\mathrm{P}) = 1.47 \times 10^{-7} \ 40; \\ &\alpha(\mathrm{IPF}) = 3.09 \times 10^{-6} \ 23 \end{aligned}$
		1262.83 ^{d&} 6	33 ^d 12	1398.964	3-			
		1302.84^{d} 3	$37^{d} 8$	1358 670	2-			
		1374 7 2	28.3	1286 713	3-	F2	1.65×10^{-3}	$\alpha(K) = 0.001365.20; \alpha(L) = 0.000192.3; \alpha(M) = 4.20 \times 10^{-5}.6$
		1374.72	20 5	1200.715	5	L2	1.05×10	$\alpha(N)=9.69\times10^{-6}\ 14;\ \alpha(O)=1.410\times10^{-6}\ 20;\ \alpha(P)=7.89\times10^{-8}\ 11;\\ \alpha(IPF)=3.59\times10^{-5}\ 5$
		1375.9 ^d 2	49 ^d 4	1285.604	1-	E2	1.64×10 ⁻³	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.001363 \ 19; \ \alpha(\mathrm{L}) = 0.000192 \ 3; \ \alpha(\mathrm{M}) = 4.19 \times 10^{-5} \ 6 \\ \alpha(\mathrm{N}) = 9.67 \times 10^{-6} \ 14; \ \alpha(\mathrm{O}) = 1.407 \times 10^{-6} \ 20; \ \alpha(\mathrm{P}) = 7.87 \times 10^{-8} \ 11; \\ \alpha(\mathrm{IPF}) = 3.62 \times 10^{-5} \ 5 \end{array} $
		1396.71 4	43.6 16	1264.7472	2-	E2,M1	0.0020 5	α (K)=0.0017 4; α (L)=0.00023 5; α (M)=5.1×10 ⁻⁵ 11 α (N)=1.17×10 ⁻⁵ 24; α (O)=1.7×10 ⁻⁶ 4; α (P)=9.9×10 ⁻⁸ 23; α (IPF)=4.5×10 ⁻⁵ 4

					Ado	pted Level	s, Gam	mas (continue	ed)
						γ (¹⁶⁰ I	Dy) (co	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ ^{#b}	α^{a}	Comments
2661.511	2-	1612.35 ^d 3	43 ^d 3	1049.1018	3+	(E1)	_	8.22×10 ⁻⁴	$\alpha(K)=0.000461\ 7;\ \alpha(L)=6.01\times10^{-5}\ 9;\alpha(M)=1.301\times10^{-5}\ 19\alpha(N)=3.00\times10^{-6}\ 5;\ \alpha(O)=4.41\times10^{-7}\ 7;\alpha(P)=2\ 50\times10^{-8}\ 4;\ \alpha(PE)=0.000284\ 4$
		1695.30 6	21.5 8	966.1687	2+	E1		8.40×10 ⁻⁴	$\alpha(\mathbf{K}) = 2.59 \times 10^{-4}, \ \alpha(\mathbf{H} \mathbf{F}) = 0.000264 \ 4^{\circ}$ $\alpha(\mathbf{K}) = 0.000424 \ 6; \ \alpha(\mathbf{L}) = 5.52 \times 10^{-5} \ 8; $ $\alpha(\mathbf{M}) = 1.195 \times 10^{-5} \ 17 $ $\alpha(\mathbf{N}) = 2.76 \times 10^{-6} \ 4; \ \alpha(\mathbf{O}) = 4.05 \times 10^{-7} \ 6; $ $\alpha(\mathbf{P}) = 2.38 \times 10^{-8} \ 4; \ \alpha(\mathbf{PE}) = 0.000346 \ 5$
		2574.68 5	56.3 25	86.7877	2+	E1		1.20×10 ⁻³	$\alpha(K) = 0.000218 \ 3; \ \alpha(L) = 2.81 \times 10^{-5} \ 4; \alpha(M) = 6.08 \times 10^{-6} \ 9 \alpha(N) = 1.405 \times 10^{-6} \ 20; \ \alpha(O) = 2.07 \times 10^{-7} \ 3; \alpha(P) = 1.228 \times 10^{-8} \ 18; \ \alpha(IPF) = 0.000945 \ 14$
2665.78	2+,3+,4+	1062.0 <i>3</i> 1510.2 <i>3</i> 1616.7 ^c <i>2</i> 1699.55 <i>6</i>	27 10 23 10 25 ^c 2 26 2	1603.78 1155.841 1049.1018 966.1687	4 ⁺ 4 ⁺ 3 ⁺ 2 ⁺				
		2382.02 9	100 7	283.8219	4+	E2,M1		0.00115 11	$\alpha(K)=0.00055 \ 6; \ \alpha(L)=7.4\times10^{-5} \ 8; \\ \alpha(M)=1.60\times10^{-5} \ 16 \\ \alpha(N)=3.7\times10^{-6} \ 4; \ \alpha(O)=5.4\times10^{-7} \ 6; \ \alpha(P)=3.2\times10^{-8} \\ 4; \ \alpha(PE)=0.00051 \ 5$
2666.30	12-	2578.9 <i>3</i> 181	7.7 <i>17</i> 236 <i>15</i>	86.7877 2485.64	2 ⁺ 11 ⁺	[E1]		0.0633	$\alpha(K)=0.0533 \ 8; \ \alpha(L)=0.00779 \ 11; \ \alpha(M)=0.001702 \ 24$ $\alpha(N)=0.000389 \ 6; \ \alpha(O)=5.46\times10^{-5} \ 8; \ \alpha(P)=2.67\times10^{-6} \ 4$ $E_{\gamma}: \text{ from 1987Ri08, } (\alpha,2n\gamma). \text{ These authors report a sequence of } \gamma' \text{ s from the even-spin members of the } K^{\pi}=2^{-} \text{ band to } \Delta J=-1 \text{ members of the } \gamma-\text{vibrational band. } 2002Ju08 \ (^{7}\text{Li,p4n\gamma}) \text{ do not mention such a category of transitions in their level-scheme table (Table 1). I \gamma computed from I(\gamma+ce)(181\gamma)/I(\gamma+ce)(424.5\gamma) \text{ from } (\alpha,2n\gamma) \text{ and } I_{\gamma}(424.4\gamma). \text{ Note that if there is a significant M2 admixture in this } \gamma, \alpha \text{ will be somewhat larger and the deduced I \gamma will be smaller.}$
		424.4 1	100 4	2241.95	10-	E2		0.0235	α: computed assuming mult=E1. α (K)=0.0186 3; α (L)=0.00382 6; α (M)=0.000867 13 α (N)=0.000198 3; α (O)=2.69×10 ⁻⁵ 4; α (P)=1.022×10 ⁻⁶ 15 Mult.: from (α ,2n γ).
2674.716	1-	$715.6\ 2$ 224.4 ^d 3	<11 0.029 ^d 15	1950.17 2450.25	12+ 1-	E2,M1		0.20 5	α (K)=0.161 48; α (L)=0.034 4; α (M)=0.0077 11 α (N)=0.00177 23; α (O)=0.000240 16; α (P)=9.2×10 ⁻⁶ 37

