$^{159}_{62}$ Sm<sub>97</sub>-1

## <sup>159</sup>Sm IT decay (115 ns) 2017Pa25,2009Ur04

| History         |              |          |                        |  |  |  |  |  |  |
|-----------------|--------------|----------|------------------------|--|--|--|--|--|--|
| Туре            | Author       | Citation | Literature Cutoff Date |  |  |  |  |  |  |
| Full Evaluation | Balraj Singh | ENSDF    | 07-June-2023           |  |  |  |  |  |  |

#### Parent: <sup>159</sup>Sm: E=1275.9 *14*; $J^{\pi}$ =(11/2<sup>-</sup>); $T_{1/2}$ =115 ns *10*; %IT decay=100

2017Pa25: <sup>159</sup>Sm nuclide produced at the RIBF-RIKEN facility in <sup>9</sup>Be(<sup>238</sup>U,F),E(<sup>238</sup>U)=345 MeV/nucleon, followed by the identification of the nuclide of interest using the BigRIPS separator by determining the A/Q ratio of the ion using the tof-B $\rho$ - $\Delta$ E method. The reaction products were transported through the ZeroDegree Spectrometer and implanted into the beta-counting system WAS3ABi, surrounded by the EURICA array with 84 HPGe detectors. Measured E $\gamma$ , I $\gamma$ , (implanted ions) $\gamma\gamma$ (t) correlations within a 100  $\mu$ s time window following implantation. Comparison with Nilsson+BCS calculations.

2009Ur04:  $\gamma$  radiation studied using the Gammasphere array, with <sup>252</sup>Cf spontaneous-fission source. Measured E $\gamma$ , I $\gamma$ , triple and higher-fold  $\gamma\gamma$ -coin using the Gammasphere array of anti-Compton HPGe detectors at Argonne National Laboratory. Comparison with quasiparticle rotor model calculations. Comparison with quasiparticle rotor model calculations.

#### <sup>159</sup>Sm Levels

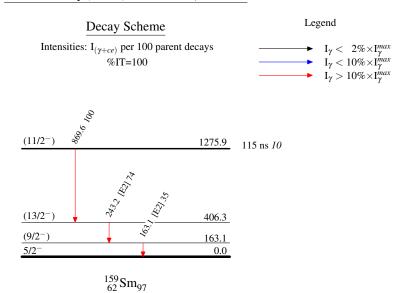
| E(level) <sup>†</sup> | J <sup>#‡</sup> | T <sub>1/2</sub> | Comments                                                                                                                                                                                                                                |  |  |
|-----------------------|-----------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0.0#                  | 5/2-            |                  |                                                                                                                                                                                                                                         |  |  |
| 163.1 <sup>#</sup> 9  | $(9/2^{-})$     |                  |                                                                                                                                                                                                                                         |  |  |
| 406.3 <sup>#</sup> 12 | $(13/2^{-})$    |                  |                                                                                                                                                                                                                                         |  |  |
| 1275.9 <i>14</i>      | $(11/2^{-})$    | 115 ns 10        | %IT=100                                                                                                                                                                                                                                 |  |  |
|                       |                 |                  | $J^{\pi}$ : from the Adopted Levels, based on $\nu 11/2[505]$ assignment by 2009Ur04. 2017Pa25 assiged (15/2 <sup>+</sup> ) and proposed a 3-qp state configuration= $\nu (5/2[523]) \otimes \pi 5/2[532] \otimes \pi 5/2[413]$ .       |  |  |
|                       |                 |                  | $T_{1/2}$ : from the Adopted Levels, from measurement by 2009Ur04 with a higher statistics than in 2017Pa25. 2017Pa25 measured $T_{1/2}$ =50 ns <i>17</i> from a weighted average of values from 163 $\gamma$ (t) and 243 $\gamma$ (t). |  |  |

<sup>†</sup> From E $\gamma$  data.

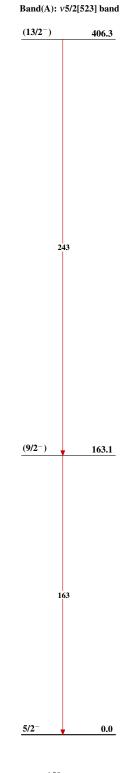
<sup>‡</sup> From the Adopted Levels.

<sup>#</sup> Band(A): v5/2[523] band.

### $\gamma(^{159}\text{Sm})$


| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger \ddagger}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$ | Mult. | α <b>#</b> |
|------------------------|---------------------------------|---------------|----------------------|-------------------------------------|-------|------------|
| 163.1 9                | 25 10                           | 163.1         | $(9/2^{-})$          | 0.0 5/2-                            | [E2]  | 0.417 10   |
| 243.2 7                | 67 21                           | 406.3         | $(13/2^{-})$         | 163.1 (9/2 <sup>-</sup> )           | [E2]  | 0.1095 19  |
| 869.6 8                | 100 31                          | 1275.9        | $(11/2^{-})$         | 406.3 (13/2-)                       |       |            |

<sup>†</sup> From 2017Pa25.


<sup>‡</sup> Absolute intensity per 100 decays.

<sup>#</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

# <sup>159</sup>Sm IT decay (115 ns) 2017Pa25,2009Ur04







