Adopted Levels, Gammas

		Туре	Author	History Citation	n	Literature Cutoff Date
		Full Evaluation	C. W. Reich	NDS 113, 157	(2012)	31-Dec-2010
$Q(\beta^{-}) = -365.2 \ l$ $S(2n) = 14911.6 \ d$ Additional inform Additional inform	2; S(n)=813 6; S(2p)=146 mation 1. mation 2.	3.0 6; S(p)=6131.8 551 8 2017Wa10	8; $Q(\alpha) = -139.2$	<i>11</i> 2017Wa	10	
				¹⁵⁹ Tb Levels		
Model calculat (1973Ra06,1 An extensive c	tions of poss 974Ba18,19 liscussion of	ible interest are con 76Ga35), and IBFM the band assignmen	figurations of nor model (1994St0 its and mixing is Cross Re	rrotational stat 5). given by 1992	es (1973 2Ga15. F) Flags	Ga29,1985GuZR), μ
		A B C D	¹⁵⁹ Gd β ⁻ decay ¹⁵⁹ Dy ε decay Coulomb excita ¹⁵⁸ Gd(³ He,d),	y (18.479 h) ation 158 Gd(α ,t),	E 16 F 15 G 15	0 Gd(p,2n γ) 9 Tb(γ,γ') 9 Tb(n,n' γ)
E(level) [†]	J^{π}	T _{1/2} XREF				Comments
0.0‡	3/2 ⁺ sta	able ABCDEF(G Q=+1.432 8: J ^{π} : J measure (α ,t). J ^{π} : Nilsson c π 3/2[402] μ : From the see values Q: From the	μ =+2.014 4 ed by paramag prbital assignm gives μ < +0.5 evaluation by quoted in 196 evaluation by	netic res ent is su 5 (1989B 1989Ra1 9Fu11. 1989Ra1	onance as quoted in 1969Ful1. τ pported by μ ; alternative assignm e04). 7 and the compilation by 2005St 7 and the compilation by 2005St

