Adopted Levels

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 113, 157 (2012)	31-Dec-2010

S(p)=-1599 (syst) 53; $Q(\alpha)=6759$ (syst) 55 2017Wa10

 $Q(\varepsilon)=10550$ (syst) 426; S(2p)=-271 (syst) 53; $Q(\varepsilon p)=9133$ (syst) 362 2017Wa10

Data are primarily from 2006Jo10, with α -related data from 2007Pa27. these two studies have a number of authors in common.

2006Jo10: ¹⁵⁹Re produced in the ¹⁰⁶Cd(⁵⁸Ni,P4N) reaction, E(⁵⁸Ni)= 300 MeV. 1.1 mg/cm² thick self-supporting ¹⁰⁶Cd target (96.5% enrichment). Reaction products were separated in-flight in the gas-filled separator RITU and implanted into a double-sided Si-strip detector (DSSD) of the GREAT spectrometer. Measured protons, α , temporal correlations between α and protons, and T_{1/2}. authors do not report α emission associated with the ¹⁵⁹Re decay. for related information in a conference report by these authors, see 2007JoZX.

2007Pa27: similar reaction and experimental conditions as reported in 2006Jo10. Report α -related data, including E α , $\%\alpha$ and T_{1/2}. For related information by these authors in a conference report, see 2007PaZT.

¹⁵⁹Re Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
(0)	(1/2+)		E(level): 2006Jo10 indicate that the ¹⁵⁹ Re g.s. May be $\pi s_{1/2}$ and suggest that the short half-life expected for s-wave proton decay is one reason why it would not have been observed in their experiment.
			J^{π} : Probable $\pi s_{1/2}$ spherical shell-model state.
0+x	$11/2^{-}$	20 µs 4	$\%\alpha$ =7.5 35; %p=92.5 35
			%α: From 2007Pa27. The calculated T _{1/2} for β decay is ≈0.24 s (1997Mo25), which suggests that β decay does not contribute significantly to the decay of this state. 2007JoZX report %p=92. E(level): From the systematics of the separation of the 1/2 ⁺ and 11/2 ⁻ states in the heavier odd-mass Re isotopes, the excitation energy of this level is suggested to be≈160 50 (G. Audi, private communication to the evaluator, (March, 2010)). 2006Jo10 suggest that this level energy May be≈120.
			J ^{π} : From l=5 proton transition to the ¹⁵⁸ W g.s. (J ^{π} =0 ⁺) (2006Jo10). l=5 is deduced from comparison of the measured T _{1/2} value, with those expected for l=0, 2 and 5 emission, the three possibilities based on the available proton orbitals. Since the g.s. of the daughter nuclide, ¹⁵⁸ W, has J ^{π} =0 ⁺ , this establishes π h _{11/2} as the configuration of the initial state. T _{1/2} : Weighted average of 21 μ s 4, from 2006Jo10 (p(t)), and 16 μ s 9, from 2007Pa27 (α (t)).

Additional information 1.

Additional information 2.