				<u>))</u>					
						<u> </u>	¹⁶⁰ Dy) (cont	inued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ ^{#b}	α^{a}	Comments
2674.716	1-	665.3 ^d 5	3.7 ^d 4	2009.531	1-,2-	M1,E2		0.0110 35	$\alpha(K)=0.0092 \ 31; \ \alpha(L)=0.00137 \ 35; \ \alpha(M)=0.00030 \ 8$ $\alpha(N)=7.0\times10^{-5} \ 18; \ \alpha(O)=1.01\times10^{-5} \ 27;$ $\alpha(P)=5.5\times10^{-7} \ 20$
		722.41 7	2.27 30	1952.31	0^+				
		805.15 ^d 12	0.8 ^d 3	1869.513	2^{+}				
		870.0 1	2.2 8	1804.669	1+				
		917.80 9	1.52 16	1756.918	2+				
		966.5 1	2.7 7	1708.14	0^+	F 1		0.66.10-4	
		1156.32 9	11.5 10	1518.419	21	EI		9.66×10 4	$\alpha(\mathbf{K}) = 0.000819 \ 12; \ \alpha(\mathbf{L}) = 0.0001080 \ 16;$
									$\alpha(M) = 2.34 \times 10^{-5} 4$
		1105 00 15	15 2 10	1 400 500	1-				$\alpha(N)=5.40\times10^{-8} 8; \alpha(O)=7.91\times10^{-1} 11;$ $\alpha(P)=4.58\times10^{-8} 7; \alpha(IPF)=9.51\times10^{-6} 14$
		1185.20 15	17.3 10	1489.500	1	F1		0.02.10-4	$(X) = 0.00074(-11) = (X) = 0.000010^{-5} -14$
		1218.05 5	6./4	1456.752	01	EI		9.02×10	$\alpha(\mathbf{K}) = 0.000/46~11; \ \alpha(\mathbf{L}) = 9.82 \times 10^{-5}~14;$
									$\alpha(M) = 2.13 \times 10^{-5} 3$
									$\alpha(\mathbf{N}) = 4.91 \times 10^{-7}$; $\alpha(\mathbf{O}) = 7.19 \times 10^{-7} 10^{-7}$; $\alpha(\mathbf{D}) = 4.18 \times 10^{-8}$ 6; $\alpha(\mathbf{IDE}) = 2.11 \times 10^{-5}$ 5
		1076 od 2	o d I	1200.064	2-				$u(\mathbf{r}) = 4.18 \times 10^{-6} 0, u(\mathbf{lrr}) = 5.11 \times 10^{-6} 5$
		12/6.04 3	0.4^{a} I	1398.964	3	53		1 70 10-3	
		1316.04 ^a 8	5.5 ^a 14	1358.670	2-	E2		1.78×10^{-3}	$\alpha(\mathbf{K})=0.001484\ 21;\ \alpha(\mathbf{L})=0.000210\ 3;\ \alpha(\mathbf{M})=4.60\times10^{-5}\ 7$
									$\alpha(N) = 1.061 \times 10^{-5} \ 15; \ \alpha(O) = 1.542 \times 10^{-6} \ 22;$
									$\alpha(P)=8.58\times10^{-8}$ 12; $\alpha(IPF)=2.25\times10^{-5}$ 4
		1324.94 23	15.8 21	1349.758	2^{+}				
		1388.0 ^d 4	0.7 ^d 3	1286.713	3-				
		1389.02 5	12.9 8	1285.604	1-	E2,M1		0.0020 5	$\alpha(K)=0.0017 4; \alpha(L)=0.00024 5; \alpha(M)=5.1\times10^{-5} 11$
									$\alpha(N)=1.19\times10^{-5}\ 24;\ \alpha(O)=1.7\times10^{-6}\ 4;$
									$\alpha(P)=1.01\times10^{-7}$ 24; $\alpha(IPF)=4.3\times10^{-5}$ 4
		1394.9 <mark>d</mark> 2	0.5 ^d 3	1279.942	0^{+}				
		1409.9 <i>3</i>	4.7 7	1264.7472	2^{-}	E2,M1		0.0020 4	$\alpha(K)=0.0016$ 4; $\alpha(L)=0.00023$ 5; $\alpha(M)=5.0\times10^{-5}$ 10
									$\alpha(N)=1.15\times10^{-5}\ 23;\ \alpha(O)=1.7\times10^{-6}\ 4;$
									$\alpha(P)=9.7\times10^{-8}\ 23;\ \alpha(IPF)=4.9\times10^{-5}\ 4$
		2587.93 5	13.3 7	86.7877	2^{+}	E1(+M2)	+0.09 32	0.00121 7	$\alpha(K)=2.2\times10^{-4}$ 12; $\alpha(L)=2.9\times10^{-5}$ 17;
									$\alpha(M) = 6.2 \times 10^{-6} 36$
									$\alpha(N) = 1.44 \times 10^{-6} \ 83; \ \alpha(O) = 2.1 \times 10^{-7} \ 13;$
		1	4					2	$\alpha(P)=1.26\times10^{-8}$ 72; $\alpha(IPF)=0.00095$ 8
		2674.71 ^{<i>a</i>} 5	100 a 5	0.0	0^{+}	E1		1.25×10^{-3}	$\alpha(K)=0.000206 \ 3; \ \alpha(L)=2.65\times10^{-5} \ 4;$
									$\alpha(M) = 5.73 \times 10^{-6} \delta$
									$\alpha(\mathbf{N}) = 1.324 \times 10^{\circ} I'; \ \alpha(\mathbf{O}) = 1.95 \times 10^{\circ} J;$
	-	and -	read re		-				$\alpha(\mathbf{r})=1.158\times10^{\circ}$ 1/; $\alpha(\mathbf{IPF})=0.00100/14$
2681.822	5+	298.15 ⁴ 7	100 ^{••} 18	2383.69	6-	E1		0.01747	$\alpha(K)=0.01480\ 21;\ \alpha(L)=0.00209\ 3;\ \alpha(M)=0.000457\ 7$

Т

					A	dopted Leve	els, Gammas (continued)
						$\gamma(^{160}$	Dy) (continue	<u>d)</u>
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{a}	Comments
								$\alpha(N)=0.0001048\ 15;\ \alpha(O)=1.495\times10^{-5}\ 21;\ \alpha(P)=7.80\times10^{-7}\ 11$
2681.822	5+	309.54 ^{<i>d</i>} 2	53 ^d 12	2372.305	6-	E1	0.01591	α (K)=0.01349 <i>19</i> ; α (L)=0.00190 <i>3</i> ; α (M)=0.000415 <i>6</i> α (N)=9.53×10 ⁻⁵ <i>14</i> ; α (O)=1.361×10 ⁻⁵ <i>19</i> ; α (P)=7.13×10 ⁻⁷ <i>10</i>
		1030.95 4	28.2 11	1650.874	4-,5-	(E1)	1.18×10^{-3}	α (K)=0.001009 <i>15</i> ; α (L)=0.0001337 <i>19</i> ; α (M)=2.90×10 ⁻⁵ <i>4</i> α (N)=6.69×10 ⁻⁶ <i>10</i> ; α (O)=9.78×10 ⁻⁷ <i>14</i> ; α (P)=5.63×10 ⁻⁸ 8
		1087.48 15	6.5 12	1594.42	6-			
		1095.01 ^d 3	12 d 3	1586.744	5-			
		1295.42 20	3.5 12	1386.458	4-			
		1393.0 4	1.9 4	1288.665	5+			
2696.30	11-	432.4 2	<100	2263.99	9-			
2606 41	2-2-	1268.3 2	<100	1427.89	10'	IM1 E21	0.024.11	(K) = 0.0282, 00, (I) = 0.0046, 0, (M) = 0.00102, 17
2090.41	2,3	425.2 2	41	22/1.240	2	[M1,E2]	0.034 11	$\alpha(\mathbf{K})=0.0285$ 99; $\alpha(\mathbf{L})=0.0046$ 9; $\alpha(\mathbf{M})=0.00105$ 17 $\alpha(\mathbf{N})=0.00024$ 4; $\alpha(\mathbf{O})=3.4\times10^{-5}$ 7; $\alpha(\mathbf{P})=1.68\times10^{-6}$ 67
		611.53 8	18.4 16	2084.809	1+,2+	(E1)	0.00332	$\alpha(K)=0.00283 \ 4; \ \alpha(L)=0.000384 \ 6; \ \alpha(M)=8.35\times10^{-5} \ 12 \\ \alpha(N)=1.92\times10^{-5} \ 3; \ \alpha(O)=2.79\times10^{-6} \ 4; \ \alpha(P)=1.555\times10^{-7} \ 22 $
		1297.66 ^d 18	10 ^d 5	1398.964	3-	E2	0.00182	$\begin{aligned} &\alpha(\text{K}) = 0.001525 \ 22; \ \alpha(\text{L}) = 0.000216 \ 3; \ \alpha(\text{M}) = 4.73 \times 10^{-5} \ 7 \\ &\alpha(\text{N}) = 1.092 \times 10^{-5} \ 16; \ \alpha(\text{O}) = 1.587 \times 10^{-6} \ 23; \ \alpha(\text{P}) = 8.81 \times 10^{-8} \\ &I3 \ \alpha(\text{IPF}) = 1.91 \times 10^{-5} \ 3 \end{aligned}$
		1337.8 ^d 2	80 ^d 20	1358.670	2-	E2	1.72×10 ⁻³	$\begin{aligned} &\alpha(\text{K}) = 0.001438 \ 21; \ \alpha(\text{L}) = 0.000203 \ 3; \ \alpha(\text{M}) = 4.44 \times 10^{-5} \ 7 \\ &\alpha(\text{N}) = 1.025 \times 10^{-5} \ 15; \ \alpha(\text{O}) = 1.490 \times 10^{-6} \ 21; \ \alpha(\text{P}) = 8.31 \times 10^{-8} \\ &12; \ \alpha(\text{IPF}) = 2.71 \times 10^{-5} \ 4 \end{aligned}$
		1409.7 <i>1</i>	20 5	1286.713	3-	E2,M1	0.0020 4	α (K)=0.0016 4; α (L)=0.00023 5; α (M)=5.0×10 ⁻⁵ 10 α (N)=1.15×10 ⁻⁵ 23; α (O)=1.7×10 ⁻⁶ 4; α (P)=9.7×10 ⁻⁸ 23; α (IPF)=4.9×10 ⁻⁵ 4
		1431.66 ^d 3	100 <mark>d</mark> 20	1264.7472	2-			
		1647.2 2	6.7 7	1049.1018	3+			
		2610.0 ^d 3	10 ^d 5	86.7877	2+			
2697 31	13-	433 0 ^{&} 1	47.2	2264 23	11-			
2077.01	10	747.3 1	100 4	1950.17	12^{+}			
2697.821	2+	426.5 2	4.6 11	2271.246	2-			
		488.7 <i>3</i>	6.0 23	2208.79	$(2)^{-}$			
		559.5 <i>3</i>	8.4 9	2138.20	2+	[M1,E2]	0.0168 55	α (K)=0.0141 49; α (L)=0.0022 5; α (M)=0.00048 11 α (N)=0.00011 3; α (O)=1.58×10 ⁻⁵ 40; α (P)=8.4×10 ⁻⁷ 32
		567.36 10	14.5 29	2130.579	3-			
		607.00 9	19.9 20	2090.88	$2^{-}, 3^{-}$			
		629.7 1	93	2068.08	1-			
		688.37 ^d 9	32 ^d 1	2009.531	$1^{-}, 2^{-}$			
		745.73 9	16.7 29	1952.31	0^{+}			
		828.13 ^d 15	16 ^d 3	1869.513	2^{+}			
		940.9 1	57 11	1756.918	2+	E2	0.00346	$\alpha(K)=0.00290 4; \alpha(L)=0.000437 7; \alpha(M)=9.63\times 10^{-5} 14$

Adopted Levels, Gammas (continued)

