159 Dy ε decay

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	C. W. Reich	NDS 113, 157 (2012)	31-Dec-2010				

Parent: ¹⁵⁹Dy: E=0; $J^{\pi}=3/2^{-}$; $T_{1/2}=144.4 \text{ d } 2$; $Q(\varepsilon)=365.6 \text{ 12}$; % $\varepsilon \text{ decay}=100.0$ Additional information 1.

The decay scheme is from 1963Ry02 and later authors.

The many reports related to the ¹⁵⁹Dy ε decay include measurements of the γ -ray energies and the x- and γ -ray intensities (1957Mi67,1959Ke28,1960Gr20,1960Vi03,1961Bi09,1962Ry03,1963Ry02,1970Mc2 1,1971Le06,1972Se24,1973Ge09,1973Ni07); I(ε) to a specific level (1959Ke28,1960Gr20,1961Bi09,1963Ry02,1970Mc21,1970Sh09,1972Se24); level half-lives (1961Be30,1961Be37); ¹⁵⁹Dy half-life (1961Bj02,1963Ho15,1963Ra15); γ mixing ratios (1957Mi67,1960Gr20,1963Ry02,1965Ba37,1970Mc21); and Q(*ε*) (2009AuZZ,(1968My01)).

¹⁵⁹Tb Levels

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2} #	Comments
0	3/2+	stable	
58.0	$5/2^{+}$	0.13 ns 4	$T_{1/2}$: From 1961Be30 (and 1961Be37, by same author).
137.4	$7/2^{+}$		
348.1	$5/2^{+}$		
363.5 <i>3</i>	$5/2^{-}$		

 † From ^{159}Tb Adopted Levels.

[‡] From ¹⁵⁹Tb Adopted Levels and truncated to 0.1 keV.

[#] From measurements from ¹⁵⁹Dy ε decay only; see ¹⁵⁹Tb Adopted Levels for all measurements.

ε radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log ft	Comments		
(2.1 12)	363.5	0.00019 5	6.1 +6-9	E(decay): Since decay energy is only 2 keV, no capture fractions are given. I ε : From I(ε)(348) and I(ε)(363)/I(ε)(348)=0.162 38 (1968My01).		
(17.5 12)	348.1	0.0012 1	8.25	$\varepsilon L=0.53$ 3; $\varepsilon M+=0.47$ 3		
(228.2 12)	137.4	0.0028 6	10.34^{1u}	εK=0.6003 18; εL=0.2979 13; εM+=0.1019 5		
				IE: From 1970Sh09.		
(307.6 12)	58.0	26.6 14	7.49	εK=0.7947; εL=0.15745; εM+=0.04787 5		
				I ε : From I(ε)(0)=74.0% <i>13</i> (1972Se24) and I(ε)(58)=26.8% <i>14</i> (1970Mc21) renormalized to give a total of 100%.		
(2(5(12)))	0	72 4 14	7.00	$ce(K)/(\gamma+ce)=0.803 \ 32 \ (19/3Ge0b).$		
(365.6 12)	0	/3.4 14	1.22	$\epsilon K=0.8037; \epsilon L=0.15081; \epsilon M+=0.04553$ I ϵ : From I(ϵ)(0)=74.0% 13 (1972Se24) and I(ϵ)(58)=26.8% 14 (1970Mc21) renormalized to give a total of 100%.		

[†] From individual measurements for each level.

[‡] Absolute intensity per 100 decays.

$^{159}\mathrm{Dy}\,\varepsilon$ decay (continued)

 $\gamma(^{159}\text{Tb})$

Iy normalization: based on I(ϵ)(58)=26.6% 14 and α =11.0 for M1+1.40% E2 for the 58 G.

