²⁰Ne(α,⁸He) 1978Ke06,1983Wo01

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	G. C. Sheu, J. H. Kelley	ENSDF	27-Jan-2020

1977KeZX: ²⁰Ne(α ,⁸He), E=118 MeV; measured σ . ¹⁶Ne deduced levels, mass excess.

1978Ke06: A beam of $E_{\alpha} \approx 177$ MeV ions, from the Lawrence Berkeley Laboratory 88-inch cyclotron, impinged on a ²⁰Ne gas target that was enriched to >99.5% and had a thickness of 1.2 mg/cm² 4 at a pressure of 310 Torr. Reaction products were collomated and magnetically analyzed in a quadrupole-sextupole-dipole (QSD) spectrometer; the time-of-flight through the spectrometer was also measured to aid in particle identification. The ¹⁶Ne*(0,1.69 MeV 7) states were populated. The $\Gamma_{c.m.}$ and the Q value of the ¹⁶Ne_{g.s.} state, the ¹⁶Ne mass excess, the total decay width and the di-proton branching ratio were deduced. The differential cross section for the gound state at $\theta_{lab}=8^{\circ}$ was also measured.

1982WoZX: ²⁰Ne(α ,⁸He), E=129 MeV; measured σ (reaction). ¹⁶Ne deduced mass. Enriched gas target, split-pole spectrograph. 1983Wo01: An alpha beam of 129 MeV, supplied by the Texas A&M University 224 cm cyclotron, impinged on a 99.5% enriched

²⁰Ne gas target. Reaction products were detected in the focal plane of the spectrograph with a gas proportional counter backed by a Si detector. Particle identification was determined from ΔE , E and time-of-flight parameters. The mass measurement was performed at $\theta_{lab}=7.5^{\circ}$. Coefficients of the isobaric multiplet mass equation (IMME) for the A=16 quintet were deduced.

¹⁶Ne Levels

T: See (1978Ke06).

E(level) [†]	$J^{\pi \dagger}$	Γ	Comments	
0	0^{+}	122 keV 37	%p=100	
			T=2	
			$E(^{14}O+2p)$ (MeV): We used 1401 keV 20 from (2017Wa10: AME-2016). See also 1.33 MeV 8 (1978Ke06) and ≈ 1.4 MeV (1983Wo01).	
			Γ: The weighted value of (1983Wo01: 110 keV 40) and (1978Ke06: 200 keV 100). Applying penetrability corrections leads to a total decay width for ¹⁶ Ne of 20 keV and a diproton branching ratio of 20%. Consideration of the uncertainties in the mass and width leads to the total decay width of 5-100 keV and the di-proton branching ratio is 10-90% (1978Ke06).	
			$Q_0 = -60.15 \text{ MeV } 8 \text{ (1978Ke06)}$, which corresponds to $\Delta M = 23.92 \text{ MeV } 8$; see also $Q_0 = -60.197 \text{ MeV } 23$ and $\Delta M = 23.984 \text{ MeV } 24 \text{ (1983Wo01)}$.	
1600 70	2+		Analysis of the hybrid suggests $a=6$ keV 5 (1978Ke00); see also $a=e=4$ keV 5 (1965W001).	
1090 70	2		Analysis of the IMME suggests $d=15 \text{ keV } 6$ (1978Ke06).	

[†] See (1978Ke06).