¹⁴C(¹⁴C,¹²N) **1995Bo10,2000Ka21**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	16-Jan-2016

1995Bo10, 2000Ka21:

The authors used ≈ 335 MeV beams of ¹⁴C to study multi-nucleon transfer reactions on a variety of targets at the Hahn-Meitner-Institut. In the present case, a 336 MeV ¹⁴C beam impinged on a ¹⁴C target. The reaction products are momentum

analyzed and identified in the focal plane of a Q3D magnetic spectrometer with an energy resolution near 600 keV.

Along with several ${}^{12}C({}^{14}C, {}^{12}N){}^{14}C$ contaminant peaks in the spectrum, three peaks in the spectrum are attributed to ${}^{16}B$ states. A state presumed to be the ${}^{16}B$ ground state is observed with a mass excess of $\Delta M=37.08$ MeV 6; extraction of its parameters is complicated because it falls between the ${}^{14}C^*(8.03,10.15)$ states produced by ${}^{12}C$ impurities in the target. The $\Delta M=37.08$ MeV 6 corresponds to ${}^{16}B$ being bound by $S_n=40$ keV 60. This results is consistent with the unlikely case that ${}^{16}C$ could be bound by as little as 20 keV. The authors suggest the valence neutron occupies a $1d_{5/2}$ orbital, which could yield a relatively long lifetime, even if ${}^{16}B$ is particle unstable. Two additional states are identified at ${}^{16}B^*(2.36,6.06)$. See also (1999Ka67).

¹⁶B Levels

E(level)	J^{π}	T _{1/2}	Comments	
0.0	(4,3,1,2)-	<100 keV	The authors suggest ΔM = 37.08 MeV 6, which implies S _n =40 keV 60. J ^{π} : Shell model arguments are used to suggest spin/parity values. The authors suggest a tentative J ^{π} =(4 ⁻) value based on various expectations.	
2.36×10^3 7 6.06×10^3 ? 8		≈150 keV		