¹⁵⁹Gd IT decay (26.2 ns) 1968Bo10

Type Author Citation Literature Cutoff Date

Full Evaluation C. W. Reich NDS 113, 157 (2012) 31-Dec-2010

Parent: ^{159}Gd : E=67.829 24; J^{π} =5/2+; $T_{1/2}$ =26.2 ns 8; %IT decay=100.0

Additional information 1.

Isomer was produced in the ¹⁵⁸Gd(d,p) reaction.

159Gd Levels

E(level)	$J^{\pi \dagger}$	$T_{1/2}$	Comments
0.0	3/2-		
50.7	5/2-		
67.8	$5/2^{+}$	26.2 ns 8	$T_{1/2}$: From $\gamma(t)$ following p pulse in (d,p) reaction.

[†] From ¹⁵⁹Gd Adopted Levels.

$\gamma(^{159}\text{Gd})$

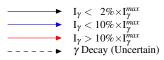
E_{γ}	I_{γ} †@	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	α &	$I_{(\gamma+ce)}$ #@	Comments
(17.1)	4.6	67.8	5/2+	50.7 5/2	[E1]	6.57	35 5	ce(L)/(γ +ce)=0.680 6; ce(M)/(γ +ce)=0.151 3; ce(N+)/(γ +ce)=0.0368 7 ce(N)/(γ +ce)=0.0327 6; ce(O)/(γ +ce)=0.00398 8; ce(P)/(γ +ce)=0.0001120 21
50.7 4	2.35	50.7	5/2-	0.0 3/2	[M1]	13.9	35 5	ce(K)/(γ +ce)=0.782; ce(L)/(γ +ce)=0.116; ce(M)/(γ +ce)=0.0254; ce(N+)/(γ +ce)=0.0068 ce(N)/(γ +ce)=0.0058; ce(O)/(γ +ce)=0.0091; ce(P)/(γ +ce)=6.01×10 ⁻⁵ α : Note that the E γ value is only 0.5 4 keV above the K-shell binding energy of 50.239 keV, rendering the calculation of the respective conversion coefficient problematic. Listed value is from extrapolation of values calculated for higher-energy γ 's.
67.8 4	35.7	67.8	5/2+	0.0 3/2-	[E1]	0.824 18	65 5	ce(K)/(γ +ce)=0.375 6; ce(L)/(γ +ce)=0.0605 14; ce(M)/(γ +ce)=0.0131 3; ce(N+)/(γ +ce)=0.00339 8 ce(N)/(γ +ce)=0.00295 7; ce(O)/(γ +ce)=0.000422 10; ce(P)/(γ +ce)=1.98×10 ⁻⁵ 5

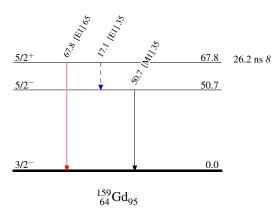
[†] Computed from the I $\gamma(1+\alpha)$ and α values.

[‡] From ¹⁵⁹Gd Adopted γ radiation.

[#] Calculated by evaluator and based on authors' ratio of the L-shell conversion-electron intensities, L(68)/L(51)=1.1 2; and photon intensity ratio, I(K x ray)/I(68)=1.4 2; and the assumption that the 50.7 γ is pure M1. The authors report I γ (1+ α)(17) = I γ (1+ α)(50) = 26% (4) and I γ (1+ α)(67) = 74% (4). These values differ from those adopted here due to the differences in the conversion coefficients used. The measured data cannot be fit if the 50 γ is pure E2, but some E2 mixture is possible.

[®] Absolute intensity per 100 decays.


[&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.


¹⁵⁹Gd IT decay (26.2 ns) 1968Bo10

Decay Scheme

Intensities: Relative $I_{(\gamma+ce)}$ %IT=100.0

Legend

