$Pd(^{58}Ni,xn2p\gamma)$ 2000Di18

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	C. W. Reich	NDS 113, 157 (2012)	31-Dec-2010					

Additional information 1. Pd(⁵⁸Ni,xn2p γ) at 270 MeV on enriched target of ¹⁰²Pd(69%), ¹⁰⁴Pd(12%), ¹⁰⁵Pd(6%), and ¹⁰⁶Pd(6%). Measured E γ , I γ ,

 $\gamma(\theta)$ and $\gamma\gamma$ using Gammasphere array of 101 Compton-suppressed Ge detectors, in conjunction with the Fragment Mass Analyzer at ANL.

Data set based on the compilation for the XUNDL database by G. Reed and B. Singh (McMaster University, October, 2000).

¹⁵⁹Hf Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0	7/2-	J ^π : based on L=0 α decays in the ¹⁷¹ Pt → ¹⁶⁷ Os → ¹⁶³ W decay chain and on the systematics of the observed $13/2^+ \rightarrow 9/2^- \rightarrow 7/2^-$ cascades in these nuclides (2010Sc02).
98.87 [#] 10	9/2-	
635.68 [#] 15	$13/2^{-}$	
1218.41 [#] 19	$17/2^{-}$	
1837.19 [#] 21	$21/2^{-}$	
2339.03 [#] 24	$25/2^{-}$	
2949.1 [#] 12	29/2-	
3171.9 4		
3511.4 4		
3618.5 [#] 12	33/2-	
3813.6 4		
4276.6 [#] 12	37/2-	
4878.6 [#] 12	$41/2^{-}$	
5597.7 12		
6274.2 12		
7009.8 12		

[†] From least-squares fit to $E\gamma's$ (by evaluator).

[‡] Values from 200Di18, based on the usual considerations of rotational-band structure as populated in heavy-ion-induced reactions and γ -transition multipolarities.

[#] Band(A): Band based on 9/2⁻.

$\gamma(^{159}{\rm Hf})$

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
98.87 10	39 7	98.87	9/2-	0	7/2-	M1	A ₂ =-0.28 <i>10</i> . Mult.: Stretched dipole, from A ₂ . Intensity balance gives preference for M1 over E1.
302.13 [†] <i>11</i>	9.2 10	3813.6		3511.4			
339.49 [†] 12	13.0 11	3511.4		3171.9			
501.84 11	579	2339.03	$25/2^{-}$	1837.19	$21/2^{-}$	E2	$A_2 = +0.38$ 7.
536.81 10	100	635.68	$13/2^{-}$	98.87	$9/2^{-}$	E2	$A_2 = +0.24 \ 4.$
582.73 12	779	1218.41	$17/2^{-}$	635.68	$13/2^{-}$	E2	$A_2 = +0.30$ 7.
601.99 12	26 5	4878.6	$41/2^{-}$	4276.6	$37/2^{-}$	E2	$A_2 = +0.17$ 7.
610.0 11	44 7	2949.1	$29/2^{-}$	2339.03	$25/2^{-}$	E2	$A_2 = +0.37 \ 3.$
618.78 10	70 11	1837.19	$21/2^{-}$	1218.41	$17/2^{-}$	E2	$A_2 = +0.49 4.$
658.05 11	35 6	4276.6	37/2-	3618.5	33/2-	E2	$A_2 = +0.34 \ 10.$

Continued on next page (footnotes at end of table)

Pd(⁵⁸Ni,xn2pγ) **2000Di18** (continued)

$\gamma(^{159}\text{Hf})$ (continued)

Eγ	Iγ	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]		Comments
669.46 11	36 6	3618.5	33/2-	2949.1	29/2-	E2	A ₂ =+0.45 <i>6</i> .	
^x 708.1 3	9.0 21 6.1 <i>13</i>	6274.2		5597.7				
719.17 14	12.7 26	5597.7		4878.6	$41/2^{-}$			
735.6 2 x782.7 3	9.0 20 7.3 <i>13</i>	7009.8		6274.2				
832.9 2	4.9 8	3171.9		2339.03	$25/2^{-}$			

[†] Ordering of 302-339 γ cascade is taken from the level scheme drawing (fig. 6) of 2000Di18; this ordering is reversed in their tabular data (table ii).

[±] From authors' interpretation of $\gamma(\theta)$ data. Quadrupole transitions are assumed to be E2 rather than M2.

 $x \gamma$ ray not placed in level scheme.

 $^{159}_{72}\mathrm{Hf}_{87}$

3

¹⁵⁹₇₂Hf₈₇