⁹Be(⁴⁰Ar, ¹⁶Be) 2003Ba47

History Citation Literature Cutoff Date Author Full Evaluation J. Kelley **ENSDF** 29-Sept-2014

2003Ba47: The authors analyzed the ⁴⁰Ar+⁹Be fragmentation products in search of evidence for particle bound states in ¹⁶Be. A beam of 140 MeV/nucleon ⁴⁰Ar ions, from the NSCL coupled cyclotron facility, impinged on a 1.5 g/cm² nat Be target. The resulting fragmentation products were momentum analyzed using the A1900 fragment separator. The products were detected using a position sensitive PPAC, a 500 μ m thick Si Δ E detector and a stopping thickness plastic E scintillator that were located at the final focal plane of the device. The time difference between a thin plastic scintillator located at the intermediate image of the separator and the thick stopping detector were compared to determine the time-of-flight (ToF) between the two image planes. The particle identification at the focal plane was determined using both ΔE -E and ΔE -ToF techniques.

the authors conclude ¹⁶Be is unbound. See also (2004Th15).

No events corresponding to ¹⁶Be were observed. By comparison, ^{6,8}He, ^{9,11}Li, ^{12,14}Be, ^{17,19}B and ²⁰C nuclides were observed at the focal plane. The measured intensity of ¹⁹B was expected to be an order of magnitude lower than that of ¹⁶Be. As a result,