γ (¹⁶⁰Dy) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [†]	α ^a	Comments
2697.821	2+	989.75 <i>5</i> 1208.28 <i>12</i>	89 <i>3</i> 37 2	1708.14 1489.500	0^+ 1 ⁻			
		1339.2 2	61 6	1358.670	2-			
		1348.09^{d} 10	10^{d} 2	1349 758	2+			
		1412.0.3	20.8	1285.604	1-			
		1/12.00	$18d_{5}$	1270.042	0+			
		1422.20	10 7	1279.942	0			
		1433.28 ⁴ 6 1731.62 <i>4</i>	57 2	966.1687	2 2 ⁺	E2	1.20×10 ⁻³	α (K)=0.000885 <i>I3</i> ; α (L)=0.0001213 <i>I7</i> ; α (M)=2.64×10 ⁻⁵ <i>4</i> α (N)=6.10×10 ⁻⁶ <i>9</i> ; α (O)=8.92×10 ⁻⁷ <i>I3</i> ; α (P)=5.11×10 ⁻⁸ <i>8</i> ; α (IPF)=0.0001628 <i>23</i>
		2414.2 2	7.1 10	283.8219	4+			
		2611.0 <i>3</i>	23 6	86.7877	2^{+}			
		2697.78 5	33.1 18	0.0	0^{+}			
2701.044	1-	574.73 ^d 5	4.1 ^{<i>d</i>} 10	2126.37	3-	E2	0.01064	$\alpha(K)=0.00867 \ I3; \ \alpha(L)=0.001534 \ 22; \ \alpha(M)=0.000343 \ 5 \ \alpha(N)=7.87 \times 10^{-5} \ II; \ \alpha(O)=1.098 \times 10^{-5} \ I6; \ \alpha(P)=4.91 \times 10^{-7} \ 7$
		616.18 10	2.1 3	2084.809	$1^+, 2^+$			
		623.69 24	1.2 4	2077.36	3-			
		632.9 [°] 6	0.8 [°] 6	2068.08	1-			
		691.49 2	12.0 3	2009.531	1-,2-	M1,E2	0.0100 32	$\alpha(K)=0.0084\ 28;\ \alpha(L)=0.00124\ 32;\ \alpha(M)=0.00027\ 7$ $\alpha(N)=6.3\times10^{-5}\ 16;\ \alpha(O)=9.1\times10^{-6}\ 25;\ \alpha(P)=5.0\times10^{-7}\ 18$
		748.8 <i>1</i>	9.2 6	1952.31	0^{+}			
		831.53 4	3.67 26	1869.513	2^{+}			
		944.3 <i>4</i>	1.4 4	1756.918	2+			
		992.71 <i>11</i>	3.8 5	1708.14	0^{+}			
		1182.68 3	33.7 8	1518.419	2+	E1	9.36×10 ⁻⁴	$\alpha(K)=0.000786 \ 11; \ \alpha(L)=0.0001036 \ 15; \ \alpha(M)=2.25\times10^{-5} \ 4 \\ \alpha(N)=5.18\times10^{-6} \ 8; \ \alpha(O)=7.59\times10^{-7} \ 11; \ \alpha(P)=4.40\times10^{-8} \ 7; \\ \alpha(IPF)=1.715\times10^{-5} \ 24$
		1244.22 4	21.6 8	1456.752	0^{+}	E1	8.82×10^{-4}	$\alpha(K)=0.000719 \ 10; \ \alpha(L)=9.45\times 10^{-5} \ 14; \ \alpha(M)=2.05\times 10^{-5} \ 3$
								α (N)=4.73×10 ⁻⁶ 7; α (O)=6.92×10 ⁻⁷ 10; α (P)=4.02×10 ⁻⁸ 6; α (IPF)=4.28×10 ⁻⁵ 6
		1341.5 4	4.1 12	1358.670	2-	E2.M1	0.0022.5	$\alpha(K) = 0.0018 4$; $\alpha(L) = 0.00025 6$; $\alpha(M) = 5.6 \times 10^{-5} 12$
						,		α (N)=1.3×10 ⁻⁵ 3; α (O)=1.9×10 ⁻⁶ 4; α (P)=1.1×10 ⁻⁷ 3; α (IPF)=3.01×10 ⁻⁵ 23
		1351.24 10	11.2 8	1349.758	2+	(E1)	8.25×10 ⁻⁴	$\alpha(K)=0.000622 \ 9; \ \alpha(L)=8.16\times10^{-5} \ 12; \ \alpha(M)=1.767\times10^{-5} \ 25 \ \alpha(N)=4.08\times10^{-6} \ 6; \ \alpha(O)=5.98\times10^{-7} \ 9; \ \alpha(P)=3.49\times10^{-8} \ 5; \ \alpha(IPF)=9.92\times10^{-5} \ 14$
		1415.46 <i>4</i>	19.8 6	1285.604	1-	E2,M1	0.0020 4	$\alpha(K)=0.0016 4; \ \alpha(L)=0.00023 5; \ \alpha(M)=4.9\times10^{-5} 10$ $\alpha(N)=1.14\times10^{-5} 23; \ \alpha(O)=1.7\times10^{-6} 4; \ \alpha(P)=9.7\times10^{-8} 22;$ $\alpha(RE)=51\times10^{-5} 4$
		1421.13 6	10.8 6	1279.942	0+	E1	8.11×10 ⁻⁴	$\alpha(\text{II}) = 0.1610^{-4} \text{ (III}) = 0.000570 \text{$; } \alpha(\text{L}) = 7.47 \times 10^{-5} 11; \ \alpha(\text{M}) = 1.617 \times 10^{-5} 23$ $\alpha(\text{N}) = 3.73 \times 10^{-6} \text{$; } \alpha(\text{O}) = 5.47 \times 10^{-7} \text{$; } \alpha(\text{P}) = 3.20 \times 10^{-8} 5;$ $\alpha(\text{IPF}) = 0.0001455 21$

	Adopted Levels, Gammas (continued)												
						$\gamma(^{160})$	Dy) (continued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ ^{#b}	α^{a}	Comments				
2701.044	1-	1436.2 <i>1</i>	14.4 8	1264.7472	2-	E2,M1		0.0019 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0016 \ 4; \ \alpha(\mathbf{L}) = 0.00022 \ 5; \\ &\alpha(\mathbf{M}) = 4.8 \times 10^{-5} \ 10 \\ &\alpha(\mathbf{N}) = 1.10 \times 10^{-5} \ 22; \ \alpha(\mathbf{O}) = 1.6 \times 10^{-6} \ 4; \\ &\alpha(\mathbf{P}) = 9.4 \times 10^{-8} \ 21; \ \alpha(\mathbf{IPF}) = 5.7 \times 10^{-5} \ 5 \end{aligned}$				
		1735.0 <i>5</i> 2614.25 <i>5</i>	0.37 <i>16</i> 100 <i>4</i>	966.1687 86.7877	2+ 2+	E1(+M2)	-0.03 +12-13	1.22×10 ⁻³ 2	$\alpha(K)=0.000214 \ 21; \ \alpha(L)=2.8\times10^{-5} \ 3; \\ \alpha(M)=6.0\times10^{-6} \ 7 \\ \alpha(N)=1.38\times10^{-6} \ 15; \ \alpha(O)=2.03\times10^{-7} \ 22; \\ \alpha(D)=1.20\times10^{-8} \ 12 \times 10^{-6} \ 12 \times 10^{-6} \ 20 $				
2704.215	2-,3-	2701.04 <i>5</i> 433.00 <i>7</i>	3.51 <i>16</i> 20.5 <i>13</i>	0.0 2271.246	$0^+ 2^-$	M1,E2		0.033 11	$\alpha(\mathbf{F})=1.20 \times 10^{-6} \ 15; \ \alpha(\mathbf{IFF})=0.000969 \ 20$ $\alpha(\mathbf{K})=0.0270 \ 94; \ \alpha(\mathbf{L})=0.0044 \ 8; \ \alpha(\mathbf{M})=0.00097 \ 17$ $\alpha(\mathbf{N})=0.00097 \ 4; \ \alpha(\mathbf{O})=3.2 \times 10^{-5} \ 7;$				
		577.79 13	22 3	2126.37	3-	[M1,E2]		0.0155 <i>51</i>	$\begin{aligned} \alpha(\mathbf{N}) = 0.0022 \ 4, \ \alpha(\mathbf{O}) = 5.2 \times 10^{-7} \ 7, \\ \alpha(\mathbf{P}) = 1.60 \times 10^{-6} \ 63 \\ \alpha(\mathbf{K}) = 0.0130 \ 45; \ \alpha(\mathbf{L}) = 0.0020 \ 5; \\ \alpha(\mathbf{M}) = 0.000101 \ 24; \ \alpha(\mathbf{O}) = 1.45 \times 10^{-5} \ 38; \\ \alpha(\mathbf{N}) = 0.000101 \ 24; \ \alpha(\mathbf{O}) = 1.45 \times 10^{-5} \ 38; \end{aligned}$				
		613.28 6 619.4 2 636.3 3 654.71 5 800.9 1 1214.45 23 1305.18 ^d 5 1345.08 ^{de} 4 1417.5 ^d 3	25.1 17 8 3 15 5 15.3 21 5.8 20 8.2 18 30 ^d 10 20 ^d 5 19 ^d 4	2090.88 2084.809 2068.08 2049.50 1903.204 1489.500 1398.964 1358.670 1286.713	2 ⁻ ,3 ⁻ 1 ⁺ ,2 ⁺ 1 ⁻ 2 ⁺ ,3 3 ⁺ 1 ⁻ 3 ⁻ 2 ⁻ 3 ⁻				$\alpha(P) = 7.7 \times 10^{-7} 29$				
		1439.50 ^d 4	$100^{\circ} \frac{1}{2}$	1264.7472	2-	E2,M1		0.0019 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0016 \ 4; \ \alpha(\mathbf{L}) = 0.00022 \ 5; \\ &\alpha(\mathbf{M}) = 4.7 \times 10^{-5} \ 10 \\ &\alpha(\mathbf{N}) = 1.10 \times 10^{-5} \ 22; \ \alpha(\mathbf{O}) = 1.6 \times 10^{-6} \ 4; \\ &\alpha(\mathbf{P}) = 9.3 \times 10^{-8} \ 21; \ \alpha(\mathbf{IPF}) = 5.8 \times 10^{-5} \ 5 \end{aligned}$				
		1655.15 <i>4</i> 1737.9 2 2617.56 <i>1</i> 6	69 3 3.5 5 55 5	966.1687 86.7877	3 ⁺ 2 ⁺ 2 ⁺	E1		1.22×10^{-3}	$\alpha(K)=0.000213 \ 3; \ \alpha(L)=2.74\times10^{-5} \ 4; \\ \alpha(M)=5.93\times10^{-6} \ 9 \\ \alpha(N)=1.369\times10^{-6} \ 20; \ \alpha(O)=2.02\times10^{-7} \ 3; \\ \alpha(P)=1.197\times10^{-8} \ 17; \ \alpha(IPF)=0.000972 \ 14$				
2707.77	12 ⁺	486.1 <i>1</i> 757.5 <i>1</i> 1280.2 <i>2</i> 632 9 ^C 6	83 <i>17</i> 100 <i>17</i> 100 <i>17</i> 4 ^c 3	2221.48 1950.17 1427.89 2084 809	10^{+} 12^{+} 10^{+} 1^{+} 2^{+}				a(1) 117/110 17, a(111)=0.0007/217				

