160 Gd(pol t, α) 1979Bu05

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh ENSDF 07-June-2023

1979Bu05: E(t)=17 MeV. Measured α particles, analyzing powers $(A_y(\theta))$ and $\sigma(\theta)$ from 10° to 50° . The α particles were analyzed using a Q3D magnetic spectrometer, and detected by a helical-cathode position-sensitive counter at the tandem Van de Graaff accelerator of the Los Alamos Scientific Laboratory. FWHM=15-16 keV. Target was Gd_2O_3 enriched to 95.95% in ^{160}Gd , evaporated on a $\approx 80~\mu g/cm^2$ carbon foil. The uncertainties in the absolute cross sections estimated as 20%, while in relative cross sections as 10%. DWBA analysis of $\sigma(\theta)$ and $A_y(\theta)$ data.

¹⁵⁹Eu Levels

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	L@	Nuclear structure factors.&	Comments
0 ^a	5/2+	2	0.02	$d\sigma/d\Omega(25^\circ)=10 \ \mu b/sr; A_v(25^\circ)=+0.20 \ 19.$
75 ^a 4	7/2+	4	0.87	$d\sigma/d\Omega(25^{\circ})=110 \ \mu b/sr; A_{V}(25^{\circ})=-0.56 \ 6.$
≈172 ^a	9/2+	4	≤0.10	J ^{π} : could be mixed with $5/2^-$ from $\pi 5/2[532]$ Nilsson orbital. d σ /d Ω (25°)=18 μ b/sr; A _y (25°)=0.00 12.
≈190 ^b	5/2-	3		$d\sigma/d\Omega(25^\circ) = \le 4 \mu b/sr.$
255 ^b 4 291 ^a 4	7/2 ⁻ (11/2 ⁺)	3 (5)	0.11	$d\sigma/d\Omega(25^{\circ})=43 \ \mu b/sr; A_y(25^{\circ})=+0.47 \ 8.$ $d\sigma/d\Omega(25^{\circ})=9 \ \mu b/sr.$
337 ^c 4	3/2+&9/2-	2+5	≤0.10,0.33	E(level): doublet. Nuclear structure factors.: first value for $3/2^+$, second for $9/2^-$. $d\sigma/d\Omega(25^\circ)=35 \mu b/sr$; $A_y(25^\circ)=-0.70 9$ for a doublet.
392 ^c 4	5/2+	2	0.28	$d\sigma/d\Omega(25^{\circ})=114 \ \mu b/sr; \ A_{V}(25^{\circ})=+0.35 \ 7.$
442 ^b 4	11/2-	5	1.57	A weak peak for $7/2^+$ member of the $\pi 3/2[411]$ band near this energy is probably obscured the strong peak from $11/2^-$ member of the $\pi 5/2[532]$ band (1979Bu01). $d\sigma/d\Omega(25^\circ)=220~\mu b/sr;~A_v(25^\circ)=+0.31~5.$
571 ^c 4	9/2+&(13/2-)	4+(7)	0.12	E(level): doublet. Nuclear structure factors.: for $9/2^+$; no value listed for $(13/2^-)$. $d\sigma/d\Omega(25^\circ)=24~\mu$ b/sr; $A_y(25^\circ)=-0.16~14$ for doublet.
704 <mark>b</mark> 4	$(15/2^{-})$	(7)		$d\sigma/d\Omega(25^\circ)=23 \mu b/sr.$
806 ^e 4 887 4	$(3/2^+)$	(2)	0.11	$d\sigma/d\Omega(25^{\circ})=37 \mu b/sr; A_{y}(25^{\circ})=-0.35 9.$ $d\sigma/d\Omega(25^{\circ})=17 \mu b/sr; A_{y}(25^{\circ})=-0.02 12.$
1076 <mark>d</mark> 4	1/2+	0	0.19	$d\sigma/d\Omega(25^{\circ})=85 \ \mu b/sr; A_{y}(25^{\circ})=-0.22 \ 7.$
1140 ^d ≈1260	5/2+&(3/2+)	2	0.40	Nuclear structure factors.: for $5/2^+$, no value listed for an uncertain $(3/2^+)$ at ≈ 1140 keV. $d\sigma/d\Omega(25^\circ)=175~\mu b/sr; A_y(25^\circ)=+0.17~5.$ $d\sigma/d\Omega(25^\circ)=18~\mu b/sr; A_y(25^\circ)=0.00~14.$
≈1287 [#]				$d\sigma/d\Omega(25^{\circ})=16 \ \mu b/sr; \ A_{\rm V}(25^{\circ})=-0.08 \ 10.$
≈ 1287 $\approx 1310^{d}$	$(7/2^+)$	(4)	0.32	$d\sigma/d\Omega(25^{\circ})=42 \ \mu b/sr; A_{\rm V}(25^{\circ})=-0.08 \ 10.$
1488 [#]				J^{π} : L+1/2 from $A_{V}(\theta)$.
1635 [#]				$d\sigma/d\Omega(25^{\circ})=38 \ \mu \dot{b}/sr; A_{y}(25^{\circ})=+0.31 \ 7.$ J^{π} : L+1/2 from $A_{y}(\theta)$.
≈1670				$d\sigma/d\Omega(25^\circ)$ =31 μb/sr; A _y (25°)=+0.18 9. $d\sigma/d\Omega(25^\circ)$ ≈30 μb/sr for 1670+1690; A _y (25°)=0.00 10 for
≈1690				1670+1690. d σ /d Ω (25°)≈30 μ b/sr for 1690+1670; A _y (25°)=0.00 10 for 1690+1670.
1765 [#]				J ^π : L+1/2 from A _y (θ). d σ /d Ω (25°)=33 μ b/sr; A _y (25°)=+0.32 11.
≈1803				$d\sigma/d\Omega(25^\circ)$ ≈60 μb/sr for 1803+1825; A _y (25°)=0.00 6 for 1670+1690.
≈1825				$d\sigma/d\Omega(25^{\circ})\approx 30 \ \mu b/sr \text{ for } 1825+1803; \ A_y(25^{\circ})=0.00 \ 10 \text{ for}$

