$^{159}_{72}$ Hf_{8'}

163 W α decay

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	C. W. Reich	NDS 113, 157 (2012)	31-Dec-2010	

Parent: ¹⁶³W: E=0; $J^{\pi}=7/2^{-}$; $T_{1/2}=2.67 \text{ s } 10$; $Q(\alpha)=5519 5$; $\%\alpha$ decay=14 2

¹⁶³W-Q(α): computed from E α =5384 5, assuming that the α transition connects the two ground states. 2009AuZZ and 2003Au03 list $Q(\alpha)$ =5520 50, with the quoted uncertainty introduced to account for the possibility that the α transition feeds an excited state rather than the ¹⁵⁹Hf g.s.

¹⁶³W-T_{1/2}: from ¹⁶³W Adopted Levels (2010Re03). Value is a weighted average of: 2.6 s 1 (2010Sc02); 3.0 s 10 (1996Pa01); 3.0 s 2 (1979Ho10); and 2.5 s 3 (1973Ea01).

 163 W-J^{π}: from 163 W Adopted Levels, based on L=0 α decays in the 171 Pt $\rightarrow ^{167}$ Os $\rightarrow ^{163}$ W decay chain and on the systematics of the observed $13/2^+ \rightarrow 9/2^- \rightarrow 7/2^-$ cascades in these nuclides (2010Sc02).

¹⁶³W-%α decay: from ¹⁶³W Adopted Levels (2010Re03), from an average of %α=13 2 (1996Pa01) and %α=15 2 (2010Sc02). Earlier references give much larger values, namely, 41 5 (1979Ho10), 36 6 (1978Ca11), and≈50 (1973Ea01). The calculations of 1997Mo25 give $T_{1/2}(\beta)=1.9$ s and $T_{1/2}(\alpha)=24$ s, which corresponds to $\Re\alpha=8$, in good agreement with the new measurements.

Additional information 1. 1973Ea01: ¹⁴⁴, ¹⁴⁷Sm(²⁴Mg,xn), excitation functions measured from 110 to 205 MeV.

1975To05: ¹⁵⁶Dy(¹⁶O,xn).

1979Ho10: $Ag(^{58}Ni,xn)^{163}Re(\varepsilon)$ and separation in velocity filter.

1982De11: ⁶³Cu bombardment of various targets.

1983Fa03: ²⁰⁸Pb bombardment of uranium targets.

1996Pa01: ¹⁶³W produced in heavy-ion fusion reactions followed by separation of fragments by recoil-mass separator.

2010Sc02: ¹⁶³W produced in the α -decay chain headed by ¹⁷¹Pt, as well as in the ¹⁰⁶Cd(⁶⁰Ni,2pn γ), E(⁶⁰Ni)=270 MeV, and the 92 Mo(78 Kr, α^2 pn γ), E(78 Kr)=380 MeV, reactions. The information listed here is from the α -decay-related study. For the experimental details, see, e.g., the high-spin data set in the evaluation of the data for ¹⁶³W (2010Re03).

159Hf Levels

E(level)	J^{π}
0.0	7/2-

 α radiations

Εα	E(level)	Comments	
5384 [†] 5	0.0	 Eα: Unweighted average of 5385 5 (1973Ea01), 5384 10 (1975To05), 5384 5 (1979Ho10), 5384 3 (1982De11), 5383 6 (1996Pa01). Uncertainty is assigned as 5 keV, based on the value of the majority of the measurements. It is assumed that this transition feeds the ¹⁵⁹Hf g.s. 	

[†] Existence of this branch is questionable.