L(level)	3	11/2	AIGLA	connicits
0.0 [‡]	3/2+	stable	ABCDEFG	Q=+1.432 8; μ =+2.014 4 J ^{π} : J measured by paramagnetic resonance as quoted in 1969Fu11. π =+, from (α ,t). J ^{π} : Nilsson orbital assignment is supported by μ ; alternative assignment of π 3/2[402] gives μ < +0.5 (1989Be04). μ : From the evaluation by 1989Ra17 and the compilation by 2005St24. Others: see values quoted in 1969Fu11. Q: From the evaluation by 1989Ra17 and the compilation by 2005St24. Others: +1.26 <i>12</i> (1965Ar05); +1.32 (1966Ar18); 1.185 (1969Kl04 and 1970De05); and +1.34 <i>11</i> (1970Ch26). $\delta < r^2 > (^{157}Tb-^{159}Tb) \approx 0.10 \text{ fm}^2$ (1990Al36, as read from graph by evaluator). From an evaluation of data on nuclear rms charge radii, 2004An14 report $< r^2 > ^{1/2} = 5.06 \text{ fm } 15$.
57.9964 [‡] 15	5/2+	55.0 ps 22	ABCDEFG	μ=3.86 19 $J^π$: From M1 γ to 3/2 ⁺ level and expected band structure. $T_{1/2}$: Calculated from B(E2)=2.81 8 from Coul. ex. and properties of the deexciting γ (1960Ol02). Others:≥105 ps (1966At05), 96 ps +37-21 (1966Wo01), 59 ps 13 (1978En01), and > 30 ps (1966Cz02), from (γ,γ') or Mossbauer measurements; and 130 ps 40 (1961Be30), from ¹⁵⁹ Dy ε decay. μ: From the evaluation by 1989Ra17. 1989Ra17 also quote 1.62 9 or 2.32 13, from 1966At05. These latter two values are listed (incorrectly) as Q values in the compilation by 2005St24. They are to be regarded as having been superseded by the adopted μ value (private communication to the evaluator from N. Stone, Jan., 2011).
137.5055 [‡] <i>17</i>	7/2+	41.3 ps 21	ABCDEFG	J^{π} : From M1 γ to 5/2 ⁺ level and expected band structure. T _{1/2} : Weighted average of: 35.6 ps 43 (1970Ar22), from Coul. ex.; and 43.1 ps 24, from B(E2)=1.45 6 from Coul. ex. and the properties of the deexciting γ 's (1960Ol02). Other: \leq 1.0 ns (1963Go28), from ¹⁵⁹ Gd β^- decay.
241.15 [‡] 4	9/2+	27.2 ps 12	CDE G	J ^{π} : From M1 γ to 7/2 ⁺ level, intensity pattern in the charged-particle reactions, and expected band structure.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁵⁹Tb Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				T _{1/2} : Weighted average of 27.5 ps <i>17</i> (1984Va30) and 26.8 ps <i>17</i> (1983Ch09), both by recoil-distance method in Coul. ex.
348.2832 [#] 15	5/2+		ABCD G	J ^{π} : From M1 component in γ to 3/2 ⁺ level and intensity pattern in the charged-particle reactions.
362.05 [‡] 4	11/2+	15.2 ps 2	CEG	J^{π} : From M1 component in γ to $9/2^+$ level and expected band structure. T _{1/2} : Weighted average of 15.2 ps 3 (1984Va30) and 15.3 ps 4 (1983Ch09), both by recoil-distance method in Coul. ex.
