¹⁶₁₀Ne₆

⁹Be(¹⁷Ne,¹⁶Ne) 2010Mu12,2015Br11

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	G. C. Sheu, J. H. Kelley	ENSDF	27-Jan-2020

2008Mu13: XUNDL dataset compiled by McMaster University, 2008.

Two-proton radioactive decay of ¹⁶Ne to ¹⁴O was observed in the reactions of a 410 MeV/nucleon ¹⁷Ne secondary beam on a ⁹Be target. the ¹⁷Ne beam was produced by fragmenting a ²⁴Mg beam at the GSI SIS facility. The ¹⁷Ne+⁹Be reaction products were detected with four large area silicon strip detectors. The momenta of ¹⁴O fragments and correlated two protons from ¹⁶Ne were analyzed along with the p+¹⁴O angular correlations.

The two-proton decay process comprises simultaneous emission of 2 protons from ¹⁶Ne_{g.s.} to ¹⁴O and sequential decay from excited states of ¹⁶Ne via ¹⁵F_{g.s.} which decay 100% by proton emission.

2009Mu09: XUNDL dataset compiled by TUNL, 2009.

The authors fragmented a $E=450\alpha$ MeV beam of ¹⁷Ne ions in a ⁹Be target to produce ¹⁶Ne nuclei. Residual ¹⁵F+p and ¹⁴O+2p products were detected in the FRS spectrometer (heavy ions) and a Si Strip Array (protons). Kinematic reconstruction of the reaction product trajectories yielded information on ¹⁶Ne levels.

2010Mu12: XUNDL dataset compiled by TUNL, 2011.

- A 591 MeV/nucleon beam of ²⁴Mg, from the SIS facility at GSI, was used to produce a beam of 410 MeV/nucleon ¹⁷Ne in the FRS. The ¹⁶Ne nuclei were produced by (¹⁷Ne,¹⁶Ne) reactions on a ⁹Be target. The (p₁-¹⁴O)(p₂-¹⁴O) angular correlations were analyzed to determine: the decay mode (2p or sequential proton decay), and the excitation energies of states involved in the reactions. Angular correlations were measured; momenta were not measured; hence properties of excited states are deduced based on GEANT simulations of the p-HI (Heavy Ion) and (p₁-HI)(p₂-HI) angular correlations.
- 2014Br19: XUNDL dataset compiled by NSCL, 2014.
- A ¹⁷Ne beam with an average E=57.6 MeV/nucleon was produced using the MSU/NSCL A1900 fragment separator. The ¹⁷Ne beam impinged on a 1 mm thick ⁹Be target yielding ¹⁶Ne reaction products that decayed into ¹⁴O+p+p. These decay products were detected in the High Resolution Array (HiRA), which was configured as 14 ΔE-E Si-CsI(Tl) telescopes subtending zenith angles from 2° to 13.9°. The 2p+¹⁴O relative energy distribution was obtained from kinematic analysis of the momenta of the decay particles and ¹⁶Ne resonance energies and decay modes were deduced. A limit for the intrinsic decay width of the ground state was deduced.
- For the first time a 2p emitter was studied where correlations between the momenta of the three decay products with sufficient resolution and statistics allowed for an unambiguous demonstration of dependence on the long-range nature of the Coulomb interaction.

2015Br11: XUNDL dataset compiled by TUNL, 2015.

- The data of 2014Br19 were further analyzed in 2015Br11. The analysis of ¹⁴O+2p and ¹³N+3p relative energy spectra and few-body correlations was extended to gain additional information on ¹⁶Ne level spectroscopy.
- The ground state and $E_x=1.69$ MeV first excited state were observed in ¹⁴O+2p events. Significant attention was focused on the core-p-p correlations and the comparison of 3-body breakup vs sequential decay via ¹⁵F states. In addition to this, kinematic analysis of the ¹³N+3p events indicated states at $E_x=8.37$ and 10.76 MeV.

See also (2016ChZV).

¹⁶Ne Levels

E(level) [†]	Jπ‡	<mark>г</mark> &	Comments
0	0+#	<80 keV	%2p=100 Decays 100% by 2p decay mode to ¹⁴ O (2008Mu13). E(¹⁴ O+2p) (MeV): We used 1401 keV 20 from (2017Wa10: AME-2016). See also 1350 keV 80 (2008Mu13,2009Mu09,2009Mu17,2010Mu12), 1466 keV 20 (2014Br19,2015Br11) and 1476 keV (2016ChZV: τ≈4×10 ⁻¹⁹ s). Γ: The expected width is ≈0.8-3.1 keV (2002Gr03, 2015Br11), but the experimental resolution limits the result. This Γ<80 keV was determined from the best fit to the excitation function using a Breit-Wigner line shape (2014Br19).

 $^{16}_{10}\text{Ne}_{6}$

⁹Be(¹⁷Ne,¹⁶Ne) 2010Mu12,2015Br11 (continued)

¹⁶Ne Levels (continued)

E(level) [†]	J π ‡	Г&	E(¹⁴ O+2p) (MeV)	Comments
1.76×10 ³ 3	2+ #	153 keV 49	3.16 2	E(¹⁴ O+2p) (MeV): From (2014Br19,2015Br11); See also E(¹⁴ O+2p)=3.2 MeV 2 (2010Mu12) and 3160 keV (2016ChZV).
				 Γ: weighted value of 150 keV 50 (2015Br11) and 0.2 MeV 2 (2010Mu12). The width of the state cannot be reproduced in simple models, suggesting that unaccounted for nearby states may influence the observations (2015Br11).
				Unusual correlations amongst the ¹⁴ O+2p ejectiles indicate a complex interplay between direct 2p decay and sequential decay via ¹⁵ F*+p (2015Br11). See also (2010Mu12).
6.20×10 ³ 4	2+ [@]	<0.5 MeV	7.60 4	$E(^{14}O+2p)$ (MeV): From (2014Br19,2015Br11). See also $E(^{14}O+2p)=7.6$ MeV 2 (2009Mu09,2010Mu12).
				The decay is 24% 8 to ${}^{15}F(0, 1/2^+)$ and 76% 8 to ${}^{15}F^*(1.3 \text{ MeV}, 5/2^+))$ (2009Mu09,2010Mu12).
				Γ : from ≤0.5 MeV (2015Br11). See also Γ=0.8 MeV $^{+8}_{-4}$ (2009Mu09,2010Mu12).
8.44×10 ³ 10		0.32 MeV 10	9.84 10	$E(^{14}O+2p)$ (MeV): deduced from $E(^{13}N+3p)=5.21$ MeV 10 (2015Br11).
10.83×10 ³ 20		0.51 MeV 23	12.23 20	$E(^{14}O+2p)$ (MeV): deduced from $E(^{13}N+3p)=7.60$ MeV 20 (2015Br11).
х				%p=100
				Presumably decays 100% by sequential 2p decay mode to 14 O through the 0, $1/2^+$; 1290, $5/2^+$; 3340 and 4840 levels of 15 F (2008Mu13).

[†] Level energies are deduced using ¹⁴O, ¹⁶Ne and p mass excesses from (2017Wa10: AME-2016). The literature reports a sizeable spread in measured values for the g.s. E(¹⁴O+2p) resonance energy, and use of any different g.s. energy would change the excitation energy scale.

 ‡ J^{π} assigned in (2014Br19,2015Br11) are based on a comparison with theoretical predictions.

[#] From (2009Mu09,2010Mu12). See also (2014Br19,2015Br11: (2⁺)).

[&] From (2015Br11) except where noted.