$^{159}\mathrm{Gd}\,\beta^-$ decay (18.479 h)

Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	C. W. Reich	NDS 113, 157 (2012)	31-Dec-2010		

Parent: ¹⁵⁹Gd: E=0; $J^{\pi}=3/2^-$; $T_{1/2}=18.479$ h 4; $Q(\beta^-)=970.5$ 7; % β^- decay=100.0 Additional information 1.

The decay scheme is that of 1965Fu14, which is similar to those of 1968Hi03, 1969Br05, 1985Da31, and 1995Mo08. The following quantities have been measured: $E\gamma$ and $I\gamma$

(1958Ma53,1958Ni29,1962Su04,1964Ew04,1964Pe07,1965Fu14,1972De67,1975SeZ D); T_{1/2} of levels

(1961Go32,1963Go28,1967Ko17,1967Ma33,1969Be54); γ multipolarities and δ

(1958Ma53,1958Ni29,1962Su04,1964No08,1964Pe07,1975SeZD); and E β^- and I β^- (1958Ma53,1962Ta12,1975BaXG).

Searches for parity nonconservation have been carried out (1970Pr13,1971Kr19,1971Li15,1972Li11) by measurements of $\gamma(\theta)$ and circular polarization of 363 G.

¹⁵⁹Tb Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	3/2+		
57.9963 14	$5/2^{+}$		
137.5054 17	$7/2^{+}$	≤1.0 ns	$T_{1/2}$: From 1963Go28 by $\gamma(228)\gamma(79)(t)$.
348.2830 15	$5/2^{+}$		
363.5451 14	5/2-	158 ps 7	T _{1/2} : Weighted average of 160 ps <i>16</i> by $\beta\gamma(t)$ (1961Go32), 170 ps <i>70</i> by $\beta\gamma(t)$ (1961Va36), 180 ps <i>15</i> by $\beta\gamma(t)$ (1967Ko17), 150 ps <i>10</i> by $\beta ce(t)$ (1967Ma33), and 152 ps <i>15</i> by $\beta\gamma(t)$ (1969Be54).
580.808 6	$1/2^{+}$		
617.619 5	$3/2^{+}$		
674.235 17	$5/2^{+}$		
854.960 7	$(1/2^{-})$		
891.25 6	$(5/2^{-})$		

 † From least-squares fit to the γ energies.

[‡] From ¹⁵⁹Tb Adopted Levels; also see Adopted Levels for band assignments.

[#] From measurements from ¹⁵⁹Gd β^- decay only; see ¹⁵⁹Tb Adopted Levels for all measurements.

β^{-} radiations

E(decay)†	E(level)	Iβ ^{-‡#}	Log ft	Comments
(79.3 7)	891.25	0.0011 4	7.93 16	av E β =20.51 19
(115.5 7)	854.960	0.0162 5	7.270 16	av $E\beta = 30.40 \ 20$
(296.3 7)	674.235	0.00387 10	9.179 <i>12</i>	av Eβ=83.79 22
(352.97)	617.619	0.0301 9	8.534 14	av $E\beta = 101.81 \ 23$
(389.77)	580.808	0.0635 9	8.351 7	av $E\beta = 113.82\ 23$
				I β^- : Measured data (1975BaXG) have a component to a level at \approx 410 keV with I β^- =1%.
(607.0 7)	363.5451	12.19 6	6.714 <i>3</i>	av $E\beta = 188.9 \ 3$ $I\beta^{-}$: Measured $I\beta^{-} = 13\% \ 2 \ (1975 BaXG)$, which would include the 348 level.
(622.2 7)	348.2830	0.315 4	8.339 6	av E β =194.4 3
(833.07)	137.5054	0.008 7	$10.8^{1u} 4$	av $E\beta = 283.9 \ 3$
(912.5 7)	57.9963	28.8 10	6.96 2	av $E\beta = 304.1 \ 3$
(970.5 7)	0.0	58.6 10	6.75 1	$Iβ^-$: Measured $Iβ^-=24\% 4$ (1975BaXG). av $Eβ=326.9 3$ $Iβ^-$: Measured $Iβ^-=62\% 9$ (1975BaXG).