363.5449 [@] 14	5/2-	153 ps 5	ABCDEFG	J ^π : From E1 γ's to 3/2 ⁺ and 7/2 ⁺ levels. T _{1/2} : Weighted average of: 133 ps 21 (1959Me78), 152 ps 10 (1966Ra06), and 133 ps 17 (1972Da35), from (γ,γ'); and 160 ps 16 (1961Go32), 170 ps 70 (1961Va36), 180 ps 15 (1967Ko17), 150 ps 10 (1967Ma33), and 152 ps 15 (1969Be54), from ¹⁵⁹ Gd β ⁻ decay.
388.4 [@]	7/2-		DE G	XREF: G(386). J^{π} : From γ 's to $5/2^+$ and $7/2^+$ levels, proposed band structure, and intensity pattern in charged-particle reaction.
428.2 [#]	7/2+		CD G	J^{π} : From γ 's to $3/2^+$ and $7/2^+$ levels, expected band structure, and intensity pattern in the charged-particle reactions.
454.6 [@]	(9/2 ⁻)		DE	J^{π} : From γ 's to $7/2^{-}$ and $7/2^{+}$ levels, expected band structure, and intensity pattern in the charged-particle reactions.
510.40 [‡] 5	13/2+	9.17 ps 22	CD G	 XREF: D(513). J^π: From M1 γ to 11/2⁺ level and expected band structure. T_{1/2}: Weighted average of: 9.8 ps 4 (1984Va30) and 9.09 ps 17 (1983Ch09), by recoil-distance method; and 8.0 ps 10 (1983Ch09), by Doppler-shift method.
532 [#] 536.7	(9/2+)		D G D G	J^{π} : From γ to $7/2^+$ level and expected band structure.
545.1 [@]	11/2-		dE	XREF: d(545). J ^{π} : From γ 's to 7/2 ⁻ , (9/2 ⁻), and 9/2 ⁺ levels, proposed band structure, and intensity pattern in the charged-particle reactions.
547.6 ^{&}	7/2-		dE	XREF: d(545). J^{π} : From γ 's to 5/2 ⁻ and 7/2 ⁻ levels, proposed band structure, and intensity pattern in the charged particle reactions
580.808 ^{<i>a</i>} 6	1/2+	0.76 ps <i>10</i>	A CDEFG	J^{π} : From M1 component in γ to $3/2^+$ level and intensity pattern in the charged-particle reactions. Two: From $(\gamma \gamma')$ (1966Ra06) Other: < 1.3 ps from Doppler broadening of
617.621 ^{<i>a</i>} 15	3/2+		A CDE G	conversion line in Coul. ex. (1963Di09). J^{π} : From intensity pattern in the charged-particle reactions and (M1) γ 's to $3/2^+$ and $5/2^+$ levels.
668.91 [‡] 5	15/2+	6.2 ps 4	C G	J^{π} : From M1 γ to 13/2 ⁺ level and expected band structure. T _{1/2} : Weighted average of: 7.14 ps 21 (1984Va30) and 6.04 ps 14 (1983Ch09), by recoil-distance method; and 5.3 ps 6 (1983Ch09) and 5.3 ps 3 (1984Va30) by Dompler shift method
674.235 ^{<i>a</i>} 17	5/2+	<2.3 ps	A CdE G	XREF: d(673). J^{π} : From intensity pattern in the charged-particle reactions and (M1) γ 's to $3/2^+$ and $7/2^+$ levels.
677.9 ^{&}	(9/2-)		dE	T _{1/2} : From Doppler broadening of conversion line in Coul. ex. (1963Di09). XREF: d(673). J^{π} : From γ 's to 7/2 ⁻ and (9/2 ⁻) levels, intensity pattern in the
761.3 ^{<i>a</i>}	(7/2+)		DE G	XREF: D(763). J^{π} : From γ' s to $5/2^+$ and $9/2^+$ levels and intensity pattern in the charged-particle reactions.
777.1 ^b	7/2+		DE	J^{π} : From γ 's to $7/2^{-}$ levels and interpretation of charged-particle reaction

