159 Sm β^- decay 1987Wi14

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	C. W. Reich	NDS 113, 157 (2012)	31-Dec-2010					

Parent: ¹⁵⁹Sm: E=0; $J^{\pi}=5/2^{-}$; $T_{1/2}=11.37$ s 15; $Q(\beta^{-})=3805$ 65; $\%\beta^{-}$ decay=100.0

Additional information 1. ¹⁵⁹Sm produced by thermal-neutron fission of ²³⁵U (1986Ma12) and spontaneous fission of ²⁵²Cf (1987Wi14). In both cases identification was by mass separation and the genetic relation to the ¹⁵⁹Eu daughter activity.

The γ data and decay scheme are from 1987Wi14.

1986Ma12: produced by thermal-neutron fission of 235 U with mass separation in TRISTAN; report half-life and 2 γ 's (114, 190). 1987Gr12: same as 1987Wi14; report half-life.

1987Wi14: produced by spontaneous fission of 252 Cf with mass separation; report half-life and 16 γ 's and all in scheme. Deduce $I\beta^{-}$ and some multipolarities and mixing ratios.

1990An31: repeat half-life from 1987Wi14.

¹⁵⁹Eu Levels

$J^{\pi \ddagger}$
$(5/2^+)$
$(7/2^+)$
$(9/2^+)$
$(5/2^{-})$
$(7/2^{-})$
$(3/2^+)$
$(7/2^{-})$

[†] From least-squares fit to γ energies.

[‡] From ¹⁵⁹Eu Adopted Levels and based on the (t,α) assignments of 1979Bu05, except that for the 1052 level, which is based on this decay. See the Adopted Levels for the band assignments.

β^{-} radiations

With a Q value of 3805 keV and levels reported only to 1052 keV, the scheme is not complete. The computed logft values may be lower than might otherwise be expected. The effect of higher-energy levels would be to reduce these $I\beta^-$ values and increase the logft values.

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
$(2.75 \times 10^3 7)$	1051.79	32.1	5.0	av E β =1103 30
$(3.47 \times 10^3 7)$	333.61	2.3	6.5	av $E\beta = 1432 \ 30$
$(3.55 \times 10^3 7)$	254.54	23	5.6	av E β =1468 30
$(3.62 \times 10^3 7)$	189.80	21	5.6	av Eβ=1498 <i>30</i>
$(3.63 \times 10^3 7)$	172.00	1.3	8.4^{1u}	av E β =1483 30
$(3.73 \times 10^3 7)$	75.41	10	6.0	av E β =1550 <i>30</i>
$(3.81 \times 10^3 7)$	0.0	10	6.0	av E β =1585 30

[†] From γ intensity balances. Value for ground-state branch is assumed to be equal to that to the 75 level. Since the scheme is incomplete, no uncertainties are given.

[‡] Absolute intensity per 100 decays.

 $\gamma(^{159}\text{Eu})$

Iγ normalization: calculated to give 100% feeding of the ground state, with $I\beta^-(0)=I\beta^-(75)$. If $I\beta^-(0)=0$, the normalization factor would be≈0.51.