Continued on next page (footnotes at end of table)

$^{159}\mathrm{Gd}\,\beta^-$ decay (18.479 h) (continued)

β^- radiations (continued)

[†] The measured values from 1975BaXG are about 11 keV lower than those from the $Q(\beta^{-})$ value; they are not given.

[‡] From $\gamma(363)$ emission probability (2001Ma01) and γ intensity balances. The measured values of 1975BaXG are given in

comments. # Absolute intensity per 100 decays.

$\gamma(^{159}\text{Tb})$

I γ normalization: from measured emission probability of 11.78% 5 for the 363 γ (2001Ma01). I γ normalization: Additional information 2.

 $\boldsymbol{\omega}$

E	γ^{\dagger}	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α &	Comments
58.0	000 22	21.1 6	57.9963	5/2+	0.0	3/2+	M1+E2	+0.119 2	10.73	$\alpha(K)=8.80 \ 13; \ \alpha(L)=1.503 \ 22; \ \alpha(M)=0.333 \ 5; \ \alpha(N+)=0.0886 \ 13$
79.5	132 27	0.397 9	137.5054	7/2+	57.9963	5/2+	M1+E2	+0.126 8	4.28	$\alpha(N)=0.0765\ 12;\ \alpha(O)=0.01146\ 17;\ \alpha(P)=0.000665\ 10$ $\alpha(K)=3.55\ 5;\ \alpha(L)=0.567\ 10;\ \alpha(M)=0.1249\ 22;$ $\alpha(N+)=0.0334\ 6$
137.5	15 5	0.0549 13	137.5054	7/2+	0.0	3/2+	[E2]		0.828	$\alpha(N)=0.0288 5; \alpha(O)=0.00436 8; \alpha(P)=0.000265 4 \alpha(K)=0.476 7; \alpha(L)=0.272 4; \alpha(M)=0.0640 9; \alpha(N+)=0.01632 23$
210.7	83 <i>3</i>	0.170 12	348.2830	5/2+	137.5054	7/2+	[M1,E2]		0.23 4	$\alpha(N)=0.01440\ 21;\ \alpha(O)=0.00190\ 3;\ \alpha(P)=2.49\times10^{-5}\ 4$ $\alpha(K)=0.18\ 5;\ \alpha(L)=0.039\ 7;\ \alpha(M)=0.0088\ 17;$ $\alpha(N+)=0.0023\ 4$
226.04	406 18	1.842 18	363.5451	5/2-	137.5054	7/2+	E1		0.0341	$\alpha(N)=0.0020 \ 4; \ \alpha(O)=0.00029 \ 4; \ \alpha(P)=1.2\times10^{-5} \ 5$ $\alpha(K)=0.0289 \ 4; \ \alpha(L)=0.00411 \ 6; \ \alpha(M)=0.000892 \ 13;$
237.34	41 5	0.0653 14	854.960	(1/2 ⁻)	617.619	3/2+	[E1]		0.0301	$\alpha(N=.)=0.0002314$ $\alpha(N)=0.0002043; \alpha(O)=3.05\times10^{-5}5; \alpha(P)=1.779\times10^{-6}25$ $\alpha(K)=0.02554; \alpha(L)=0.003615; \alpha(M)=0.00078411;$
273.62	2 12	0.006 3	891.25	(5/2-)	617.619	3/2+	[E1]		0.0209	$\alpha(N+)=0.000208 \ 3$ $\alpha(N)=0.000180 \ 3; \ \alpha(O)=2.69\times10^{-5} \ 4; \ \alpha(P)=1.576\times10^{-6} \ 22$ $\alpha(K)=0.01770 \ 25; \ \alpha(L)=0.00249 \ 4; \ \alpha(M)=0.000541 \ 8;$ $\alpha(N+)=0.0001437 \ 21$
										$\alpha(N=.)=0.000145721$ $\alpha(N)=0.0001239$ 18; $\alpha(O)=1.86\times10^{-5}$ 3; $\alpha(P)=1.111\times10^{-6}$ 16
										I_{γ} : Weighted average for $I\gamma(273+274)=0.0544$ 23 and division is from 1995Mo08.
274.1	63 19	0.048 3	854.960	$(1/2^{-})$	580.808	$1/2^{+}$	[E1]		0.0208	$\alpha(K)=0.01762\ 25;\ \alpha(L)=0.00248\ 4;\ \alpha(M)=0.000538\ 8;\ \alpha(N+)=0.0001429\ 20$
										$\alpha(N)=0.0001233 \ I8; \ \alpha(O)=1.85\times10^{-5} \ 3; \ \alpha(P)=1.106\times10^{-6} \ I6$
										I _{γ} : Weighted average for I γ (273+274)=0.0544 23 and division is from 1995Mo08.
290.2	865 25	0.274 4	348.2830	5/2+	57.9963	5/2+	[M1,E2]		0.091 23	$\alpha(K)=0.074\ 22;\ \alpha(L)=0.0135\ 3;\ \alpha(M)=0.00301\ 5;\ \alpha(N+)=0.000796\ 14$
305.54	492 20	0.526 6	363.5451	5/2-	57.9963	5/2+	E1		0.01582	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.000690 \ 10; \ \alpha(\mathrm{O}) = 0.000101 \ 6; \ \alpha(\mathrm{P}) = 5.1 \times 10^{-6} \ 20 \\ \alpha(\mathrm{K}) = 0.01342 \ 19; \ \alpha(\mathrm{L}) = 0.00188 \ 3; \ \alpha(\mathrm{M}) = 0.000407 \ 6; \\ \alpha(\mathrm{N}+) = 0.0001084 \ 16 \\ \alpha(\mathrm{N}) = 9.34 \times 10^{-5} \ 13; \ \alpha(\mathrm{O}) = 1.409 \times 10^{-5} \ 20; \ \alpha(\mathrm{P}) = 8.51 \times 10^{-7} \\ 12 \end{array} $