 $^{160}_{66}\mathrm{Dy}_{94}$ -48

Т

 $^{160}_{66}\mathrm{Dy}_{94}$ -48

From ENSDF

Adopted Levels, Gammas (continued)

γ (¹⁶⁰Dy) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f J	\int_{f}^{π} Mult. [†]	α ^{<i>a</i>}	Comments
2717.225	2^{+}	847.7 2	6 2	1869.513 2	<u>+</u>		
		912.58 ^d 22	9 d 3	1804.669 1	+		
		1318.21 ^d 5	44 ^d 11	1398.964 3	3-		
		1431.66 ^d 3	100^{d} 22	1285.604 1	-		
		1437.5 3	14 4	1279.942 0)+		
		1452.37 7	26.0 21	1264.7472 2	2-		
		1668.3 ^d 3	18 ^d 4	1049.1018 3	3+		
		1750.8 2	8.6 7	966.1687 2	2+		
		2433.33 6	56 4	283.8219 4	ι+ (E2)	1.05×10^{-3}	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000477 \ 7; \ \alpha(\mathbf{L}) = 6.37 \times 10^{-5} \ 9; \ \alpha(\mathbf{M}) = 1.384 \times 10^{-5} \ 20 \\ &\alpha(\mathbf{N}) = 3.20 \times 10^{-6} \ 5; \ \alpha(\mathbf{O}) = 4.70 \times 10^{-7} \ 7; \ \alpha(\mathbf{P}) = 2.75 \times 10^{-8} \ 4; \\ &\alpha(\mathbf{IPF}) = 0.000490 \ 7 \end{aligned}$
		2630.6 ^d 3	44 ^d 11	86.7877 2	2+		
		2717.20 5	28.4 12	0.0 0)+		
2719.02	2-	448.05 ^{d&} 9	1.6 ^d 4	2271.246 2	2- (E2)	0.0203	α (K)=0.01614 23; α (L)=0.00322 5; α (M)=0.000728 11 α (N)=0.0001664 24; α (O)=2.27×10 ⁻⁵ 4; α (P)=8.93×10 ⁻⁷ 13
		914.15 24	36 7	1804.669 1	+		
		962.0 1	11 2	1756.918 2	2+		
		1075.3 4	1.0 5	1643.27 3	;- _		
		1229.52 25	1.4 I	1489.500 1			
		1319.95" 25	4 ^u 1	1398.964 3) - F2	1 (0, 10-3	(T) 0.001000.00 (T) 0.00010(1 (T) 1.00 (10 ⁻⁵)
		1360.2 2	92	1358.670 2	E2	1.68×10 ⁻⁵	$ \begin{array}{l} \alpha(\text{K}) = 0.001393 \ 20; \ \alpha(\text{L}) = 0.000196 \ 3; \ \alpha(\text{M}) = 4.29 \times 10^{-5} \ 6 \\ \alpha(\text{N}) = 9.90 \times 10^{-6} \ 14; \ \alpha(\text{O}) = 1.441 \times 10^{-6} \ 21; \ \alpha(\text{P}) = 8.05 \times 10^{-8} \ 12; \\ \alpha(\text{IPF}) = 3.23 \times 10^{-5} \ 5 \end{array} $
		1454.2 ^d 3	2 d 1	1264.7472 2	2-		
		1669.8 <i>1</i>	3.3 7	1049.1018 3	3+		
		2632.15 15	100 9	86.7877 2	2+ E1	1.23×10^{-3}	$\alpha(K)=0.000211 \ 3; \ \alpha(L)=2.72\times10^{-5} \ 4; \ \alpha(M)=5.88\times10^{-6} \ 9$ $\alpha(N)=1.358\times10^{-6} \ 19; \ \alpha(O)=2.00\times10^{-7} \ 3; \ \alpha(P)=1.187\times10^{-8} \ 17;$ $\alpha(PE)=0.000081 \ 14$
2720.57	3-	453.7 3	10 6	2266.98 3	^{3–} [M1,E2]	0.0289 93	$\alpha(\text{II}) = 0.0039 \ 84; \ \alpha(\text{L}) = 0.0038 \ 8; \ \alpha(\text{M}) = 0.00085 \ 16 \ \alpha(\text{N}) = 0.00020 \ 4; \ \alpha(\text{D}) = 2 \ 8 \times 10^{-5} \ 7; \ \alpha(\text{P}) = 1.42 \times 10^{-6} \ 56$
		935.91 6	100 6	1784.688 4	F E2,M1	0.0049 14	$\alpha(N)=0.00020$ 4, $\alpha(O)=2.0\times10^{-7}$ 7, $\alpha(I)=1.42\times10^{-7}$ 50 $\alpha(K)=0.0041$ 12; $\alpha(L)=0.00059$ 15; $\alpha(M)=0.00013$ 4 $\alpha(N)=3.0\times10^{-5}$ 8: $\alpha(O)=4.3\times10^{-6}$ 12: $\alpha(P)=2.44\times10^{-7}$ 76
		1202.15 12	42 6	1518.419 2	2+		$u(1)=5.0\times10^{-0}$ 0, $u(0)=1.5\times10^{-12}$, $u(1)=2.11\times10^{-10}$
		1321.5 3	40 <i>6</i>	1398.964 3	8- E2	1.76×10^{-3}	$\alpha(K)=0.001472\ 21;\ \alpha(L)=0.000208\ 3;\ \alpha(M)=4.56\times10^{-5}\ 7$
							α (N)=1.051×10 ⁻⁵ <i>15</i> ; α (O)=1.528×10 ⁻⁶ <i>22</i> ; α (P)=8.51×10 ⁻⁸ <i>12</i> ; α (IPF)=2.36×10 ⁻⁵ <i>4</i>
		1671.9 ^d 5	29 ^d 13	1049.1018 3	8 ⁺ (E1)	8.34×10 ⁻⁴	$\alpha(K)=0.000434 \ 6; \ \alpha(L)=5.65\times10^{-5} \ 8; \ \alpha(M)=1.224\times10^{-5} \ 18$ $\alpha(N)=2.83\times10^{-6} \ 4; \ \alpha(O)=4.15\times10^{-7} \ 6; \ \alpha(P)=2.44\times10^{-8} \ 4;$ $\alpha(IPF)=0.000328 \ 5$
		1754.32 6	24.0 15	966.1687 2	2+		

