⁹Be(¹⁷B,¹⁶Be) **2012Sp01**

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	J. Kelley	ENSDF	29-Sept-2014		

²⁰¹²Sp01: The authors populated the ground state of ¹⁶Be by fragmenting ¹⁷B nuclei, and then studied ¹⁶Be decay by measuring complete ¹⁴Be+2n kinematics. The aim was to determine the ¹⁶Be mass and evaluate n-n correlations in search of dineutron decay.

The ¹⁶Be nuclei were formed in two steps: first an E(²²Ne)=120 MeV/nucleon beam was fragmented in a 2938 mg/cm² Be target to produce ¹⁷B beam that were purified in the A1900 at the MSU/NSCL, second the ¹⁷B beam at 53 MeV/nucleon impinged on a 470 mg/cm² ⁹Be target where the ¹⁶Be nuclei were formed by fragmentation.

The ¹⁶Be nuclei decayed in flight and the residual ¹⁴Be+2n were momentum analyzed in the 43° Sweeper dipole magnet and the MONA array. Kinematic energy reconstruction indicated the unbound ¹⁶Be ground state is at E_{rel}(¹⁴Be+2n)=1.35 MeV *10*. Further analysis of the ¹⁴Be+n and n+n energy and angular correlations are consistent with dineutron emission from ¹⁶Be, and are inconsistent with either sequential decay through ¹⁵Be or simultaneous 3-body breakup into the ¹⁴Be+n+n continuum. See also (2013Th04).

¹⁶Be Levels

E(level)	J^{π}	Г	Comments	
0	0+	0.8 MeV 2	$\%$ n \approx 100 E(level): The ground state is unbound to 2n decay by 1.35 MeV <i>10</i> . Decay is dominated by dineutron emission.	

 Γ : From Γ =0.8 MeV +1-2.