 $^{159}_{65}{
m Tb}_{94}$ -3

					¹⁵⁹ C	$d\beta^{-}$ decay	(18.479 h) (cor	ntinued)	
						$\gamma(^{159}T)$	b) (continued)		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α ^{&}	Comments
348.2807 18	2.031 21	348.2830	5/2+	0.0	3/2+	M1+E2	0.43 +10-9	0.0653 22	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.0548 \ 20; \ \alpha(\mathrm{L}) = 0.00818 \ 15; \ \alpha(\mathrm{M}) = 0.00179 \ 3; \\ \alpha(\mathrm{N}+) = 0.000481 \ 9 \\ \alpha(\mathrm{N}) = 0.000414 \ 8; \ \alpha(\mathrm{O}) = 6.32 \times 10^{-5} \ 13; \ \alpha(\mathrm{P}) = 3.99 \times 10^{-6} \\ \end{array} $
363.5430 18	100	363.5451	5/2-	0.0	3/2+	E1		0.01033	$ \begin{array}{l} line \\ \alpha(K) = 0.00878 \ l3; \ \alpha(L) = 0.001216 \ l7; \ \alpha(M) = 0.000264 \\ 4; \ \alpha(N+) = 7.03 \times 10^{-5} \ l0 \\ \alpha(N) = 6.06 \times 10^{-5} \ 9; \ \alpha(O) = 9.17 \times 10^{-6} \ l3; \\ \alpha(P) = 5.64 \times 10^{-7} \ 8 \end{array} $
^x 479.84 6	0.00206 19								E_{γ} , I_{γ} : Reported by 1995Mo08 only, so nuclide
536.78 18	0.0136 4	674.235	5/2+	137.5054	7/2+	(M1)		0.0229	$\alpha(K)=0.0194 \ 3; \ \alpha(L)=0.000272 \ 4; \ \alpha(M)=0.000591 \ 9; \ \alpha(N+)=0.0001592 \ 23 \ \alpha(N)=0.0001367 \ 20; \ \alpha(O)=2.11\times10^{-5} \ 3; \ \alpha(P)=1.417\times10^{-6} \ 20 \ E_{\gamma}: In (n,n'\gamma), 1987A107 argue that this placement is not correct, but the alternate placement is from a 9/2+$
559.623 6	0.188 5	617.619	3/2+	57.9963	5/2+	M1+E2	0.67 +58-1	0.018 <i>3</i>	concer, but the unchance placement is from a $3/2$, 536-keV level, which is not expected to be populated here. $\alpha(K)=0.015 \ 3; \ \alpha(L)=0.0022 \ 3; \ \alpha(M)=0.00047 \ 6;$ $\alpha(N+)=0.000127 \ 16$ $\alpha(N)=0.000109 \ 14; \ \alpha(O)=1.67\times10^{-5} \ 22;$
580.808 6	0.580 5	580.808	1/2+	0.0	3/2+	[M1,E2]		0.014 5	$\alpha(P)=1.07\times10^{-6}21$ $\alpha(K)=0.012 \ 4; \ \alpha(L)=0.0018 \ 5; \ \alpha(M)=0.00040 \ 9;$ $\alpha(N+)=0.000106 \ 24$