E_{γ}^{\dagger}	Ι _γ ‡#@a	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	$\delta^{\&}$	$\alpha^{\boldsymbol{b}}$	Comments
15.4		363.5	5/2-	348.1 5/2+	[E1]		9.03	E_{γ} : Observed in $\gamma\gamma$ coincidences
58.0	2.27 13	58.0	5/2+	0 3/2+	M1+E2	+0.119 2	10.73	$\alpha(K) = 8.80 \ 13; \ \alpha(L) = 1.503 \ 22; \ \alpha(M) = 0.333 \ 5; \ \alpha(N+) = 0.0886 \ 13$
79.4	4.6×10 ⁻⁴ 6	137.4	7/2+	58.0 5/2+	M1+E2	+0.126 8	4.30	$\alpha(N)=0.0765 \ 12; \ \alpha(O)=0.01146$ $17; \ \alpha(P)=0.000663 \ 10$ $I_{\gamma}: From I(\varepsilon)(58)=26.6\% \text{ and}$ $\alpha(58). From I(\gamma+ce)(58\gamma) from$ $1963Ry02 \text{ and } \alpha, I_{\gamma}=2.2 \ 3.$ $\alpha(K)=3.57 \ 5; \ \alpha(L)=0.569 \ 10;$ $\alpha(M)=0.1255 \ 23;$
								$\alpha(M)=0.1255\ 25;$ $\alpha(N+)=0.0335\ 6$ $\alpha(N)=0.0289\ 5;\ \alpha(O)=0.00438\ 8;$ $\alpha(P)=0.000266\ 4$ I_{γ} : Weighted average of: $4.9\times10^{-4}\ 6,\ from$ $[I(\varepsilon)(137)-I(\gamma+c\varepsilon)(137.5\gamma)+I\gamma(21)(\gamma+226\gamma)/(1+\alpha(79.4\gamma));\ and$ $2.8\times10^{-4}\ 15,\ from$ $I(\gamma+c\varepsilon)(79.4\gamma)\ and\ \alpha(79.4\gamma)$
137.5	1.1×10 ⁻⁴ 3	137.4	7/2+	0 3/2+	[E2]		0.828	from 1963Ry02. $\alpha(K)=0.476\ 7;\ \alpha(L)=0.272\ 4;$ $\alpha(M)=0.0640\ 9;$ $\alpha(N+)=0.01632\ 23$ $\alpha(N)=0.01440\ 21;\ \alpha(O)=0.00190$ $3;\ \alpha(P)=2.49\times10^{-5}\ 4$ I _y : From intensity balance within the level scheme. From I(γ +ce)(137 γ) from 1963Ry02 and α I _y =1 1×10 ⁻⁴ 8
210.8	4.×10 ⁻⁵ 2	348.1	5/2+	137.4 7/2+	[M1,E2]		0.23 4	$\alpha(K) = 0.18 5; \alpha(L) = 0.039 7;$ $\alpha(M) = 0.0088 17;$ $\alpha(N+) = 0.0023 4$ $\alpha(N) = 0.0020 4; \alpha(O) = 0.00029 4;$ $\alpha(P) = 1.2 \times 10^{-5} 5$ I _{\gamma} : From 1963Ry02.
226.0	3.6×10 ⁻⁶ 2	363.5	5/2-	137.4 7/2+	E1		0.0341	$\alpha(K)=0.0289 4; \alpha(L)=0.00411 6;$ $\alpha(M)=0.000893 13;$ $\alpha(N+)=0.000237 4$ $\alpha(N)=0.000204 3;$ $\alpha(O)=3.06\times10^{-5} 5;$ $\alpha(P)=1.779\times10^{-6} 25$ I _y : Calculated from I(ε)=0.00019 and I _Y from ¹⁵⁹ Gd β^- decay for γ 's at 226, 305 and 363 keV, with all assumed to be E1's.
290.2	1.37×10 ⁻⁴ 46	348.1	5/2+	58.0 5/2+	[M1+E2]		0.091 23	α (K)=0.074 22; α (L)=0.0135 3; α (M)=0.00301 5; α (N+)=0.000797 14

Continued on next page (footnotes at end of table)

$^{159}\mathrm{Dy}\,\varepsilon$ decay (continued)

$\gamma(^{159}\text{Tb})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger \#@a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.&	δ ^{&}	α b	Comments
305.5	1.08×10 ⁻⁶ 8	363.5	5/2-	58.0	5/2+	E1		0.01582	$\begin{aligned} \alpha(N) &= 0.000690 \ 10; \ \alpha(O) &= 0.000102 \\ 6; \ \alpha(P) &= 5.2 \times 10^{-6} \ 20 \\ \alpha(K) &= 0.01343 \ 19; \ \alpha(L) &= 0.00188 \ 3; \\ \alpha(M) &= 0.000407 \ 6; \\ \alpha(N+) &= 0.0001084 \ 16 \\ \alpha(N) &= 9.35 \times 10^{-5} \ 13; \end{aligned}$
348.1	9.5×10 ⁻⁴ 10	348.1	5/2+	0	3/2+	M1+E2	0.43 +10-9	0.0654 22	$\begin{array}{l} \alpha({\rm O}) = 1.409 \times 10^{-5} \ 20; \\ \alpha({\rm P}) = 8.51 \times 10^{-7} \ 12 \\ \alpha({\rm K}) = 0.0549 \ 20; \ \alpha({\rm L}) = 0.00819 \ 15; \\ \alpha({\rm M}) = 0.00180 \ 3; \ \alpha({\rm N} +) = 0.000481 \\ 9 \end{array}$
363.5	5.5×10 ⁻⁵ 3	363.5	5/2-	0	3/2+	E1		0.01033	$\begin{aligned} &\alpha(\text{N})=0.000414 \ 8; \ \alpha(\text{O})=6.32\times10^{-5} \\ &13; \ \alpha(\text{P})=3.99\times10^{-6} \ 16 \\ &\alpha(\text{K})=0.00878 \ 13; \ \alpha(\text{L})=0.001216 \ 17; \\ &\alpha(\text{M})=0.000264 \ 4; \\ &\alpha(\text{N}+)=7.03\times10^{-5} \ 10 \\ &\alpha(\text{N})=6.06\times10^{-5} \ 9; \ \alpha(\text{O})=9.17\times10^{-6} \\ &13; \ \alpha(\text{P})=5.64\times10^{-7} \ 8 \end{aligned}$

[†] From ¹⁵⁹Tb Adopted γ radiations and truncated to 0.1 keV.

[±] Based on I(ε) values for each level and γ branching from the level; see individual comments. [#] I(K x ray)/I γ (58)=42.7 *13* (1972Se24). Others: 38 6 (1959Ke28), 35 +5-6 (1960Gr20), and 53 (1961Bi09). [@] ε L(exp)/ ε K(exp)=0.198 9 (1971Le06). Other: 0.213 21 (1972NiZQ). [&] From ¹⁵⁹Tb Adopted γ radiations.

^a Absolute intensity per 100 decays.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

159 Dy ε decay

Decay Scheme

