¹⁵⁹Eu β^- decay **1969Ke10**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	C. W. Reich	NDS 113, 157 (2012)	31-Dec-2010					

Parent: ¹⁵⁹Eu: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=18.1 \text{ min } l$; $Q(\beta^-)=2515 \ 7$; $\%\beta^-$ decay=100.0 Additional information 1.

The decay scheme is that of 1969Ke10 and data are from 1969Ke10, unless otherwise noted. Other: 1961Ku10, 1964Iw01, 1965Iw01, 1965Du06, 1966Da06, 1966Da19, 1974Da24.

The intensity of the β^- feeding of the several levels below 60 keV is not known; therefore, the absolute β^- feeding of the higher levels is not known. However, the intensities have been normalized for a particular assumption about this β feeding.

¹⁵⁹Gd Levels

E(level) [†]	Jπ‡	Comments
0.0	3/2-	
50.64 8	$5/2^{-}$	
67.77 7	$5/2^+$	
118.91 <i>15</i>	7/2+	
121.91 <i>13</i>	$7/2^{-}$	
146.38 8	$5/2^{-}$	
185.4 <i>4</i>	9/2+	
212.29 23	9/2-	
227.47 10	$7/2^{-}$	
602.12 17	$(3/2^+)$	
710.18 13		
732.57 10		
744.37 11	$3/2^{+}$	
872.69 14	$5/2^{-}$	
948.49 22	$7/2^{-}$	
1128.51 <i>21</i>		
1162.66 18	5/2,7/2	
1351.8? 3	(5/2 ⁺)	E(level): In subsequent (n,γ) and single-nucleon transfer-reaction studies, 2004Gr26 do not confirm the existence of this level, although they do confirm the existence of all the other levels seen in this (β -) study. It is not included in the Adopted Levels.

1519.80 17

[†] From least-squares fit to γ energies.

[‡] From ¹⁵⁹Gd Adopted Levels.

β^{-} radiations

1965Iw01 assume that the measured 2570-keV β^- branch was to the ground state. In contrast, 1969Ke10 assume this β^- was to the 67-keV level with no β^- to the 0- and 50-keV levels.

	Results fi	com analysis of	measured β^- sp	ectrum:
From	1965Iw01:			
	$E(\beta^{-})$	$I(\beta^{-})$	Method	
	(keV)	(%)		
	1000 100	10 3	BG-coincidence	e
	1500 50	11 3	BG-coincidence	е
	1750 50	11 3	BG-coincidence	е
	1900 50	21 4	scintillation	, F-K analysis
	2350 50	21 4	scintillation	, F-K analysis
	2570 50	25 4	scintillation	, F-K analysis
From	1961Ku10:			
	2200 100		scintillation, F	-K analysis
From	1966Da06:			
	2400 +20-	-10	scintillation	

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft	Comments
(995 7)	1519.80	1.1	6.7	av Eβ=336.9 28
(1163 7)	1351.8?	0.45	7.4	av E β =404.8 29
(1352 7)	1162.66	2.5	6.8	av $E\beta = 483.3 \ 30$
(1386 7)	1128.51	1.1	7.2	av E β =497.7 30
(1567 7)	948.49	1.4	7.3	av E β =574.2 30
(1642 7)	872.69	4.7	6.9	av $E\beta = 606.8 \ 31$
(1771 7)	744.37	3.3	7.2	av E β =662.5 31
(1782 7)	732.57	6.6	6.9	av E β =667.7 31
(1805 7)	710.18	2.1	7.4	av $E\beta = 677.4 \ 31$
(1913 7)	602.12	1.3	7.7	av E β =724.8 <i>31</i>
(2288 7)	227.47	14	7.0	av Eβ=890.9 <i>32</i>
(2303 7)	212.29	2.3	7.8	av E β =897.7 32
(2369 7)	146.38	37	6.6	av Eβ=927.2 32
(2393 7)	121.91	5	7.5	av E β =938.2 32
(2447 7)	67.77	19	7.0	av E β =962.5 32

[†] Relative values deduced from γ intensity balances. Values given are based on the assumption that there is no β^- feeding of the levels at 0 and 50 keV. The table gives the results from the decomposition of the β^- spectrum. From the density of the levels in ¹⁵⁹Gd it is clear that the reported components represent the decay to several levels. Due to the various ambiguities, no uncertainties are given for the I β and the associated log *ft* values.