Continued on next page (footnotes at end of table)

¹⁵⁹Tb Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments		
				data. Calculations of 1985GuZR suggest a significant component of the K+2 γ -vibr based on the $\pi 3/2$ [411] g.s.		
799 [@]	15/2-		D	J^{π} : From interpretation of charged-particle reaction data and proposed band structure.		
822.2 ^{&}	11/2-		DE	J ^{π} : From intensity pattern in the charged-particle reactions, γ to (9/2 ⁻) level, and proposed band structure.		
854.962 ^c 14	(1/2 ⁻)		A D G	XREF: D(857). J^{π} : From γ 's to $1/2^+$ and $3/2^+$ levels and intensity pattern in the charged-particle reactions		
857.3 ^a	$(9/2^+)$		Е	J^{π} : From γ' s to $9/2^+$ and $11/2^+$ levels and proposed band structure.		
859.98 [‡] 7	17/2+	3.98 ps 20	С	J^{π} : From M1 γ to $15/2^+$ level and expected band structure. T _{1/2} : Weighted average of: 3.3 ps 3 (1984Va30) and 3.3 ps 4 (1983Ch09) by Doppler-shift method; and 4.10 ps <i>10</i> (1983Ch09) by recoil-distance method.		
891.25 [°] 6	$(5/2^{-})$		A D	J^{π} : From interpretation of charged-particle reaction data.		
946 ^{<i>d</i>}	(1/2+&3/2-)		D	J ^{π} : From (³ He,d), (α ,t) (1992Ga15). From interpretation of charged-particle reaction data, assigned by 1972Ti05 as a doublet consisting of the π 1/2[411] bandhead and the 3/2 ⁻ member of the π 1/2[541] band. Calculations of 1985GuZR suggest a significant contribution from the K-2 γ -vibrational band built on π 5/2[413].		
971?	$(1/2^+)$		Cd	XREF: d(974). J^{π} : From γ to $3/2^+$ level and analysis of the charged-particle reaction data.		
978 ^d	$(3/2^+)$		Cd	XREF: d(974).		
				J^{π} : From γ 's to $3/2^+$ and $5/2^+$ levels and analysis of the charged-particle reaction data. 1972Ti05 assign this level as the $3/2^+$ member of the $\pi 1/2[411]$ band; and 1972Bo47 assign it as a doublet consisting of the $1/2^+$ and $3/2^+$ members of this band.		
1008.6 ^{<i>a</i>}	$(11/2^+)$		E	J^{π} : From γ to $11/2^+$ level and proposed band structure.		
1018 ^{<i>a</i>}	(5/2+)		D	J ^{π} : From (³ He,d), (α ,t) (1992Ga15). 1972Ti05 assign this level as a triplet consisting of the 5/2 ⁺ states from the π 1/2[411] and π 5/2[402] bands and the 9/2 ⁻ member of the π 1/2[541] band. 1972Bo47 give the π 5/2[402] assignment. In addition to the π 5/2[402] bandhead, the calculations of 1985GuZR suggest a significant contribution from the β -vibrational band based on π 5/2[413].		
1049 ^d	$(7/2^+)$		D	J^{π} : From interpretation of the charged-particle reaction data.		
1052.32 [‡] 7	19/2+	2.45 ps 8	C	J^{π} : From (M1) γ to $17/2^+$ level and expected band structure. T _{1/2} : Weighted average of: 2.15 ps 21 (1984Va30) and 2.5 ps 3 (1983Ch09) by Doppler-shift method; and 2.49 ps 8 (1983Ch09) by recoil-distance method.		
1086.5			C			
1099	(5/2+)		d	XREF: d(1099). J^{π} : From interpretation of the charged-particle reaction data. Assigned by 1972Ti05 as the 7/2 ⁺ member of the $\pi 1/2[411]$ band, and by 1972Bo47 as a doublet consisting of the 5/2 ⁺ and 7/2 ⁺ members of this band		
1102.5?	(7/2+)		Cd	XREF: d(1099). J^{π} : From γ to $7/2^+$ level; assumed to be a member of a doublet proposed by 1972Bo47		
1156 ^e	(1/2+)		D	J^{π} : From (³ He,d),(α ,t) (1992Ga15). J^{π} =7/2 ⁻ ,1/2 ⁺ from interpretation of the charged-particle reaction data. Assigned as the 7/2 ⁻ member of the π 1/2[541] band (1972Ti05) and as the bandhead of the π 1/2 ⁺ [420] band.		
1218 ^e	(3/2+&5/2+)		D	J^{π} : From the charged-particle reaction data, 1992Ga15 assign this peak		