49

γ (¹⁶⁰Dy) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α^{a}	Comments
2720.57	3-	2436.80 8	48 6	283.8219	4+	E1	1.14×10 ⁻³	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.000238 \ 4; \ \alpha(\mathrm{L}) = 3.07 \times 10^{-5} \ 5; \ \alpha(\mathrm{M}) = 6.63 \times 10^{-6} \ 10 \\ \alpha(\mathrm{N}) = 1.531 \times 10^{-6} \ 22; \ \alpha(\mathrm{O}) = 2.25 \times 10^{-7} \ 4; \ \alpha(\mathrm{P}) = 1.336 \times 10^{-8} \ 19; \\ \alpha(\mathrm{IPF}) = 0.000862 \ 12 \end{array} $
2727.21	(4)	1760.9 ^e 4 2146.6 6 2443 35 10	13 4 15 5 100 12	966.1687 581.066 283.8219	2^+ 6^+ 4^+			
2729.824	2-	279.76 [°] 15	5.5 ^c 9	2450.25	1-	(E2)	0.0800	α (K)=0.0591 9; α (L)=0.01622 23; α (M)=0.00375 6 α (N)=0.000850 12; α (O)=0.0001110 16; α (P)=3.04×10 ⁻⁶ 5
		458.5 1	4 1	2271.246	2-	[M1,E2]	0.0281 91	α (K)=0.0233 81; α (L)=0.0037 8; α (M)=0.00083 15 α (N)=0.00019 4; α (O)=2.7×10 ⁻⁵ 6; α (P)=1.38×10 ⁻⁶ 54
		860.3 <i>3</i>	6.3 27	1869.513	2^{+}			
		924.9 <mark>d</mark> 3	9 ^d 3	1804.669	1^{+}			
		1240.36 20	82 6	1489.500	1-	E2	0.00198	$\alpha(K)=0.001665\ 24;\ \alpha(L)=0.000238\ 4;\ \alpha(M)=5.21\times10^{-5}\ 8$ $\alpha(N)=1.201\times10^{-5}\ 17;\ \alpha(O)=1.743\times10^{-6}\ 25;\ \alpha(P)=9.62\times10^{-8}\ 14;$ $\alpha(IPF)=1.022\times10^{-5}\ 15$
		1330.4 5	27 16	1398.964	3-	E2	1.74×10^{-3}	$\alpha(K)=0.001453 \ 21; \ \alpha(L)=0.000205 \ 3; \ \alpha(M)=4.49\times10^{-5} \ 7 \\ \alpha(N)=1.037\times10^{-5} \ 15; \ \alpha(O)=1.507\times10^{-6} \ 22; \ \alpha(P)=8.40\times10^{-8} \ 12; \\ \alpha(IPF)=2.55\times10^{-5} \ 4$
		1343.5 <i>3</i>	30 9	1386.458	4-			
		1371.31 ^d 7	30 ^d 7	1358.670	2^{-}			
		1379.8 <i>3</i>	12 4	1349.758	2^{+}			
		1443.1 <i>1</i>	22 6	1286.713	3-	E2,M1	0.0019 4	$\alpha(K)=0.0016 \ 4; \ \alpha(L)=0.00022 \ 5; \ \alpha(M)=4.7\times10^{-5} \ 10 \\ \alpha(N)=1.09\times10^{-5} \ 22; \ \alpha(O)=1.6\times10^{-6} \ 4; \ \alpha(P)=9.3\times10^{-8} \ 21; \\ \alpha(IPF)=6.0\times10^{-5} \ 5$
		1444.1 <i>1</i>	75 15	1285.604	1-	E2,M1	0.0019 4	$\alpha(\mathbf{K})=0.0016 \ 4; \ \alpha(\mathbf{L})=0.00022 \ 5; \ \alpha(\mathbf{M})=4.7\times10^{-5} \ 10 \\ \alpha(\mathbf{N})=1.09\times10^{-5} \ 22; \ \alpha(\mathbf{O})=1.6\times10^{-6} \ 4; \ \alpha(\mathbf{P})=9.2\times10^{-8} \ 21; \\ \alpha(\mathbf{IPE})=6.0\times10^{-5} \ 5$
		1465.05 <i>3</i>	89 2	1264.7472	2-	E2	1.49×10 ⁻³	$\alpha(\text{RE}) = 0.001209 \ 17; \ \alpha(\text{L}) = 0.0001688 \ 24; \ \alpha(\text{M}) = 3.69 \times 10^{-5} \ 6 \ \alpha(\text{N}) = 8.51 \times 10^{-6} \ 12; \ \alpha(\text{O}) = 1.240 \times 10^{-6} \ 18; \ \alpha(\text{P}) = 6.99 \times 10^{-8} \ 10; \ \alpha(\text{PE}) = 6.18 \times 10^{-5} \ 0$
		2643.06 10	100 6	86.7877	2+	E1	1.23×10 ⁻³	$\alpha(\text{M}) = 0.10 \times 10^{-9} 3 \alpha(\text{M}) = 0.000210 3; \ \alpha(\text{L}) = 2.70 \times 10^{-5} 4; \ \alpha(\text{M}) = 5.84 \times 10^{-6} 9 \alpha(\text{N}) = 1.349 \times 10^{-6} 19; \ \alpha(\text{O}) = 1.99 \times 10^{-7} 3; \ \alpha(\text{P}) = 1.180 \times 10^{-8} 17; \ \alpha(\text{IPF}) = 0.000987 14$
2734.718	1-	666.7 ^d 3	3.3 ^d 8	2068.08	1-			
		1216.37 7	17.8 11	1518.419	2+	E1	9.04×10 ⁻⁴	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.000748 \ 11; \ \alpha(\mathrm{L}) = 9.85 \times 10^{-5} \ 14; \ \alpha(\mathrm{M}) = 2.13 \times 10^{-5} \ 3\\ \alpha(\mathrm{N}) = 4.93 \times 10^{-6} \ 7; \ \alpha(\mathrm{O}) = 7.21 \times 10^{-7} \ 10; \ \alpha(\mathrm{P}) = 4.19 \times 10^{-8} \ 6; \\ \alpha(\mathrm{IPF}) = 3.04 \times 10^{-5} \ 5 \end{array} $
		1245.8 6	1.9 8	1489.500	1-			
		1278.1 2	12.9 9	1456.752	0^{+}			
		1336.1 4	2.6 11	1398.964	3-			
		1375.9 ^{<i>a</i>} 2	15 ^a 4	1358.670	2^{-}			

						Adopted 1	Levels, Gammas (continued)	
						<u>2</u>	(¹⁶⁰ Dy) (continue	<u>d)</u>	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ ^{#b}	α^{a}	Comments
2734.718	1-	1449.06 4	15.1 6	1285.604	1-	E2		1.51×10 ⁻³	$\begin{aligned} &\alpha(\text{K}) = 0.001235 \ I8; \ \alpha(\text{L}) = 0.0001726 \ 25; \\ &\alpha(\text{M}) = 3.77 \times 10^{-5} \ 6 \\ &\alpha(\text{N}) = 8.70 \times 10^{-6} \ I3; \ \alpha(\text{O}) = 1.267 \times 10^{-6} \ I8; \\ &\alpha(\text{P}) = 7.14 \times 10^{-8} \ I0; \ \alpha(\text{IPF}) = 5.69 \times 10^{-5} \ 8 \end{aligned}$
		1470.0 2 1768.2 4	5.5 11 0.59 19	966.1687	2^{+}				
		2647.91 ^d 5	100 ^d 8	86.7877	2+	E1(+M2)	-0.15 +20-19	0.00124 4	$\alpha(K)=2.27\times10^{-4} \ 67; \ \alpha(L)=2.94\times10^{-5} \ 93; \alpha(M)=6.4\times10^{-6} \ 21 \alpha(N)=1.47\times10^{-6} \ 47; \ \alpha(O)=2.17\times10^{-7} \ 70; \alpha(D)=2.17\times10^{-7} \ 70; $
		2734.72 5	34.1 <i>11</i>	0.0	0+	E1		1.27×10^{-3}	$\alpha(P)=1.29\times10^{-6} \ 41; \ \alpha(PF)=0.00098 \ 5$ $\alpha(K)=0.000199 \ 3; \ \alpha(L)=2.56\times10^{-5} \ 4; $ $\alpha(M)=5.54\times10^{-6} \ 8$ $\alpha(N)=1.280\times10^{-6} \ 18; \ \alpha(O)=1.88\times10^{-7} \ 3; $ $\alpha(D)=1.120\times10^{-8} \ 45; \ \alpha(DE)=0.001042 \ 15$
2755.04		2471.2 2	100	283.8219	4+				$u(\mathbf{P})=1.120\times 10^{-10}$, $u(\mathbf{IPF})=0.001045$ 15
2756.3		2669.5 <i>3</i>	100	86.7877	2^{+}				
2757.13		626.57 10	100 15	2130.579	$3^{-}_{2^{+}}$				
		1/0/.64	20 8	1049.1018	3				
2760 46	1+ 2+	24/3.34 2	59 ⁴ 20	283.8219	4' 2-				
2700.40	1,2	1401.8 <i>I</i> 1410.7 <i>I</i>	100 20	1349.758	2^{+}	E2,M1		0.0020 4	$\alpha(K)=0.0016$ 4; $\alpha(L)=0.00023$ 5; $\alpha(M)=5.0\times10^{-5}$ 10
		,							α (N)=1.15×10 ⁻⁵ 23; α (O)=1.7×10 ⁻⁶ 4; α (P)=9.7×10 ⁻⁸ 23; α (IPF)=4.9×10 ⁻⁵ 4
		1480.4 ^{<i>a</i>} 2	40 ^{<i>a</i>} 10	1279.942	0^{+}				
2763.05		2479.14 6	100	283.8219	4+	E2		1.05×10 ⁻³	$\alpha(K)=0.000462 \ 7; \ \alpha(L)=6.16\times10^{-5} \ 9; \\ \alpha(M)=1.337\times10^{-5} \ 19 \\ \alpha(N)=3.09\times10^{-6} \ 5; \ \alpha(O)=4.54\times10^{-7} \ 7;$
									$\alpha(P)=2.66\times10^{-8} 4; \alpha(IPF)=0.000512 8$
2767.70	1-	699.9 ^d 4 1368.7 3	16 ^d 6 60 20	2068.08 1398.964	1^{-} 3^{-}				
		1409.0 3	100 20	1358.670	2-	E2,M1		0.0020 5	$\alpha(K)=0.0016 \ 4; \ \alpha(L)=0.00023 \ 5; \ \alpha(M)=5.0\times10^{-5}$ 10 10 10 10 10 15 10=6 10 10 10 10 10 10 10 10 10 10
		2680.88 <i>5</i>	94 <i>4</i>	86.7877	2+	E1		1.25×10^{-3}	$\alpha(N)=1.15\times10^{-5} 23; \ \alpha(O)=1.7\times10^{-5} 4; \alpha(P)=9.8\times10^{-8} 23; \ \alpha(IPF)=4.9\times10^{-5} 4 \alpha(K)=0.000205 3; \ \alpha(L)=2.64\times10^{-5} 4; \alpha(M)=5.71\times10^{-6} 8$
									α (N)=1.320×10 ⁻⁶ <i>19</i> ; α (O)=1.94×10 ⁻⁷ <i>3</i> ; α (P)=1.154×10 ⁻⁸ <i>17</i> ; α (IPF)=0.001010 <i>15</i>
2772.10		2767.8 2 2488.26 20	12.2 <i>24</i> 100	0.0 283.8219	$0^+ 4^+$				

