$(HI,xn\gamma)$

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 113, 157 (2012)	31-Dec-2010

Additional information 1.

- Data set based largely on the study by 2002Su03, with supplementary information from 2001Li13, 2003Ju02 and 2005Pi21. 2005Pi21 extend data on the members of the α =+1/2 branch of the v5/2[642] up to the (85/2⁺) state. This information is consistent with the data of 2001Li13, who reported information on this band up to the 61/2⁺ state, although the level energies differ systematically, varying from≈1 keV for the 9/2⁺ level to≈8 keV at 61/2⁺. The data of 2003Ju02 extend to an excitation energy of 4539 keV and deal with all of the previously reported bands. They are generally consistent with those of 2002Su03, but include some new γ 's. Where these two data sets differ significantly, this is indicated.
- 2002Su03: ¹⁵⁰Nd(¹³C,4n γ), E(¹³C)=65 MeV. Measured E γ , I γ , $\gamma\gamma$, (particle) γ coin, $\gamma\gamma(\theta)$ (ADO), using an array of 12 Compton-suppressed HPGe detectors and a Si-ball particle filter of 20 detector segments. Deduce B(E1)/B(E2) and B(M1)/B(E2) ratios and band crossings.
- 2001Li13: ¹⁶⁰Gd(³⁷Cl,X γ), deep-inelastic reaction. E(³⁷Cl)=234 MeV. Enriched (98.2% in ¹⁶⁰Gd) target. Measured E γ , $\gamma\gamma$, using the Euroball IV array. Report members of the α =+1/2 ν 5/2[642] band up to the 61/2⁺ level. The evaluator regards this information as being superseded by the more extensive data of 2005Pi21.
- 2003Ju02: ¹⁵⁸Gd(⁷Li,t3n γ), incomplete fusion reaction. E(⁷Li)=56 MeV. Measured E γ , I γ , $\gamma\gamma$ using the GASP array, consisting of 40 Compton-suppressed Ge detectors and an 80-element BGO inner ball in conjunction with the ISIS detector, consisting of 40 Si Δ E-E particle telescopes. Deduce B(E1)/B(E2) and B(M1)/B(E2) ratios and related signature dependence, and a band crossing within the ν 11/2[505] band.
- 2005Pi21: ¹³⁰Te(³⁶S, α 3n γ), E(³⁶S)=170 MeV. Measure E γ , I γ , $\gamma\gamma$ using the Euroball III array consisting of 14 seven-element Cluster detectors, 26 four-element Clover detectors, and 30 single-crystal Ge detectors, (all Compton-suppressed). Report members of the α =+1/2 branch of the ν 5/2[642] band up to the (85⁺) state.

¹⁵⁹Dy Levels

E(level) [†]	J^{π}
0.0 [#]	3/2-
56.626 [@] 8	$5/2^{-}$
136.45 [#] <i>13</i>	7/2-
177.61 ^{&} 13	$5/2^{+}$
208.99 ^a 13	$7/2^{+}$
235.75 [@] 21	9/2-
239.42 ^{&} 13	9/2+
327.63 ^a 22	11/2
352.68 ^b 21	$11/2^{-1}$
360.88 <mark>#</mark> 22	11/2
365.2 ^{&} 4	13/2
497.19 [@] 24	13/2
516.2 [°] 4	13/2
543.0 ^{<i>a</i>} 3	15/2
575.6 ^x 3	17/2
666.7 [#] 3	15/2-
699.5 ^b 3	15/2
831.6 [@] 3	$17/2^{-1}$
860.0 ^{<i>a</i>} 3	19/2
878.6 ^{&} 3	21/2
903.3° 4	17/2
1041.3 # 3	19/2

¹⁵⁹Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
1124.6 ^b 4	$19/2^{-}$	
1227.5 [@] 3	$21/2^{-}$	
1272.4 ^{&} 4	$25/2^+$	
1273.6 ^{<i>a</i>} 4	$23/2^{+}$	
1363.8 ^c 4	$21/2^{-}$	
1470.4 [#] 3	$23/2^{-}$	
1617.8 ⁰ 4	$23/2^{-}$	
1672.3 [@] 4	$25/2^{-}$	
1749.7 ^{&} 4	$29/2^+$	
$1//4.8^{\circ} 4$	21/2	
1005.2 J	23/2	
$2157.6^{@} 4$	29/2-	
2157.0° $+$	27/2	
2302 5 ^{&} 5	$\frac{27}{2}$	
2353.9^{a} 5	$31/2^+$	
2445.3 [#] 4	$31/2^{-}$	
2452.7 [°] 5	$29/2^{-}$	
2681.8 [@] 5	33/2-	
2746.6 ⁶ 5	31/2-	From 2003Ju02. 2002Su03 do not report this level.
2922.0 6	37/2+	
2985.5# 5	35/2-	
3001.74° 7	35/2+	From 2003 Ju02 2002 Su03 do not report this level
$3043.7 \ 3$	33/2	Trom 2003/002. 2002/2003 do not report uns rever.
3230.5 7 $3342.3^{b}5$	35/2-	From 2003 Ju02 2002 Su03 do not report this level
3567.9 [#] 6	$39/2^{-}$	110hi 2003/002. 20025/005 do not report una level.
3599 5 ^{&} 6	$41/2^+$	
3709.0 ^{<i>a</i>} 7	39/2+	
3869.0 [@] 4	$41/2^{-}$	
4201.1 [#] 6	$43/2^{-}$	
4326.5 ^{&} 7	$45/2^{+}$	
4466.5 ^{<i>a</i>} 8	$43/2^{+}$	
4540.0 ^{^w} 10	45/2-	
4889.1 [#] 6	47/2-	
5095.3° 7	49/2+	
5263.4 [©] 1	$49/2^{-}$	
5631.9 [#] 7	47/2 51/2 ⁻	
5808 0 ^{&} 7	53/2 ⁺	
$60380^{@}12$	53/2-	
$6426.4^{\#}$ 7	55/2-	
6742.1 ^{&} 7	57/2+	
6861.1 [@] 12	57/2-	
7623.3 ^{&} 8	$61/2^+$	Level shown as questionable by 2001Li13, but confirmed by 2002Su03 and 2005Pi21.
8546 ^{&}	65/2+	