Continued on next page (footnotes at end of table)

¹⁵⁹Tb Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				as the $3/2^+$ and $5/2^+$ members of the $\pi 1/2[420]$ band.
1264			D	
1282.56 [‡] 10	21/2+	1.57 ps 16	С	 J^π: From M1 γ to 19/2⁺ level and expected band structure. T_{1/2}: Weighted average of 1.52 ps 28 (1984Va30) and 1.6 ps 2 (1983Ch09) by Doppler-shift method.
1325			D	
1358			D	
1392 ^e	$(7/2^+ \& 9/2^+)$		D	J^{π} : From charged-particle reaction data, 1992Ga15 assign this as the 7/2 ⁺ and 9/2 ⁺ members of the $\pi 1/2[420]$ band.
1439			D	
1505.18 [‡] <i>13</i>	23/2+	1.05 ps 13	C	J ^{π} : From M1 γ to 21/2 ⁺ level and expected band structure. T _{1/2} : Weighted average of 1.11 ps 28 (1984Va30) and 1.04 ps 14 (1983Ch09) by Doppler-shift method.
1530			D	
1567			D	
1604			D	
1634			D	
1666			D	
1712			ע	
1760 61 12	25/2+		CD	VDEE, D(1790)
1709.01* 12	23/2		CD	J^{π} : From E2 γ to 21/2 ⁺ level and expected band structure.
1823			D	
1872			ע ת	
1904			ע	
1943			D	
2019.40 [‡] 14	27/2+		С	J ^{π} : From γ 's to 23/2 ⁺ and 25/2 ⁺ levels and expected band structure.
2311.51 [‡] <i>14</i>	$29/2^{+}$		С	J ^{π} : From γ 's to 25/2 ⁺ and 29/2 ⁺ levels and expected band structure.
2583.00 [‡] 17	$31/2^{+}$		С	J^{π} : From γ to $27/2^+$ level and expected band structure.
2893.1 [‡] 6	33/2+		С	J^{π} : From γ to 29/2 ⁺ level and expected band structure.
3179.2 [‡] 6	35/2+		С	J^{π} : From γ to 31/2 ⁺ level and expected band structure.
3498.1 [‡] 8	37/2+		с	J^{π} : From γ to 33/2 ⁺ level and expected band structure.
37942 1	$(39/2^+)$		C	I^{π} : From γ to $35/2^+$ level and expected hand structure
			~	· · · · · · · · · · · · · · · · · · ·

[†] From least-squares fit to γ energies.

[±] Band(A): $K^{\pi}=3/2^+$, $\pi 3/2[411]$ (g.s.) band. $\alpha=11.61$ keV, $\beta=-7.3$ eV, $A_3=+8.6$ eV.

[#] Band(B): $K^{\pi} = 5/2^+$, $\pi 5/2[413]$ band. $\alpha = 11.33$ keV, $\beta = +7$ eV.