[‡] Absolute intensity per 100 decays.

$\gamma(^{159}\text{Gd})$

I γ normalization: calculated to give 100% feeding of the ground state with no β^- feeding of the levels at 0 and 50 keV. 2004Gr26, in (n_{th}, γ), propose placements for some of the unplaced γ 's and propose alternate placements for some others. See their Table 5 for these placements.

E_{γ}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α [@]	${\rm I}_{(\gamma+ce)}^{\texttt{\#}}$	Comments
(17.1)	7.6 5	67.77	5/2+	50.64	5/2-	[E1]	6.57		$\alpha(L)=5.15 \ 8; \ \alpha(M)=1.146 \ 16; \ \alpha(N+)=0.279$ $\alpha(N)=0.248 \ 4; \ \alpha(O)=0.0302 \ 5;$ $\alpha(P)=0.000848 \ 12$
									I_{γ} : γ not observed; I_{γ} deduced, relative to $I_{\gamma}(67.7)$, from data of 67-keV isomer (1968Bo10).
50.7 4		50.64	5/2-	0.0	3/2-	[M1]		167	E_{γ} : from isomeric (26.2 ns) decay (1968Bo10).
≈51		118.91	7/2+	67.77	5/2+			11	E _{γ} : Existence of this γ and placement supported by possible $\gamma\gamma$ coincidences (1969Ke10). Also, 1965Iw01 observe a γ of 54 4 keV in this decay.
									$I_{(\gamma+ce)}$: Value to give intensity balance at this level with no β^- feeding.
67.8 1	59 <i>13</i>	67.77	5/2+	0.0	3/2-	E1	0.824		$\alpha(K)=0.683 \ 10; \ \alpha(L)=0.1103 \ 17; \\ \alpha(M)=0.0239 \ 4; \ \alpha(N+)=0.00619 \ 9 \\ \alpha(N)=0.00538 \ 8; \ \alpha(O)=0.000770 \ 12; \\ \alpha(P)=3.62\times10^{-5} \ 6 $
71.4 2	3.3 8	121.91	7/2-	50.64	5/2-	[M1,E2]	7.2 19		$ \begin{aligned} &\alpha(\text{K})=3.5 \ 10; \ \alpha(\text{L})=2.8 \ 22; \ \alpha(\text{M})=0.7 \ 6; \\ &\alpha(\text{N}+)=0.17 \ 13 \\ &\alpha(\text{N})=0.15 \ 12; \ \alpha(\text{O})=0.020 \ 15; \\ &\alpha(\text{P})=0.00023 \ 11 \end{aligned} $

¹⁵⁹Eu β^- decay **1969Ke10** (continued)

$\gamma(^{159}\text{Gd})$ (continued)

