106 Cd(58 Ni,3p2n γ) 2001Ke09

History Citation Literature Cutoff Date Author Full Evaluation C. W. Reich NDS 113, 157 (2012) 31-Dec-2010

Additional information 1. 106 Cd(58 Ni,3p2n γ) at E(58 Ni)=286, 291, 298 MeV; measured E γ , I γ , $\gamma\gamma$ and $\gamma(\theta)$ using the JUROSPHERE spectrometer comprised of 14 Eurogam escape-suppressed HPGE detectors and 10 TESSA Ge detectors. Reaction products were separated in a gas-filled recoil separator and implanted into a position-sensitive Si-strip detector. α -decay recoil tagging was used to assign γ 's to specific nuclides.

¹⁵⁹Ta Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	Comments				
(0)	1/2+						
64 [#] 5	11/2-	0.56 s 6	E(level): from Adopted Levels. $T_{1/2}$: from Adopted Levels.				
637.7 <mark>#</mark> <i>1</i>	$(15/2^{-})$,				
1278.2 [#] 2	$(19/2^{-})$						
1911.6 [#] 2	$(23/2^{-})$						

[†] The three γ 's are placed on the assumption that the strongest γ 's are lowest in the scheme. The other γ 's are in coincidence with

Εγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]
^x 188.3 <i>1</i>	12 2					Q
^x 232.4 1	40 2					D
^x 284.2 1	7 2					Q
^x 368.3 1	24 3					Q
x433.5 2	15 <i>3</i>					Q
573.7 <i>1</i>	100 2	637.7	$(15/2^{-})$	64	$11/2^{-}$	Q
633.4 <i>1</i>	72 6	1911.6	$(23/2^{-})$	1278.2	$(19/2^{-})$	Q
640.5 <i>1</i>	86 5	1278.2	$(19/2^{-})$	637.7	$(15/2^{-})$	Q

[†] From $\gamma(\theta)$ measurements.

[‡] From $J^{\pi}=11/2^-$ for the bandhead and the observation that the $\gamma(\theta)$ data for the intraband transitions are consistent with stretched quadrupole character (assumed to be E2 rather than M2).

[#] Band(A): Level sequence based on $\pi h_{11/2}$.

 $^{^{}x}$ γ ray not placed in level scheme.

106 Cd(58 Ni,3p2n γ) 2001Ke09

Band(A): Level sequence based on $\pi h_{11/2}$