^(a) Band(C): $\pi 5/2[532] + \pi 7/2[523]$ band. Dominant conf= $\pi 5/2[532]$, with a large admixture of $\pi 7/2[523]$ along with other $\pi h_{11/2}$ -based Nilsson orbitals due to the strong Coriolis mixing among them. From the $5/2^-$ and $7/2^-$ level energies, $\alpha = 3.6$ keV is deduced, indicating a strong compression of the band owing to the strong coupling with the higher-lying bands.

& Band(D): $\pi 7/2[523] + \pi 5/2[532]$ band. Dominant conf= $\pi 7/2[523]$, with a large admixture of $\pi 5/2[532]$. a ≈ 14 keV, estimated from the energies of the $7/2^-$ through $11/2^-$ band members, reflecting strong Coriolis mixing with other h_{11/2}-based Nilsson orbitals, especially the lower-lying - π band. See the comment on this latter band.

^{*a*} Band(E): $K^{\pi} = 1/2^+$ band. Contains a mixture of the K-2 γ-vibr built on the $\pi 3/2^+$ [411] g.s. and $\pi 1/2$ [411]. $\alpha = 11.73$ keV, $\beta = +8.3$ eV, a = +0.043.

^b Band(F): $K^{\pi} = 7/2^+$ bandhead. Dominant conf= $\pi 7/2[404]$, with a significant admixture of the K+2 γ vibr built on the g.s.

^{*c*} Band(G): $K^{\pi} = 1/2^{-}$, $\pi 1/2[541]$ band.

^d Band(H): Fragment of the $\pi 1/2[411]$ band. The energy spacings of the band members are not well described by the

¹⁵⁹Tb Levels (continued)

rotational-band energy expression.

^{*e*} Band(I): $K^{\pi}=1/2^+$, $\pi 1/2[420]$ band. The energy spacings of the band members are not well described by the rotational-band energy expression.

Adopted Levels, Gammas (continued)										
								$\gamma(^{159}\text{Tb})$		
	E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult.	δ	α^{\ddagger}	Comments
	57.9964	5/2+	58.0000 22	100	0.0	3/2+	M1+E2	+0.119 2	10.73	B(M1)(W.u.)=0.173 8; B(E2)(W.u.)=365 10 B(E2)(W.u.): Computed from the measured B(E2)↑=2.81 8, frc@oul. ex. δ: From L1/L2=5.96 21, L1/L3=9.47 29, and L2/L3=1.59 7 from ¹⁵⁹ Gd β ⁻ decay (1964No08 and reanalyzed by 1965Ba37). Others: +0.122 13 from $\gamma(\theta)$ in Coul. ex. (1966As02) and 0.122 17 from L1/L2/L3=1.0 1/0.18 7/0/13 3 from ¹⁵⁹ Dy ε decay (1963Ry02).
	137.5055	7/2+	79.5132 27	100.0 23	57.9964	5/2+	M1+E2	+0.126 8	4.28	B(M1)(W.u.)=0.189 12; B(E2)(W.u.)=2.4×10 ² 4 δ: From $\gamma(\theta)$ in Coul. ex. (1966As02); other: +0.13 6, from $\gamma\gamma(\theta)$ in ¹⁵⁹ Gd β ⁻ decay (1962Su04).
			137.515 5	13.8 <i>3</i>	0.0	3/2+	[E2]		0.828	B(E2)(W.u.)=142 7 B(E2)(W.u.): Computed from the measured B(E2) \uparrow =1.45 6, from the measured B(E2) \uparrow =1.45 from the measured B(E2){I}
	241.15	9/2+	103.60 6	100	137.5055	7/2+	M1+E2	0.111 5	1.99	B(M1)(W.u.)=0.205 10; B(E2)(W.u.)=118 12 δ: From 1983Ch09. Other: 0.31 6 from (1984Va30), both values from $\gamma(\theta)$ in Coul. ex.
			183.10 5	39	57.9964	5/2+	E2		0.308	B(E2)(W.u.)=220 10 I _{γ} : From Coul. ex. Other: 400 20 from (n,n' γ). Mult.: From $\gamma(\theta)$ in Coul. ex. (1983Ch09.1984Va30).
	348.2832	5/2+	210.783 <i>3</i> 290.2865 <i>25</i>	8.4 <i>6</i> 13.5 <i>2</i>	137.5055 57.9964	$7/2^+$ $5/2^+$		0.42 . 10 . 0	0.0(52.22	
	362.05	11/2+	348.2807 18	100.0 10	0.0	3/2+	M1 + E2	0.43 + 10 - 9	0.0653 22	δ: From $\gamma(\theta)$ in (n,n' γ) (198/Al0/). Other: +0.2 or -10 from $\gamma(\theta)$ in oriented nuclei (1971Kr19). R(M1)(W _R) = 0.261 5: R(E2)(W _R) = 113.11
	502.05	11/2	120.79 4	100	241.15	9/2	M11+L2	0.112 5	1.201	δ : From 1983Ch09. Other: 0.187 22 from 1984Va30, both values are from $\gamma(\theta)$ in Coul. ex.
			224.62 5	72	137.5055	7/2+	E2		0.1561	B(E2)(W.u.)=294 5 I_{γ} : From Coul. ex. Other: 133 23 from (n,n' γ). Wult : From $e(0)$ in Coul. ex. (1082Ch00.1084Va30)
l	363.5449	$5/2^{-}$	15.4		348.2832	$5/2^{+}$	IE11		9.03	Mult $F10111 \gamma(6) 111 Coul. ex. (1985Ch09,1984 vas0).$
		5,2	226.0406 18	1.84 2	137.5055	7/2+	E1		0.0341	B(E1)(W.u.)=2.32×10 ⁻⁶ 10 δ : The δ (M2/E1) values do not agree: they are < 0.03, from $\gamma\gamma(\theta)$ (1962Su04), 0.17 5, from $\gamma(\theta)$ from oriented nuclei (1971Kr19), and 0.026 5 from $\alpha_{\rm K}(\exp)$ (1975SeZD), all from ¹⁵⁹ Gd β^- decay. B(E1)(W.u.): Assumes I $\gamma(1+\alpha)$ (15.4) is negligible.
			305.5492 20	0.53 1	57.9964	5/2+	E1		0.01582	B(E1)(W.u.)=2.70×10 ⁻⁷ 12 I _γ : From ¹⁵⁹ Gd β ⁻ decay; other: 5.9 10 from (n,n'γ). δ: δ(M2/E1)=0.028 4 (1975SeZD); other: < 0.04 (1964Pe07), both from $\alpha_{\rm K}(\exp)$ from ¹⁵⁹ Gd β ⁻ decay. B(E1)(W.u.): Assumes I _γ (1+α)(15.4) is negligible.
			363.5430 18	100 2	0.0	3/2+	E1		0.01033	$B(E1)(W.u.)=3.03\times10^{-5}$ 13