From ENSDF

 $^{160}_{66}\mathrm{Dy}_{94}$ -51

γ (¹⁶⁰Dy) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α^{a}	Comments
2777.62	2+,3+,4+	1020.63 <i>13</i> 1134.2 <i>5</i> 1259.10 <i>7</i> 1427.82 <i>9</i> 2403 87 <i>6</i>	29 5 7.6 32 44 3 100 6	1756.918 1643.27 1518.419 1349.758	2^+ 3^- 2^+ 2^+ 4^+	E2 M1	0.00115_70	$\alpha(K) = 0.00050.5; \ \alpha(L) = 6.7 \times 10^{-5}.6; \ \alpha(M) = 1.45 \times 10^{-5}.14$
		2493.87 0	04 <i>4</i>	285.8219	4	E2,1VI I	0.00113 10	$\alpha(\mathbf{N})=0.00050\ 5;\ \alpha(\mathbf{L})=0.7\times10^{-6}\ 6;\ \alpha(\mathbf{M})=1.43\times10^{-1}\ 14$ $\alpha(\mathbf{N})=3.4\times10^{-6}\ 3;\ \alpha(\mathbf{O})=5.0\times10^{-7}\ 5;\ \alpha(\mathbf{P})=2.9\times10^{-8}\ 3;$ $\alpha(\mathbf{IPF})=0.00057\ 5$
2822.23	1+	2735.4	59 5	86.7877	2+	[M1]	1.26×10 ⁻³	$\alpha(K)=0.000442 7; \alpha(L)=5.92\times10^{-5} 9; \alpha(M)=1.288\times10^{-5} 18$ $\alpha(N)=2.98\times10^{-6} 5; \alpha(O)=4.40\times10^{-7} 7; \alpha(P)=2.62\times10^{-8} 4;$ $\alpha(IPF)=0.000746 11$ B(M1)(W.u.)=0.129 +20-16 E _{\gamma} : from level-energy difference. 2002Ad34, ε decay, report a strong 2734.72 γ but place all of it from a 2734.7 level. This γ might obscure a γ of the expected intensity from this 2822 level or a small portion of it may in fact correspond to the 2822 \rightarrow 86 transition. L ₂ : from (γ, γ').
		2822.2 2	100	0.0	0+	M1	1.27×10 ⁻³	B(M1)(W.u.)=0.198 +31-23 $\alpha(K)=0.000412 \ 6; \ \alpha(L)=5.53\times10^{-5} \ 8; \ \alpha(M)=1.201\times10^{-5} \ 17$ $\alpha(N)=2.78\times10^{-6} \ 4; \ \alpha(O)=4.10\times10^{-7} \ 6; \ \alpha(P)=2.44\times10^{-8} \ 4; \ \alpha(PF)=0.000792 \ 11$ E _y : from 2002Ad34, ε decay. Mult : from (γ, γ')
2833.85	2,3,4	2550.1 <i>3</i> 2747.0 2	96 <i>41</i> 100 8	283.8219 86.7877	$\frac{4^{+}}{2^{+}}$			
2851.73	1-	154.04 ^{&} 4	71	2697.821	2+	E1	0.0971	$\alpha(K)=0.0817$ 12; $\alpha(L)=0.01208$ 17; $\alpha(M)=0.00264$ 4 $\alpha(K)=0.000603$ 0; $\alpha(O)=8.41\times10^{-5}$ 12; $\alpha(D)=4.00\times10^{-6}$ 6
		642.9 <i>1</i>	3 1	2208.79	(2)-	(E2)	0.00810	$\alpha(N)=0.000005, 9; \alpha(O)=8.41\times10^{-1}12; \alpha(P)=4.00\times10^{-6} 0$ $\alpha(K)=0.00666, 10; \alpha(L)=0.001126, 16; \alpha(M)=0.000251, 4$ $\alpha(N)=5.76\times10^{-5}, 8; \alpha(O)=8.10\times10^{-6}, 12; \alpha(P)=3.79\times10^{-7}, 6$
		784.0 5	52	2068.08	1-			
		982.33 ^d 17	2 ^d 1	1869.513	2^{+}			
		1333.5 4	24 9	1518.419	2+			
		1362.5 4	73	1489.500	1-			
		1394.9 ^d 2	12 ^d 6	1456.752	0^+			
		1493.3 <i>3</i>	9.4 10	1358.670	2-			
		1565.9 <i>1</i>	21 7	1285.604	1-	E2	1.35×10 ⁻³	$\begin{aligned} &\alpha(\mathrm{K}) = 0.001067 \ 15; \ \alpha(\mathrm{L}) = 0.0001478 \ 21; \ \alpha(\mathrm{M}) = 3.22 \times 10^{-5} \ 5 \\ &\alpha(\mathrm{N}) = 7.44 \times 10^{-6} \ 11; \ \alpha(\mathrm{O}) = 1.086 \times 10^{-6} \ 16; \ \alpha(\mathrm{P}) = 6.17 \times 10^{-8} \ 9; \\ &\alpha(\mathrm{IPF}) = 9.61 \times 10^{-5} \ 14 \end{aligned}$
		1586.90 <i>17</i>	53 6	1264.7472	2-	E2	1.33×10 ⁻³	α (K)=0.001041 <i>15</i> ; α (L)=0.0001439 <i>21</i> ; α (M)=3.14×10 ⁻⁵ <i>5</i> α (N)=7.25×10 ⁻⁶ <i>11</i> ; α (O)=1.058×10 ⁻⁶ <i>15</i> ; α (P)=6.02×10 ⁻⁸ <i>9</i> ; α (IPF)=0.0001039 <i>15</i>
		2764.81 5	100 8	86.7877	2^{+}	E1	1.29×10^{-3}	$\alpha(K)=0.000196 \ 3; \ \alpha(L)=2.52\times10^{-5} \ 4; \ \alpha(M)=5.45\times10^{-6} \ 8$

					Ado	opted Level	s, Gammas (c	continued)
						γ (¹⁶⁰ I	Dy) (continued	<u>))</u>
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{a}	Comments
2851.73	1-	2851.55 8	30.0 19	0.0	0+	(E1)	1.32×10 ⁻³	$\begin{aligned} &\alpha(\mathrm{N})=1.259\times10^{-6}\ 18;\ \alpha(\mathrm{O})=1.85\times10^{-7}\ 3;\ \alpha(\mathrm{P})=1.102\times10^{-8}\ 16;\\ &\alpha(\mathrm{IPF})=0.001060\ 15\\ &\alpha(\mathrm{K})=0.000187\ 3;\ \alpha(\mathrm{L})=2.41\times10^{-5}\ 4;\ \alpha(\mathrm{M})=5.20\times10^{-6}\ 8\\ &\alpha(\mathrm{N})=1.201\times10^{-6}\ 17;\ \alpha(\mathrm{O})=1.768\times10^{-7}\ 25;\ \alpha(\mathrm{P})=1.052\times10^{-8}\\ &15;\ \alpha(\mathrm{IPF})=0.001105\ 16 \end{aligned}$
2853.69		2272.8 <i>5</i> 2569.83 <i>12</i>	10 2 100 7	581.066 283.8219	6^+ 4^+			
2858.17		298.15 ^d 7	100 ^d 25	2560.02	2 ⁺ ,3,4 ⁺	E1	0.01747	α (K)=0.01480 21; α (L)=0.00209 3; α (M)=0.000457 7 α (N)=0.0001048 15; α (O)=1.495×10 ⁻⁵ 21; α (P)=7.80×10 ⁻⁷ 11
		2771.6 5	4 2	86.7877	2^+ 2^+			
2861.162	1+	163.35 2	100 5	2697.821	2+	M1+E2	0.53 7	$\alpha(K)=0.40\ 11;\ \alpha(L)=0.106\ 33;\ \alpha(M)=0.0245\ 84$
		410.9 <i>I</i> 1502.6 <i>3</i> 1511.6 <i>3</i> 1581.2 <i>3</i> 1811.6 <i>2</i>	10 5 84 10 31 16 26 6 16 4	2450.25 1358.670 1349.758 1279.942 1049.1018	1^{-} 2^{-} 2^{+} 0^{+} 3^{+}			$a(n)=0.0050$ 19, $a(0)=7.5\times10$ 19, $a(r)=2.22\times10$ 91
		2774.3 <i>2</i> 2861.03 <i>9</i>	20 5 44 3	86.7877 0.0	2 ⁺ 0 ⁺	(M1)	1.28×10 ⁻³	I _γ : from 2002Ad34. From (γ,γ'), Iγ(2774γ)/Iγ(2861γ)=0.52 5. α (K)=0.000400 6; α (L)=5.36×10 ⁻⁵ 8; α (M)=1.165×10 ⁻⁵ 17 α (N)=2.70×10 ⁻⁶ 4; α (O)=3.98×10 ⁻⁷ 6; α (P)=2.37×10 ⁻⁸ 4; α (IPF)=0.000812 12
2877.094	1-	924.9 ^d 3 1518.41 ^d 3 1526.9 4 1612.35 ^d 3 2790.4 2	$\begin{array}{c} 20^{d} \ 10 \\ 25^{d} \ 10 \\ 10 \ 5 \\ 100^{d} \ 30 \\ 12 \ 5 \ 15 \end{array}$	1952.31 1358.670 1349.758 1264.7472 86.7877	0^+ 2^- 2^+ 2^- 2^+			
		2876.98 10	8.5 10	0.0	0^{+}	E1	1.33×10 ⁻³	α (K)=0.000185 3; α (L)=2.37×10 ⁻⁵ 4; α (M)=5.13×10 ⁻⁶ 8 α (N)=1.185×10 ⁻⁶ 17; α (O)=1.744×10 ⁻⁷ 25; α (P)=1.038×10 ⁻⁸ 15; α (IPF)=0.001118 16 Mult.: from ¹⁶⁰ Ho ε decay.
2879.46	2	375.57 <i>18</i> 1423.0 <i>6</i> 1480.4 ^{<i>d</i>} 2 1599.5 <i>3</i> 1723.9 <i>4</i> 1830.6 <i>4</i> 2595.6 2 2793.1 <i>5</i>	37 10 49 25 1.0×10 ^{2d} 4 41 11 63 10 62 25 100 10 10 2	2503.80 1456.752 1398.964 1279.942 1155.841 1049.1018 283.8219 86.7877	$1^+, 2^+$ 0^+ 3^- 0^+ 4^+ 3^+ 4^+ 2^+			
2885.58		122.53^{a} 2 211.20 ^d 16	$15^{a} 5$ $4^{d} 4$	2763.05 2674.716	1-	(M1) M1	1.340 0.292	