E_{γ}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α [@]	Comments
78.6 1	28 5	146.38	5/2-	67.77	5/2+	[E1]	0.557	$\alpha(K)=0.464\ 7;\ \alpha(L)=0.0727\ 11;\ \alpha(M)=0.01578$ 23; \alpha(N+)=0.00409\ 6 \alpha(N)=0.00355\ 6;\ \alpha(O)=0.000513\ 8; \alpha(P)=2\ 51\ x10^{-5}\ 4
80.4 4	3.8 10	227.47	7/2-	146.38	5/2-	[M1,E2]	4.7 10	$\alpha(K) = 2.6 \ 6; \ \alpha(L) = 1.7 \ 12; \ \alpha(M) = 0.4 \ 3; \ \alpha(N+) = 0.10 \ 8$
90.4 2	1.9 <i>3</i>	212.29	9/2-	121.91	7/2-	[M1,E2]	3.2 5	$\alpha(N)=0.09 \ 7; \ \alpha(O)=0.012 \ 8; \ \alpha(P)=0.00017 \ 7 \\ \alpha(K)=1.9 \ 4; \ \alpha(L)=1.0 \ 7; \ \alpha(M)=0.23 \ 16; \\ \alpha(N+)=0.06 \ 4 \\ \alpha($
95.7 1	21.5 25	146.38	5/2-	50.64	5/2-	[M1,E2]	2.6 4	$\begin{array}{l} \alpha(N)=0.05 \ 4; \ \alpha(O)=0.007 \ 5; \ \alpha(P)=0.00012 \ 5\\ \alpha(K)=1.6 \ 4; \ \alpha(L)=0.8 \ 5; \ \alpha(M)=0.18 \ 12; \\ \alpha(N+)=0.05 \ 3\\ \alpha(N)=0.04 \ 3; \ \alpha(O)=0.005 \ 4; \ \alpha(P)=0.00010 \ 4 \end{array}$
x102.5 2 105.5 2	2.0 2 2.2 2	227.47	7/2-	121.91	7/2-	[M1,E2]	1.90 18	$\alpha(K)=1.23 \ 23; \ \alpha(L)=0.5 \ 3; \ \alpha(M)=0.12 \ 8; \ \alpha(N+)=0.031 \ 19$
108.8 <i>3</i>	0.87 13	227.47	7/2-	118.91	7/2+	[E1]	0.233	$\begin{aligned} &\alpha(N)=0.027 \ 17; \ \alpha(O)=0.0036 \ 21; \ \alpha(P)=8.E-5 \ 3\\ &\alpha(K)=0.196 \ 3; \ \alpha(L)=0.0292 \ 5; \ \alpha(M)=0.00632\\ &11; \ \alpha(N+)=0.00165 \ 3\\ &\alpha(N)=0.001431 \ 23; \ \alpha(O)=0.000210 \ 4;\\ &\alpha(P)=1.106\times10^{-5} \ 18 \end{aligned}$
118. 2 121 9 2	122	185.4 121.91	9/2+ 7/2-	67.77 0.0	$5/2^+$ $3/2^-$	[E2]	1 228 19	$\alpha(K)=0.674.10; \alpha(L)=0.428.7; \alpha(M)=0.1005$
121.7 2	1.2 2	121.91	112	0.0	5/2	ניטן	1.220 17	$\begin{aligned} & \alpha(\mathbf{N}) = 0.075 \ 4 \\ & \alpha(\mathbf{N}) = 0.0225 \ 4; \ \alpha(\mathbf{O}) = 0.00298 \ 5; \\ & \alpha(\mathbf{P}) = 3.45 \times 10^{-5} \ 5 \end{aligned}$
146.4 <i>1</i>	10	146.38	5/2-	0.0	3/2-	[M1,E2]	0.663 21	$\alpha(K)=0.49 \ 9; \ \alpha(L)=0.14 \ 6; \ \alpha(M)=0.031 \ 14; \ \alpha(N+)=0.008 \ 4 \ \alpha(N)=0.007 \ 3; \ \alpha(O)=0.0010 \ 4; \ \alpha(P)=3.2\times10^{-5} \ 11 \ 10^{-5}$
159.8 2	4.2 3	227.47	7/2-	67.77	5/2+	[E1]	0.0826	$\alpha(\mathbf{N})=0.0698 \ 10; \ \alpha(\mathbf{L})=0.01004 \ 15; \\ \alpha(\mathbf{M})=0.00217 \ 4; \ \alpha(\mathbf{N}+)=0.000572 \ 9 \\ \alpha(\mathbf{N})=0.000494 \ 8; \ \alpha(\mathbf{O})=7.37\times10^{-5} \ 11; \\ \alpha(\mathbf{P})=4 \ 16\times10^{-6} \ 6 $
176.9 <i>1</i>	4.0 2	227.47	7/2-	50.64	5/2-	[M1,E2]	0.37 4	$\alpha(\mathbf{K}) = 0.10 \times 10^{-6}$ 0 $\alpha(\mathbf{M}) = 0.015 5;$ $\alpha(\mathbf{N}+) = 0.0040 12$ $\alpha(\mathbf{N}) = 0.0035 11; \alpha(\mathbf{O}) = 0.00049 12;$ $\alpha(\mathbf{P}) = 1.9 \times 10^{-5} 7$
227.5 3	5.0 15	227.47	7/2-	0.0	3/2-	[E2]	0.1451	$\begin{array}{l} \alpha(\mathbf{K}) = 0.1048 \ 16; \ \alpha(\mathbf{L}) = 0.0313 \ 5; \\ \alpha(\mathbf{M}) = 0.00718 \ 11; \ \alpha(\mathbf{N}+) = 0.00185 \ 3 \\ \alpha(\mathbf{N}) = 0.001617 \ 25; \ \alpha(\mathbf{O}) = 0.000224 \ 4; \\ \alpha(\mathbf{P}) = 6 \ 19 \times 10^{-6} \ 9 \end{array}$
498.2 7	1.0 3	710.18		212.29	9/2-			
551.3 <i>3</i>	0.3 2 1.2 <i>I</i>	602.12	$(3/2^+)$	50.64	5/2-			
^x 575.54 588.63	1.2 2	710.18		121.91	7/2-			
^x 596.0 4 602.2 2	1.0 2 2.7 2	602.12	$(3/2^+)$	0.0	$3/2^{-}$			
613.4 2	3.9 <i>3</i>	732.57		118.91	7/2+			
645.7 3	1.1 1	872.69	5/2-	227.47	7/2-			
639.3 <i>1</i> 664 9 <i>1</i>	4.1 <i>3</i> 945	/10.18 732.57		50.64 67 77	5/2 5/2+			
676.6 1	5.8 3	744.37	3/2+	67.77	$5/2^+$			
681.9 <i>1</i>	7.1 4	732.57	2/2+	50.64	5/2-			
693.8 <i>3</i>	1.5 /	144.31	3/2	50.64	5/2-			