616.233 18	0.0160 7	674.235	5/2+	57.9963	5/2+	(M1)		0.01617	$\alpha(N)=9.2\times10^{-5} 21; \ \alpha(O)=1.4\times10^{-5} 4; \ \alpha(P)=9.E-7 3 \\ \alpha(K)=0.01373 \ 20; \ \alpha(L)=0.00191 \ 3; \ \alpha(M)=0.000416 \ 6; \\ \alpha(N+)=0.0001120 \ 16 \\ \alpha(N)=9.61\times10^{-5} \ 14; \ \alpha(O)=1.486\times10^{-5} \ 21; $
617.615 8	0.135 4	617.619	3/2+	0.0	3/2+	(M1)		0.01608	$\alpha(P)=9.99\times10^{-7} \ 14$ $\alpha(K)=0.01365 \ 20; \ \alpha(L)=0.00190 \ 3; \ \alpha(M)=0.000413 \ 6; \ \alpha(N+)=0.0001113 \ 16$ $\alpha(N)=9.56\times10^{-5} \ 14; \ \alpha(O)=1.478\times10^{-5} \ 21; \ \alpha(D)=0.02\times10^{-7} \ 14$
674.26 5	0.00268 19	674.235	5/2+	0.0	3/2+	(M1)		0.01292	$\alpha(P)=9.93\times10^{-7.14}$ $\alpha(K)=0.01097 \ 16; \ \alpha(L)=0.001522 \ 22; \ \alpha(M)=0.000331$ $5; \ \alpha(N+)=8.92\times10^{-5} \ 13$ $\alpha(N)=7.65\times10^{-5} \ 11; \ \alpha(O)=1.184\times10^{-5} \ 17;$ $\alpha(D)=7.07\times10^{-7} \ 12$
753.74 6	0.00153 17	891.25	(5/2 ⁻)	137.5054	7/2+	[E1]		0.00206	$\alpha(\mathbf{r}) = 1.57 \times 10^{-12}$ $\alpha(\mathbf{K}) = 0.001760 \ 25; \ \alpha(\mathbf{L}) = 0.000235 \ 4; \ \alpha(\mathbf{M}) = 5.07 \times 10^{-5} \ 7; \ \alpha(\mathbf{N}+) = 1.359 \times 10^{-5} \ 19 \ \alpha(\mathbf{N}) = 1.168 \times 10^{-5} \ 17; \ \alpha(\mathbf{O}) = 1.79 \times 10^{-6} \ 3; \ \alpha(\mathbf{P}) = 1.170 \times 10^{-7} \ 17 \ \mathbf{E}_{\gamma}, \mathbf{I}_{\gamma}$: Reported by 1995Mo08 only.

4

From ENSDF

 $^{159}_{65}{
m Tb}_{94}$ -4

 $^{159}_{65}{
m Tb}_{94}$ -4

[†] From 1995Mo08.

[‡] Weighted average of values of 1968Hi03, 1969Br05, 1985Da31, 1994St05, 1995Mo08, and 2001Ma01.

[#] From ¹⁵⁹Tb Adopted γ radiations. See ¹⁵⁹Tb Adopted γ radiations for limits on M2 mixing in E1 transitions from 363 level.

[@] For absolute intensity per 100 decays, multiply by 0.1178 5.

[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

 $^{159}_{65}\mathrm{Tb}_{94}$ -5

159 Gd β^- decay (18.479 h)