6

From ENSDF

н

$\gamma(^{159}\text{Tb})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult.	δ	α^{\ddagger}	Comments
	_								δ : δ (M2/E1)=+0.06 +1-2 from γ(θ) from oriented ¹⁵⁹ Gd nuclei (1971Kr19); other: 0.00 5 from γ(θ) in (n,n'γ) (1987Al07).
388.4	7/2-	248	509	137 5055	$7/2^{+}$				B(E1)(w.u.): Assumes $1\gamma(1+\alpha)(15.4)$ is negligible.
500.1	1/2	331.5	100 5	57.9964	$5/2^+$	[E1]			δ : δ (M2/E1)=0.00 5, from γ(θ) in (n,n'γ) (1987Al07).
428.2	$7/2^{+}$	289		137.5055	7/2+				
		371. 429	100 9 18 5	57.9964 0.0	$5/2^+$ $3/2^+$	[M1]			δ : δ (E2/M1)=0.05 5, from $\gamma(\theta)$ in (n,n' γ) (1987Al07).
454.6	(9/2-)	65.7	23	388.4	$7/2^{-}$				
		317.7	100	137.5055	7/2+				
510.40	13/2*	148.21 4	90.2 23	362.05	11/2+	M1+E2	0.106 6	0.717	B(M1)(W.u.)=0.250 10; B(E2)(W.u.)=64 8 I _{γ} : From Coul. ex. Other: 56 16, from (n,n' γ). δ : Weighted average of 0.107 6 (1983Ch09) and 0.097 15 (1984Va30), both from $\gamma(\theta)$ in Coul. ex.
		269.34 5	100	241.15	9/2+	E2		0.0872	B(E2)(W.u.)=323 10
	(0.001)				= (2)				Mult.: From $\gamma(\theta)$ in Coul. ex. (1983Ch09,1984Va30).
532	$(9/2^+)$	395		137.5055	7/2+	[M1]			δ : δ (E2/M1)=0.057 25, from γ(θ) in (n,n'γ) (1987A107).
530.7	$11/2^{-}$	530.7 90.5	100	0.0 454 6	$\frac{3}{2}$	[M3]			$\partial(E4/M3) = -0.08 3$, from $\gamma(\theta)$ in (n,n γ) (198/A10/).
5 15.1	11/2	156.2	14	388.4	$7/2^{-1}$				
		304.4	50	241.15	9/2+				
547.6	$7/2^{-}$	158.8	18	388.4	$7/2^{-}$				
		184.7	100	363.5449	5/2-				
580.808	$1/2^{+}$	522 #	2	57.9964	$5/2^{+}$	[E2]		0.01300	B(E2)(W.u.)=7.3 10
		5 00 000 6	100	0.0	2 /2+			0.014.5	I_{γ} : From $\alpha_{K}(exp)$ in Coul. ex. (1963Di09).
617 601	2/2+	580.808 6	100 0 27	0.0	3/2+ 5/2+	M1+E2	0 67 1 59 1	0.014 5	$\sum_{n=1}^{\infty} e_n(n) = (n n' e_n) (1087 A 107)$
017.021	3/2	559.05 14	71 8 27	57.9904	5/2* 2/2+	(M1+E2)	0.07 +38-4		0: From $\gamma(\theta)$ in (n, n γ) (198/A10/).
668.91	$15/2^{+}$	158 37 5	64 3 20	0.0 510.40	$\frac{3}{2}$ 13/2 ⁺	(M1) M1+F2	0 117 9	0 595	R_{γ} . From $(0, p)$ decay. Other. 107 25 from (ii,ii γ). B(M1)(W ii) = 0.272 20; B(F2)(W ii) = 75.13
000.71	15/2	150.57 5	04.5 20	510.40	13/2	1411 1.2	0.117)	0.575	δ : From 1983Ch09. Other: 0.051 25 (1984Va30). Both values
									from $\gamma(\theta)$ in Coul. ex.
		307.00 5	100	362.05	$11/2^{+}$	E2		0.0581	B(E2)(W.u.)=314 21
									Mult.: From $\gamma(\theta)$ in Coul. ex. (1983Ch09,1984Va30).
674.235	$5/2^{+}$	536.78 18	85.0 25	137.5055	$7/2^+$	(M1)		0.0229	B(M1)(W.u.)>0.026
		616.233 18	100 4	57.9964	5/2+	(M1)		0.01617	B(M1)(W.u.) > 0.020 B(M1)(W.u.) > 0.0026
677.0	$(0/2^{-})$	0/4.20 3	10.9 <i>13</i> 74	0.0 547.6	3/2* 7/2-	(M1)		0.01292	B(MI)(W.U.)>0.0020
077.9	(9/2)	223.5	35	454.6	$(9/2^{-})$				
		289.2	100	388.4	$7/2^{-}$				
761.3	$(7/2^+)$	520.0	80	241.15	9/2+	[M1]			δ: δ (E2/M1)=0.09 +7-6 from $\gamma(\theta)$ in (n,n' γ) (1987Al07).
		623.8	100	137.5055	$7/2^{+}$	-			
		703.3	20	57.9964	$5/2^{+}$				