Continued on next page (footnotes at end of table)

	159 Eu β^- decay 1969Ke10 (continued)												
	$\gamma(^{159}\text{Gd})$ (continued)												
E_{γ}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E_{γ}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}			
720.4 <i>5</i> 726.5 <i>3</i>	0.5 <i>1</i> 2.0 <i>2</i>	948.49 872.69	7/2 ⁻ 5/2 ⁻	227.47 7/2 ⁻ 146.38 5/2 ⁻	1060.4 <i>4</i> 1078.4 <i>4</i>	0.9 <i>1</i> 0.8 <i>1</i>	1128.51 1128.51		67.77 50.64	5/2 ⁺ 5/2 ⁻			
733.1 ^{&} 4	0.75 15	732.57		0.0 3/2-	1094.8 2	3.7 3	1162.66	5/2,7/2	67.77	5/2+			
744.3 2 753.9 2	2.8 2 2.8 2	744.37 872.69	3/2+ 5/2-	$\begin{array}{ccc} 0.0 & 3/2^{-} \\ 118.91 & 7/2^{+} \end{array}$	^x 1109.† <i>1</i> 1128.4 <i>3</i>	0.8 <i>3</i> 1.6 2	1128.51		0.0	3/2-			
763.1 <i>3</i> 804.7 <i>2</i> 829.7 <i>3</i>	1.0 <i>1</i> 7.9 5 1.7 2	948.49 872.69 948.49	7/2 ⁻ 5/2 ⁻ 7/2 ⁻	185.4 9/2 ⁺ 67.77 5/2 ⁺ 118.91 7/2 ⁺	^x 1159.4 [†] 5 ^x 1181.6 10 ^x 1220.7 4	0.19 <i>3</i> 0.35 <i>10</i> 0.6 <i>1</i>							
871.4 5	0.65 10	872.69	5/2-	0.0 3/2-	1301.5 <mark>&</mark> 3	1.0 1	1351.8?	$(5/2^+)$	50.64	5/2-			
880.8 <i>3</i> ^x 915.7 6	1.0 <i>1</i> 0.5 <i>1</i>	948.49	7/2-	67.77 5/2+	1350.8 ^{&} 5 ^x 1433.7 5	0.37 6 0.75 15	1351.8?	$(5/2^+)$	0.0	3/2-			
936.1 <i>5</i> 1015 <i>1</i>	0.9 2 1.5 5	1162.66 1162.66	5/2,7/2 5/2,7/2	227.47 7/2 ⁻ 146.38 5/2 ⁻	1451.6 <i>5</i> 1468.6 <i>4</i>	0.6 <i>1</i> 0.9 <i>1</i>	1519.80 1519.80		67.77 50.64	5/2 ⁺ 5/2 ⁻			
^x 1038.2 [†] 7 1043.7 4	0.6 <i>1</i> 1.6 2	1162.66	5/2,7/2	118.91 7/2+	1520.0 2	2.0 2	1519.80		0.0	3/2-			

[†] γ proposed by 2004Gr26 (their Table 5) in (n_{th}, γ) to deexcite a level at 1159.9 keV. [‡] From ¹⁵⁹Gd Adopted γ radiations.

[#] For absolute intensity per 100 decays, multiply by 0.325.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

 $^{159}_{64}\rm{Gd}_{95}$

5

¹⁵⁹Eu β^- decay 1969Ke10