$^{160}_{66}\mathrm{Dy}_{94}$ -53

From ENSDF

Adopted Levels, Gammas (continued)									
γ ⁽¹⁶⁰ Dy) (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	α^{a}	Comments		
2885.58		1836.49 6 1919.38 <i>15</i>	59 20 100 5	1049.1018 3 ⁺ 966.1687 2 ⁺	(E1)	9.15×10 ⁻⁴	α (K)=0.000346 5; α (L)=4.49×10 ⁻⁵ 7; α (M)=9.72×10 ⁻⁶ 14 α (N)=2.25×10 ⁻⁶ 4; α (O)=3.30×10 ⁻⁷ 5; α (P)=1.95×10 ⁻⁸ 3; α (IPF)=0.000512 8		
2896.28	2+	828.13 ^d 15 1407.1 2 1439.50 ^d 4 1546.51 15 1616.7 ^c 2 1846.9 ^d 2 1930.0 2 2612.5 3 2809.2 2	$\begin{array}{r} 42^{d} \ 9\\ 40 \ 5\\ 100^{d} \ 12\\ 19 \ 2\\ 17^{c} \ 1\\ 12^{d} \ 5\\ 60 \ 7\\ 5 \ 3\\ 7.9 \ 14\end{array}$	$\begin{array}{cccc} 2068.08 & 1^{-} \\ 1489.500 & 1^{-} \\ 1456.752 & 0^{+} \\ 1349.758 & 2^{+} \\ 1279.942 & 0^{+} \\ 1049.1018 & 3^{+} \\ 966.1687 & 2^{+} \\ 283.8219 & 4^{+} \\ 86.7877 & 2^{+} \end{array}$					
		2896.7 2	16 <i>I</i>	0.0 0+	E2	0.00120 9	α (K)=0.000370 20; α (L)=4.9×10 ⁻⁵ 3; α (M)=1.07×10 ⁻⁵ 7 α (N)=2.47×10 ⁻⁶ 16; α (O)=3.65×10 ⁻⁷ 23; α (P)=2.16×10 ⁻⁸ 15; α (IPF)=0.00077 7		
2904.36	2,3,4	1937.7 <i>5</i> 2620.4 <i>4</i> 2817.56 <i>8</i>	32 <i>10</i> 35 9 100 <i>10</i>	966.1687 2 ⁺ 283.8219 4 ⁺ 86.7877 2 ⁺					
2931.76 2941.96 2958.55	4,5,6	2647.91 ^{<i>d</i>} 5 2658.11 8 1572.1 3 1671.9 ^{<i>d</i>} 5	100^{d} 100 18 2 17^{d} 7	283.8219 4 ⁺ 283.8219 4 ⁺ 1386.458 4 ⁻ 1286.713 3 ⁻					
		1693.75 25	33 10	1264.7472 2-	E2	1.23×10 ⁻³	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.000922 \ 13; \ \alpha(\mathrm{L}) = 0.0001266 \ 18; \ \alpha(\mathrm{M}) = 2.76 \times 10^{-5} \ 4 \\ \alpha(\mathrm{N}) = 6.37 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 9.31 \times 10^{-7} \ 13; \ \alpha(\mathrm{P}) = 5.33 \times 10^{-8} \ 8; \\ \alpha(\mathrm{IPF}) = 0.0001467 \ 21 \end{array} $		
2969.03	1,2	2674.71 ^{<i>d</i>} 5 1683.28 ^{<i>c</i>} 25 1704.3 4 2882.5 3 2968 5 7	$ \begin{array}{r} 100^{d} \ 10 \\ 100^{c} \ 50 \\ 64 \ 28 \\ 12 \ 3 \\ 11 \ 5 \\ \end{array} $	$\begin{array}{cccccccc} 283.8219 & 4^+ \\ 1285.604 & 1^- \\ 1264.7472 & 2^- \\ 86.7877 & 2^+ \\ 0.0 & 0^+ \end{array}$					
2969.90		1583.3 6 1683.28 ^c 25 1813.9 <i>I</i> 2686.14 8	$ \begin{array}{r} 113 \\ 4 \times 10^{1} 3 \\ 24^{c} 12 \\ 9 \times 10^{1} 5 \\ 100 5 \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					
2977.55		1928.4 7 2693.70 <i>6</i>	$8 \times 10^{1} 4$ 100 15	$\begin{array}{ccc} 1049.1018 & 3^+ \\ 283.8219 & 4^+ \end{array}$					
2984.84	12-	318.2 2 465.0 2	<100 <100	2666.30 12 ⁻ 2520.17 10 ⁻					
2988.76	13+	475 <i>1</i> 503.3 <i>1</i>	<23 100 5	2513.36 14 ⁺ 2485.64 11 ⁺					

From ENSDF

γ (¹⁶⁰Dy) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{a}	Comments
2988.76	13^{+}	1038.8.2	50.5	1950.17	12^{+}			
2994.69	2,3,4	1476.25 8	100 11	1518.419	2+			
		2711.0 2	23 1	283.8219	4^{+}			
		2907.7 <i>3</i>	3.9 7	86.7877	2+			
3004.33	1,2	2917.5 <i>1</i>	86 29	86.7877	2+			
		3004.6 4	100 29	0.0	0^{+}			
3007.46	14+	414.3 2	<38	2593.64	12+			
		493.7 ^{X} 1	100 8	2513.36	14^{+}			
		1056.5 ^{&} 2	100 8	1950.17	12^{+}			
3024.52	1,2	2937.9 <i>3</i>	55 6	86.7877	2+			
		3024.4 2	100 8	0.0	0^{+}			
3033.7		2749.9 <i>3</i>	100	283.8219	4+			
3060.44		946.75 9	100	2113.69				
3061.82	1+	327.3 3	22 15	2734.718	1-	[E1]	0.01387	$\alpha(K)=0.01176\ 17;\ \alpha(L)=0.001654\ 24;\ \alpha(M)=0.000361\ 6$ $\alpha(N)=8.29\times10^{-5}\ 12;\ \alpha(O)=1.185\times10^{-5}\ 17;\ \alpha(P)=6.24\times10^{-7}\ 9$
		400.25 6	100 7	2661.511	2-	E1	0.00855	$\alpha(K) = 0.00726 \ 11; \ \alpha(L) = 0.001010 \ 15; \ \alpha(M) = 0.000220 \ 3$
		1	1					$\alpha(N) = 5.06 \times 10^{-3} 7; \alpha(O) = 7.28 \times 10^{-6} 11; \alpha(P) = 3.91 \times 10^{-7} 6$
		431.15 ^d 25	15 ^d 7	2630.705	1^{-}			
		984.65 ^{de} 20	15 ^d 7	2077.36	3-			
		1049.6 5	81 15	2012.85	2+			
		1775.14 9	36 5	1286.713	3-			
		1797.6 4	199	1264.7472	2-			
		2975.2 2	14 <i>I</i>	86.7877	2+	(M1)	1.30×10^{-3}	$\alpha(K)=0.000368 \ 6; \ \alpha(L)=4.92\times10^{-5} \ 7; \ \alpha(M)=1.069\times10^{-5} \ 15 \\ \alpha(N)=2.47\times10^{-6} \ 4; \ \alpha(O)=3.65\times10^{-7} \ 6; \ \alpha(P)=2.17\times10^{-8} \ 3; \\ \alpha(IPF)=0.000871 \ 13 \\ Mult : \ from \ (\gamma, \gamma')$
		3061.3 7	1.6 7	0.0	0+	(M1)	1.32×10 ⁻³	$\alpha(K)=0.000345 \ 5; \ \alpha(L)=4.62\times10^{-5} \ 7; \ \alpha(M)=1.004\times10^{-5} \ 14$ $\alpha(N)=2.32\times10^{-6} \ 4; \ \alpha(O)=3.43\times10^{-7} \ 5; \ \alpha(P)=2.04\times10^{-8} \ 3;$ $\alpha(IPF)=0.000914 \ 13$ Mult: from (γ,γ') .
3081.4		2797.6 4	100	283.8219	4+			
3089.49	16+	576.5 ^{&} 1	100	2513.36	14+	E2	0.01056	$\alpha(K)=0.00861 \ I2; \ \alpha(L)=0.001521 \ 22; \ \alpha(M)=0.000340 \ 5$ $\alpha(N)=7.80\times10^{-5} \ II; \ \alpha(O)=1.088\times10^{-5} \ I6; \ \alpha(P)=4.87\times10^{-7} \ 7$ $E_{\gamma}: from (^{7}Li,p4n\gamma).$ Mult : from (α 2ng)
3098 82	6+	890.6.1	15.6	2208 36	Δ^+			$(\alpha, 2\pi)$
5070.02	0	12076001	150	1200.30		ED	0.00192	$\alpha(K) = 0.001525.22$, $\alpha(L) = 0.000216.2$, $\alpha(M) = 4.72 \times 10^{-5}.7$
		1297.06 18	15" 0	1800.35	δ'	E2	0.00182	$\alpha(\mathbf{N})=0.001525\ 22;\ \alpha(\mathbf{L})=0.000216\ 3;\ \alpha(\mathbf{M})=4.73\times10^{-5}\ 7$ $\alpha(\mathbf{N})=1.092\times10^{-5}\ 16;\ \alpha(\mathbf{O})=1.587\times10^{-6}\ 23;\ \alpha(\mathbf{P})=8.81\times10^{-8}\ 13;$ $\alpha(\mathbf{IPF})=1.91\times10^{-5}\ 3$
		1378.4 <i>3</i>	24 9	1720.36	6+			
		1481.9 2	100 9	1617.27	7+	E2	1.46×10^{-3}	$\alpha(K)=0.001184$ 17; $\alpha(L)=0.0001650$ 24; $\alpha(M)=3.60\times10^{-5}$ 5