 \neg

$\gamma(^{159}\text{Tb})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	α^{\ddagger}	Comments
777.1	7/2+	229.7	100	547.6	7/2-				
877.7	11/2-	388.5 144-3	93 100	388.4 677 9	$(9/2^{-})$				
854.962	$(1/2^{-})$	237.341 5	100.0 21	617.621	$3/2^+$				
		274.163 19	74 5	580.808	$1/2^{+}$				I _{γ} : From ¹⁵⁹ Gd β^- decay; other: 233 23 from (n,n' γ).
057 2	$(0/2^{+})$	854.947 20	32.0 18	0.0	$3/2^+$				
037.3	(9/2)	493.2 616.3	100	241.15	$9/2^+$				
859.98	$17/2^{+}$	191.21 8	53 5	668.91	$15/2^+$	M1+E2	0.091 20	0.352	B(M1)(W.u.)=0.24 3; B(E2)(W.u.)=27 13
		240 59 6	100	510.40	12/0+	E2		0.0204	δ : From $\gamma(\theta)$ in Coul. ex. (1984Va30).
		349.38 0	100	510.40	13/2	E2		0.0394	B(E2)(W.u.)=303.20 Mult.: From $\gamma(\theta)$ in Coul. ex. (1983Ch09, 1984Va30).
891.25	(5/2-)	273.62 12	100 50	617.621	3/2+				
		753.74 6	25 3	137.5055	7/2+				
971?	$(1/2^+)$	971#		0.0	$3/2^+$				
970	(3/2)	920 978		0.0	$3/2^+$				
1008.6	$(11/2^+)$	646.6	100	362.05	11/2+				
1052.32	$19/2^{+}$	192.58 15		859.98	$17/2^+$	(M1,E2)		0.30 5	Mult: From $\alpha(0)$ in Coul. or $(1082Cb00, 1084Wa20)$
1086.5		949		137.5055	$7/2^+$	E2		0.0301	Mult.: From $\gamma(\theta)$ in Cour. ex. (1985Ch09,1984 vaso).
1102.5?	$(7/2^+)$	965		137.5055	7/2+				
1282.56	$21/2^{+}$	230.11 11	26 5	1052.32	$19/2^+$	M1,E2		0.18 4	$D(TO)(W_{1}) = 0.010^{2} 5$
		422.69 10	100	859.98	17/21	E2		0.0230	$B(E2)(W.u.)=3.9\times10^{2}$ S Mult : From $\gamma(\theta)$ in Coul. ex. (1983Ch09 1984Va30)
1505.18	$23/2^{+}$	222.31 24	35 <i>3</i>	1282.56	$21/2^{+}$	M1,E2		0.20 4	Mart. 110m 7(0) in cour. ex. (1905en09,1901 (450).
		452.88 19	100	1052.32	19/2+	E2		0.0189	$B(E2)(W.u.)=3.8\times10^2 5$
1760 61	25/2+	264 4 1	25 7 10	1505 19	22/2+				Mult.: From $\gamma(\theta)$ in Coul. ex. (1983Ch09,1984Va30).
1709.01	23/2	487.1 <i>1</i>	100	1282.56	$\frac{23/2}{21/2^+}$	E2			Mult.: From $\gamma(\theta)$ in Coul. ex. (1983Ch09,1984Va30).
2019.40	$27/2^+$	249.8 1	24.9 19	1769.61	25/2+				
2211 51	20/2+	514.2 <i>I</i>	100	1505.18	$\frac{23}{2^+}$				
2311.31	29/2	541.9 <i>1</i>	100	1769.61	$\frac{27/2}{25/2^+}$				
2583.00	$31/2^{+}$	563.6 1	100	2019.40	$27/2^+$				
2893.1	$33/2^+$ $35/2^+$	581.6 5 596 2 5	100	2311.51	$\frac{29}{2^+}$				
3498.1	35/2 $37/2^+$	605.0 5	100	2893.1	$33/2^+$				
3794?	$(39/2^+)$	615 [#] 1	100	3179.2	35/2+				

[†] From ¹⁵⁹Gd β^- decay, Coulomb excitation, or (p,2n γ).

 ∞

From ENSDF

 $\gamma(^{159}\text{Tb})$ (continued)

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Placement of transition in the level scheme is uncertain.

9

¹⁵⁹₆₅Tb₉₄

 $^{159}_{65}{
m Tb}_{94}$

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁵⁹₆₅Tb₉₄

Adopted Levels, Gammas

 $^{159}_{65}{
m Tb}_{94}$

Band(I): $K^{\pi}=1/2^+$, $\pi 1/2[420]$ band						
(7/2 ⁺ &9/2 ⁺)	1392					

(3/2⁺ & 5/2⁺) 1218

				(1/2+)	1156
		Band(H): Fragn π1/2[411] Ι	ent of the band		
		(7/2+)	1049		
		(5/2+)	1018		
Band(G): K ^π =1/2 ⁻ , band	π1/2[541]	(3/2+)	978		
(1/2+&3/2-)	946	(1/2+&3/2-)	946		
(5/2 ⁻)	891.25				
(1/2 ⁻)	854.962				

¹⁵⁹₆₅Tb₉₄