 \mathbf{b}

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α #	Comments
64.76 6	2.5 3	254.54	(7/2 ⁻)	189.80	(5/2-)	[M1,E2]		10 3	$\alpha(K)=4.3\ 12;\ \alpha(L)=4\ 4;\ \alpha(M)=0.9\ 8;\ \alpha(N+)=0.24\ 20$ $\alpha(N)=0.21\ 18;\ \alpha(O)=0.029\ 23;\ \alpha(P)=0.00042\ 19$ Mult.: from expected reduced M1 transition probabilities and a reasonable value for the intrinsic quadrupole moment, 1987Wi14 deduce that this transition is primarily M1 with only a few percent E2.
75.44 <i>4</i>	9.6 6	75.41	(7/2+)	0.0	(5/2+)	[M1+E2]	0.50 18	4.7 4	α (K)=3.28 <i>15</i> ; α (L)=1.1 <i>4</i> ; α (M)=0.25 <i>9</i> ; α (N+)=0.066 <i>21</i> α (N)=0.057 <i>19</i> ; α (O)=0.0081 <i>25</i> ; α (P)=0.00035 <i>3</i> δ : 0.50 <i>18</i> (1987Wi14) from the constancy of the ratio of intrinsic M1 matrix element within the rotational band to its intrinsic quadrupole moment and δ (96).
82.58 5	1.7 3	254.54	(7/2 ⁻)	172.00	(9/2+)	[E1]		0.475	$\alpha(K)=0.398\ 6;\ \alpha(L)=0.0609\ 9;\ \alpha(M)=0.01312\ 19;\ \alpha(N+)=0.00342$
96.65 8	1.8 4	172.00	(9/2+)	75.41	(7/2+)	[M1+E2]	0.48 18	2.17 9	α (N)=0.00295 5; α (O)=0.000438 7; α (P)=3.23×10 ⁻⁵ 5 α (K)=1.64 6; α (L)=0.41 11; α (M)=0.093 25; α (N+)=0.024 6 α (N)=0.021 6; α (O)=0.0031 7; α (P)=0.000172 12 δ : 0.48 18 deduced (1987Wi14) from calculation of E2 portion from
114.42 6	7.9 4	189.80	(5/2 ⁻)	75.41	$(7/2^+)$	[E1]		0.197	Alaga rules and $1\gamma(1/2)$. $\alpha(K)=0.1662\ 24;\ \alpha(L)=0.0244\ 4;\ \alpha(M)=0.00524\ 8;$ $\alpha(N+)=0.001374\ 20$
143.90 12	2.1 3	333.61	(3/2+)	189.80	(5/2-)	[E1]		0.1060	α (N)=0.001181 <i>17</i> ; α (O)=0.000179 <i>3</i> ; α (P)=1.413×10 ⁻⁵ <i>20</i> α (K)=0.0896 <i>13</i> ; α (L)=0.01285 <i>19</i> ; α (M)=0.00276 <i>4</i> ; α (N+)=0.000728 <i>11</i>
172.09 12	3.4 4	172.00	(9/2+)	0.0	(5/2+)	[E2]		0.358	$\alpha(N)=0.000625 \ 9; \ \alpha(O)=9.53\times10^{-5} \ 14; \ \alpha(P)=7.86\times10^{-6} \ 12$ $\alpha(K)=0.241 \ 4; \ \alpha(L)=0.0903 \ 13; \ \alpha(M)=0.0208 \ 3; \ \alpha(N+)=0.00530 \ 8$
179.09 9	12.5 6	254.54	(7/2 ⁻)	75.41	$(7/2^+)$	[E1]		0.0588	$\alpha(N)=0.004657; \alpha(U)=0.00065170; \alpha(P)=1.99×10^{-5}3$ $\alpha(K)=0.04997; \alpha(L)=0.0070470; \alpha(M)=0.00151322;$ $\alpha(N+)=0.0004006$
189.79 9	100	189.80	(5/2 ⁻)	0.0	(5/2 ⁺)	[E1]		0.0504	$\begin{array}{l} \alpha(N)=0.000343 \ 5; \ \alpha(O)=3.26\times 10^{-5} \ 8; \ \alpha(P)=4.49\times 10^{-6} \ 7\\ \alpha(K)=0.0427 \ 6; \ \alpha(L)=0.00601 \ 9; \ \alpha(M)=0.001291 \ 19; \\ \alpha(N+)=0.000341 \ 5\\ \end{array}$
254.43 8	21.2 9	254.54	(7/2 ⁻)	0.0	(5/2+)	[E1]		0.0233	$\begin{array}{l} \alpha(\mathrm{N})=0.000293 \ 5; \ \alpha(\mathrm{O})=4.50\times10^{-3} \ 7; \ \alpha(\mathrm{P})=3.88\times10^{-6} \ 6\\ \alpha(\mathrm{K})=0.0198 \ 3; \ \alpha(\mathrm{L})=0.00274 \ 4; \ \alpha(\mathrm{M})=0.000589 \ 9; \\ \alpha(\mathrm{N}+)=0.0001563 \ 22 \end{array}$
333.20 26	2.5 4	333.61	(3/2+)	0.0	(5/2+)	[M1,E2]		0.054 13	$\begin{aligned} &\alpha(N) = 0.0001337 \ 19; \ \alpha(O) = 2.07 \times 10^{-5} \ 3; \ \alpha(P) = 1.85 \times 10^{-6} \ 3\\ &\alpha(K) = 0.045 \ 12; \ \alpha(L) = 0.0075 \ 4; \ \alpha(M) = 0.00165 \ 6; \\ &\alpha(N+) = 0.000437 \ 22\\ &\alpha(N) = 0.000375 \ 16; \ \alpha(O) = 5.8 \times 10^{-5} \ 5; \ \alpha(P) = 4.7 \times 10^{-6} \ 16 \end{aligned}$

$\gamma(^{159}\text{Eu})$ (continued)

Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	$\alpha^{\#}$ Comments	
797.2 5	13.2 24	1051.79	(7/2 ⁻)	254.54 (7/2 ⁻)	[M1,E2]	0.0058 16	$\alpha(K)=0.0049 \ 14; \ \alpha(L)=0.00069 \ 16; \ \alpha(M)=0.00015 \ 4; \ \alpha(N+)=4.0\times10^{-5} \ 9$
861.97 <i>14</i>	39.6 24	1051.79	(7/2 ⁻)	189.80 (5/2-)	[M1,E2]	0.0048 13	$\alpha(N)=3.4\times10^{-5} 8; \ \alpha(O)=5.4\times10^{-6} 13; \ \alpha(P)=5.2\times10^{-7} 16 \\ \alpha(K)=0.0041 11; \ \alpha(L)=0.00057 13; \ \alpha(M)=0.00012 3; \\ \alpha(N+)=3.3\times10^{-5} 8 \\ \alpha(N)=2.8\times10^{-5} 7; \ \alpha(O)=4.5\times10^{-6} 14; \ \alpha(P)=4.2\times10^{-7} 12 \\ \alpha(D)=2.8\times10^{-5} 7; \ \alpha(D)=4.5\times10^{-6} 14; \ \alpha(D)=4.2\times10^{-7} 12 \\ \alpha(D)=2.8\times10^{-5} 7; \ \alpha(D)=4.5\times10^{-6} 14; \ \alpha(D)=4.2\times10^{-7} 12 \\ \alpha(D)=2.8\times10^{-5} 7; \ \alpha(D)=4.5\times10^{-6} 14; \ \alpha(D)=4.2\times10^{-7} 12 \\ \alpha(D)=2.8\times10^{-5} 8; \ \alpha(D)=4.5\times10^{-6} 14; \ \alpha(D)=4.2\times10^{-7} 12 \\ \alpha(D)=2.8\times10^{-5} 8; \ \alpha(D)=4.5\times10^{-6} 14; \ \alpha(D)=4.2\times10^{-7} 12 \\ \alpha(D)=2.8\times10^{-5} 12; \ \alpha(D)=4.5\times10^{-6} 14; \ \alpha(D)=4.5\times10^{-7} 12 \\ \alpha(D)=2.8\times10^{-5} 12; \ \alpha(D)=4.5\times10^{-6} 14; \ \alpha(D)=4.5\times10^{-7} 12 \\ \alpha(D)=4.5\times10^{-7} 12; \ \alpha(D)=4.5\times10^{-7} 12; \\alpha(D)=4.5\times10^{-7} 12; \\alpha(D)=4.5\times10^{-7} 12; \\alpha(D)=4$
879.8 <i>3</i>	5.0 7	1051.79	(7/2 ⁻)	172.00 (9/2+)	[E1]	1.38×10^{-3}	$\alpha(N)=2.8\times10^{-5} 7; \ \alpha(O)=4.5\times10^{-5} 11; \ \alpha(P)=4.5\times10^{-1} 15$ $\alpha(K)=0.001186 \ 17; \ \alpha(L)=0.0001544 \ 22; \ \alpha(M)=3.30\times10^{-5} 5;$ $\alpha(N+)=8.85\times10^{-6} \ 13$
976.6 <i>3</i>	5.7 8	1051.79	(7/2 ⁻)	75.41 (7/2+)	[E1]	1.13×10^{-3}	$\begin{aligned} \alpha(\mathrm{N}) = 7.54 \times 10^{-6} \ 11; \ \alpha(\mathrm{O}) = 1.192 \times 10^{-6} \ 17; \ \alpha(\mathrm{P}) = 1.183 \times 10^{-7} \ 17 \\ \alpha(\mathrm{K}) = 0.000972 \ 14; \ \alpha(\mathrm{L}) = 0.0001260 \ 18; \ \alpha(\mathrm{M}) = 2.69 \times 10^{-5} \ 4; \\ \alpha(\mathrm{N}+) = 7.22 \times 10^{-6} \ 11 \end{aligned}$
1051.7 3	6.0 14	1051.79	(7/2 ⁻)	0.0 (5/2+)	[E1]	9.86×10 ⁻⁴	$\begin{aligned} &\alpha(\mathrm{N}) = 6.15 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 9.74 \times 10^{-7} \ 14; \ \alpha(\mathrm{P}) = 9.72 \times 10^{-8} \ 14 \\ &\alpha(\mathrm{K}) = 0.000847 \ 12; \ \alpha(\mathrm{L}) = 0.0001095 \ 16; \ \alpha(\mathrm{M}) = 2.34 \times 10^{-5} \ 4; \\ &\alpha(\mathrm{N}+) = 6.27 \times 10^{-6} \ 9 \\ &\alpha(\mathrm{N}) = 5.34 \times 10^{-6} \ 8; \ \alpha(\mathrm{O}) = 8.47 \times 10^{-7} \ 12; \ \alpha(\mathrm{P}) = 8.48 \times 10^{-8} \ 12 \end{aligned}$

[†] Authors argue that the M1 component is "asymptotically unhindered and intrinsically quite strong", so the transition is predominantly M1 (1987Wi14).
[‡] For absolute intensity per 100 decays, multiply by 0.46.
[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

ω

¹⁵⁹Sm β^- decay 1987Wi14

¹⁵⁹₆₃Eu₉₆

4