¹⁵⁹**Ho IT decay 1971Ge01**

Type Author Citation Literature Cutoff Date

Full Evaluation C. W. Reich NDS 113, 157 (2012) 31-Dec-2010

Parent: ¹⁵⁹Ho: E=205.91 5; $J^{\pi}=1/2^{+}$; $T_{1/2}=8.30$ s 8; %IT decay=100.0

Problems with the current theoretical understanding of the measured M3 transition probabilities in selected odd-mass nuclides are discussed by 2003Lo04.

¹⁵⁹Ho Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments						
0.0 166.19 22	7/2 ⁻								
205.88 10	,	8.30 s 8	%IT=100 T _{1/2} : From 1971Ge01, other: 6.9 s 3 (1966Bo02); both measured by $\gamma(t)$ after proton pulse.						

[†] From least-squares fit to γ energies.

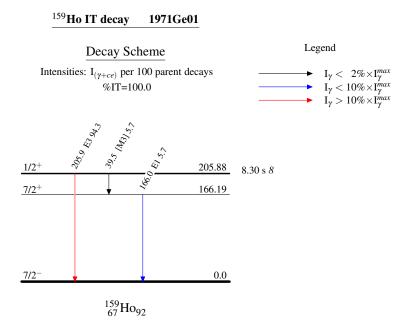
γ (159Ho)

Iy normalization: normalized to give 100% feeding of ground state, assuming 166 γ is pure E1 and 205 γ is pure E3.

E_{γ}	${\rm I}_{\gamma}{}^{\dagger}$	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f .	\mathbf{J}_f^{π} N	Mult.	$lpha^{\ddagger}$	$I_{(\gamma+ce)}^{\dagger}$	Comments
39.5 3	6.0×10 ⁻⁴ 5	205.88	1/2+	166.19 7/	/2+ [[M3]	2.27×10 ⁴ <i>I</i> 2	14.2 9	ce(L)/(γ +ce)=0.74 3; ce(M)/(γ +ce)=0.209 13; ce(N+)/(γ +ce)=0.055 4 ce(N)/(γ +ce)=0.049 4; ce(O)/(γ +ce)=0.0059 5; ce(P)/(γ +ce)=0.000115 8 I _{γ} : Calculated from transition intensity and α for pure M3.
166.0 3	13.1 9	166.19	7/2+	0.0 7,	/2 ⁻ E	Ε1	0.0821		I _(γ+ce) : Calculated to agree with transition intensity of 166 G. $\alpha(K)$ =0.0690 11; $\alpha(L)$ =0.01027 16; $\alpha(M)$ =0.00226 4; $\alpha(N+)$ =0.000593 9 $\alpha(N)$ =0.000518 8; $\alpha(O)$ =7.18×10 ⁻⁵ 11; $\alpha(P)$ =3.38×10 ⁻⁶ 5 Mult.: From $\alpha_K(\exp) < 0.08$, based
205.9 1	100	205.88	1/2+	0.0 7/	/2 ⁻ E	E3	1.364		on $\alpha_{\rm K}({\rm exp})(166)/\alpha_{\rm K}({\rm exp})(205) < 0.02$, compared to $\alpha_{\rm K}({\rm E1}){=}0.069$. $\alpha({\rm K}){=}0.492$ 7; $\alpha({\rm L}){=}0.665$ 10; $\alpha({\rm M}){=}0.1647$ 24; $\alpha({\rm N}{+}){=}0.0419$ 6 $\alpha({\rm N}){=}0.0374$ 6; $\alpha({\rm O}){=}0.00449$ 7; $\alpha({\rm P}){=}2.76{\times}10^{-5}$ 4 Mult.: From measured K/L=0.7 (1966Bo02) compared to K/L(E3)=0.74.

Additional information 1.

159 Ho (8 s) from 160 Dy(p,2n) at 12-15 MeV with pulsed beam (1971Ge01). Data are from 1971Ge01, unless noted as being from 1966Bo02


[‡] From ¹⁵⁹Ho Adopted Levels.

159Ho IT decay 1971Ge01 (continued)

γ (159Ho) (continued)

 \dagger For absolute intensity per 100 decays, multiply by 0.399 5.

 $^{^{\}ddagger}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