55

Adopted Levels, Gammas (continued)										
γ ⁽¹⁶⁰ Dy) (continued)										
J_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α^{a}	Comments			
							α (N)=8.31×10 ⁻⁶ <i>12</i> ; α (O)=1.212×10 ⁻⁶ <i>17</i> ; α (P)=6.84×10 ⁻⁸ <i>10</i> ; α (IPF)=6.72×10 ⁻⁵ <i>10</i>			
6+	1504.4 ^d 3 2132.1 3	12 ^d 6 15 3	1594.42 966.83							
	2518.7 ^d 9	21 ^d 6	581.066	6+						
14-	596.5	100	2513.36	14+			Mult S. (D. O) S. (20 from (2.2m)) The annound alconnection (1.1.1.1.1)			
14-	482.2 1	100	2666.30	12-			Mult., δ : (D+Q), δ <30 from (α ,2n γ). The proposed placement in the level scheme required mult=E2, which is inconsistent with the reported δ value.			
13-	491.9 1	100	2696.30	11-						
15	495.4 1	100 5	2697.31	13						
14+	0/8.3 I 512.2 I	38 2 100 <i>14</i>	2515.30	14^{+} 12^{+}						
14	706.6.2	<71	2513.36	12^{12} 14^{+}						
	1270.6° 2	<71	1950 17	12+						
	340.6 ^e	100	3111.1	12			identified by 1987Ri08 as connecting levels at 3454 and 3113. (This latter level has been revised to 3111.5 in this evaluation.) The placement of this γ and, hence, the			
	363.2	100	3080 /0	16+			existence of the 3452 level are uncertain.			
15+	51971	100 4	2988 76	13+						
10	994.6 2	<22	2513.36	14^{+}						
14^{-}	525.8 1	100	2984.84	12^{-}						
16^{+}	437.4 2	<50	3089.49	16^{+}						
	517.2 ^{&} 2	<50	3007.46	14^{+}			E_{γ} : see the comment on this γ in the (⁷ Li,p4n γ) data set.			
	1014.5 <mark>&</mark> 2	100 10	2513.36	14^{+}			E_{γ} : see the comment on this γ in the (⁷ Li,p4n γ) data set.			
18^{+}	580.5 ^{&} 1	100	3089.49	16+	E2	0.01038	$\alpha(K)=0.00847$ 12; $\alpha(L)=0.001491$ 21; $\alpha(M)=0.000334$ 5			
							$\alpha(N)=7.65 \times 10^{-5} II; \alpha(O)=1.068 \times 10^{-5} I5; \alpha(P)=4.79 \times 10^{-7} 7$ E : from (⁷ L i p4pp)			
16-	532.8 1	100	3148.50	14-			$L\gamma$. IIVIII (Li , p -II γ).			
15-	542.4 2	100	3188.20	13-						
17^{-}	551.5 <i>1</i>	100 7	3192.87	15^{-}						
	655.2 1	17 3	3089.49	16+						
16^{+}	547.1 2	<100	3220.16	14^{+}						
	679.0 <mark>&</mark> 2	<100	3089.49	16+						
	1253.7 2	<100	2513.36	14^{+}						
17+	536.1 1	100 9	3508.22	15+						
	953.8 ^{oo} 2	<45	3089.49	16+						
16-	567.7 2	100	3510.64	14-						
18,	490.6 2	<100	3009.03	18' 16+						
	054.02	<100	3080 10	10 ⁺						
18-	575.7 1	100	3681.31	16-						
	$ \begin{array}{c} J_{i}^{\pi} \\ 6^{+} \\ 14^{-} \\ 13^{-} \\ 15^{-} \\ 14^{+} \\ 15^{+} \\ 14^{-} \\ 16^{+} \\ 18^{+} \\ 16^{-} \\ 17^{-} \\ 16^{+} \\ 17^{+} \\ 18^{+} \\ 18^{-} \\ 18^{+} \\ 18^{-} \\ 18^{-} \\ 18^{-} \\ 18^{-} \\ 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

¹⁶⁰₆₆Dy₉₄-56

γ ⁽¹⁶⁰Dy) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
4278.39	20^{+}	608.6 1	100	3669.65	18+	4975.00	20^{+}	1306.2 ^{&} 2	100	3669.65	18+
4317.0	17^{-}	586.4 2	100	3730.6	15^{-}	5001.54	21^{-}	653.5 1	100	4348.04	19-
4348.04	19-	603.5 1	100	3744.53	17^{-}	5241.09	21^{+}	623.0 1	100 17	4618.29	19^{+}
4349.95	18^{+}	582.3 1	100 11	3767.63	16^{+}			961.9 <mark>&</mark> 2	<83	4278.39	20^{+}
		680.6 2	<56	3669.65	18^{+}	5528.2	22^{-}	655.6 2	100	4872.61	20^{-}
		1259.2 <mark>&</mark> 2	<56	3089.49	16^{+}	5602.1	22^{+}	727 1	100	4875.09	20^{+}
4618.29	19+	574.1 <i>1</i>	100 8	4044.15	17^{+}	5647.30	24+	711.7 <i>1</i>	100	4935.60	22^{+}
		949.6 <mark>&</mark> 2	<42	3669.65	18^{+}	5705.2	23-	703.7 2	100	5001.54	21-
4872.61	20^{-}	615.6 <i>1</i>	100	4257.01	18^{-}	5916.5	23^{+}	675.4 2	100	5241.09	21^{+}
4875.09	20^{+}	596.7 <i>1</i>	100 14	4278.39	20^{+}	6219.8	24^{-}	691.6 2	100	5528.2	22^{-}
		713.8 2	<71	4160.82	18^{+}	6412.5	26^{+}	765.2 2	100	5647.30	24^{+}
		1205.9 2	<71	3669.65	18^{+}	6458.0	25^{-}	752.8 2	100	5705.2	23-
4935.60	22^{+}	657.2 1	100	4278.39	20^{+}	6642.7	25^{+}	726.2 2	100	5916.5	23^{+}
4936.8	19-	619.8 2	100	4317.0	17^{-}	6966.3	26-	746.5 2	100	6219.8	24^{-}
4975.00	20^{+}	624.0 <mark>&</mark> 2	100	4349.95	18^{+}	7230.3	28^{+}	817.8 2	100	6412.5	26+
		696.8 2	100	4278.39	20^{+}						

57

[†] From ¹⁶⁰Ho ε decay, except where noted otherwise. If only one data set presents data on these properties, it is to be assumed that this information is derived from that source.

[‡] From ¹⁶⁰Tb β^- decay.

[#] Values are generally from the ¹⁶⁰Tb β^- decay or the ¹⁶⁰Ho ε decay. If only one data set presents data on these values, it is to be assumed that this information is derived from that source. ^(a) From ¹⁶⁰Ho ε decay.

[&] E_{γ} differs by 3 σ or more than value calculated from $\Delta E(\text{lev})$.

^{*a*} Additional information 2.

^b Additional information 3.

^c Multiply placed with undivided intensity.

^d Multiply placed with intensity suitably divided.

^e Placement of transition in the level scheme is uncertain.

Legend

Adopted Levels, Gammas

¹⁶⁰₆₆Dy₉₄

Level

evel Scheme (continued)	>	$I_{\gamma} < ~2\%{\times}I_{\gamma}^{max}$
()		$I_{\gamma} < 10\% \times I_{\gamma}^{max}$
Intensities: Type not specified		$I_{\gamma} > 10\% \times I_{\gamma}^{max}$
		γ Decay (Uncertai

Legend

¹⁶⁰₆₆Dy₉₄

 $^{160}_{66} Dy_{94}$

¹⁶⁰₆₆Dy₉₄

¹⁶⁰₆₆Dy₉₄

¹⁶⁰₆₆Dy₉₄

¹⁶⁰₆₆Dy₉₄

¹⁶⁰₆₆Dy₉₄

¹⁶⁰₆₆Dy₉₄

¹⁶⁰₆₆Dy₉₄

¹⁶⁰₆₆Dy₉₄

¹⁶⁰₆₆Dy₉₄

¹⁶⁰₆₆Dy₉₄

 $^{160}_{66} Dy_{94}$

¹⁶⁰₆₆Dy₉₄

¹⁶⁰₆₆Dy₉₄

83

 $^{160}_{66}\mathrm{Dy}_{94}\text{-}83$

From ENSDF

¹⁶⁰₆₆Dy₉₄

¹⁶⁰₆₆Dy₉₄

Adopted Levels, Gammas (continued)

 $^{160}_{66} Dy_{94}$

Adopted Levels, Gammas (continued)

			Band(M): Proposed (1987Gr37) two-phonon quadrupole (β)-octupole state			
			3- 2720.57			
			<u>1-</u> 2701.044			
		Band(L): K ^π =8 [−] bandhead				
		8- 2287.8				
	Band(K): Second $K^{\pi}=4^+$ band					
	5+ 2194.43					
	4+ 2096.889					
	• • • • •				Band(O): Fourth excited $K^{\pi}=0^+$ band	
					2+	2012.85
					0+	1052 31
Band(J): Bandhead of the third excited $K^{\pi}=0^+$ band						1)52(51
<u>0+ 1708.14</u>				Band(N): Possible K ^π =0 ⁻ (octupole?) band		
				3- 1643.27		

1489.500 1-

 $^{160}_{66} \mathrm{Dy}_{94}$