160 Gd(pol t, α) 1979Bu05 (continued)

¹⁵⁹Eu Levels (continued)

E(level) [†]	Comments	
	1825+1803.	
1905	$d\sigma/d\Omega(25^{\circ})=43 \ \mu b/sr; A_{v}(25^{\circ})=-0.05 \ 7.$	
1954	$d\sigma/d\Omega(25^{\circ})=35 \ \mu b/sr; A_{v}(25^{\circ})=+0.07 \ 9.$	
≈2460	J^{π} : L+1/2 from $A_{\nu}(\theta)$.	
	$d\sigma/d\Omega(25^{\circ})\approx 80 \ \mu b/sr; A_{v}(25^{\circ})=+0.05 \ 7.$	

[†] Uncertainties stated by 1979Bu05 as ≤4 keV for levels below ≈1.2 MeV, and larger for levels of higher energies.

[‡] Authors' assignments deduced from cross sections and analyzing powers; these are the same as those in Adopted Levels.

[#] The $\sigma(\theta)$ and $A_y(\theta)$ plots shown in Fig. 7 of 1979Bu05, but no spin-parity assigned.

[@] The L-transfers are not explicitly stated in the tabular data in 1979Bu05, but are implied from the assigned J^{π} values from $\sigma(\theta)$ and analyzing powers, and some of the L-transfers are mentioned by the authors in the text.

[&]amp; Nuclear structure factor= $d\sigma/d\Omega(exp)/[2N\times d\sigma/d\Omega(DWBA)]$; 1979Bu05 mention that uncertainty could be 30-50% due to ambiguities in the choice of optical model parameters. Comparison is made with the theoretical values from Nilsson model.

^a Band(A): $\pi 5/2[413]$.

^b Band(B): $\pi 5/2[532]$.

^c Band(C): π3/2[411].

^d Band(D): $\pi 1/2[420]$.

^e Band(E): $\pi 1/2[411]$.

160 Gd(pol t, α) 1979Bu05

Band(D): *π*1/2[420]

 $(7/2^{+})$ ${\approx}1310$

 $5/2^+ & (3/2^+)$ 1140

1/2+ 1076

Band(E): *π*1/2[411]

 $(3/2^{+})$

Band(B): π5/2[532]

 $(15/2^{-})$ 704

Band(C): *π*3/2[411]

9/2+&(13/2-) $9/2^{+}\&(13/2^{-})$ 571 571

11/2-442

5/2⁺

337

3/2+&9/2-

 $(11/2^+)$ 291

 ${\approx}172$

Band(A): π5/2[413]

337

255

5/2- ${\approx}190$

7/2-

3/2+&9/2-

 $7/2^{+}$

 $9/2^{+}$

5/2⁺

 $^{159}_{63}\mathrm{Eu}_{96}$