¹⁵⁹Dy Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$
9514 <mark>&</mark>	69/2+
10533 <mark>&</mark>	$73/2^{+}$
11603 <mark>&</mark>	$77/2^{+}$
12727 <mark>&</mark>	$81/2^{+}$
13897? <mark>&</mark>	$(85/2^+)$

[†] From least-squares fit to γ energies, with energies from ¹⁵⁹Dy Adopted γ radiations included for six cases where they are not given by the authors or there are other problems.

[‡] From the adopted values. For the high-spin states, those values are from this source data set.

[#] Band(A): $K^{\pi}=3/2^{-}$, v3/2[521] band, $\alpha=-1/2$. Band crossing by a pair of AB neutrons occurs near an angular frequency of 0.26 MeV.

^(a) Band(a): $K^{\pi}=3/2^{-}$, v3/2[521] band, $\alpha=+1/2$. Band crossing by a pair of AB neutrons occurs near an angular frequency of 0.26 MeV.

[&] Band(B): $K^{\pi} = 5/2^+$, v5/2[642] band, $\alpha = +1/2$.

^{*a*} Band(b): $K^{\pi} = 5/2^+$, v5/2[642] band, $\alpha = -1/2$.

^b Band(C): $K^{\pi} = 11/2^{-}$, $\nu 11/2[505]$ band, $\alpha = -1/2$.

^c Band(c): $K^{\pi} = 11/2^{-}$, v11/2[505] band, $\alpha = +1/2$.

$\gamma(^{159}\mathrm{Dy})$

2002Su03 define an intensity ratio, R(ADO), where R(ADO)=(I(G₁ at $32^{\circ},G_2))/(I(G_1 at 90^{\circ},G_2))$, where the G₂ gate is from all other detectors. They state that their ADO ratios are 1.5 for stretched quadrupole transitions and 0.7 for stretched dipole transitions.

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
30.427 [‡] <i>13</i>		239.42	9/2+	208.99	7/2+	
31.378 [‡] 8		208.99	$7/2^{+}$	177.61	$5/2^{+}$	E_{γ} : 2003Ju02 report $E\gamma$ =33.5, but this leads to a poor energy fit.
(32.8)		575.6	$17/2^{+}$	543.0	$15/2^{+}$,
(37.6)		365.2	$13/2^{+}$	327.63	$11/2^{+}$	
56.626 [‡] 8		56.626	5/2-	0.0	3/2-	
62.0 [‡]		239.42	9/2+	177.61	5/2+	E_{γ} : 2003Ju02 report E_{γ} =64.4, but this leads to a poor energy fit.
72.546 [‡] 4		208.99	$7/2^{+}$	136.45	$7/2^{-}$	
79.8 2	4.2 6	136.45	7/2-	56.626	5/2-	
88.1 2	5.7 5	327.63	$11/2^{+}$	239.42	$9/2^{+}$	
99.6 5	7.6 29	235.75	9/2-	136.45	7/2-	I_{γ} : From 2003Ju02. From the γ-branching data of 2002Su03, I_{γ} =1.7 6 is computed, but this disagrees with the data from ε
						decay.
102.8 2	3.7 3	239.42	9/2+	136.45	7/2-	
113.3 [‡] 2		352.68	$11/2^{-}$	239.42	9/2+	
116.9 [‡] 2		352.68	$11/2^{-}$	235.75	$9/2^{-}$	
119.2 5	2.5 3	327.63	11/2+	208.99	7/2+	I _{γ} : From 2003Ju02. From the γ -branching data of 2002Su03, I γ =0.9 <i>I</i> is computed.
120.8 5	36 <i>3</i>	177.61	$5/2^{+}$	56.626	$5/2^{-}$, <u> </u>
125.3 5	12.6 24	360.88	11/2-	235.75	9/2-	I _{γ} : From 2003Ju02. From the γ -branching data of 2002Su03, I γ =7.9 6 is computed.
125.7 5	24 2	365.2	$13/2^{+}$	239.42	9/2+	, <u>,</u>
135.7 5	4.0 3	497.19	$13/2^{-}$	360.88	$11/2^{-}$	

γ (¹⁵⁹Dy) (continued)

E_{γ}^{\dagger}	I_{γ} #	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [@]	Comments
137.2 5	3.9 5	136.45	$7/2^{-}$	0.0	$3/2^{-}$		
152.3 2		208.99	7/2+	56.626	5/2-		
162.1 5		516.2	$13/2^{-}$	352.68	$11/2^{-}$	D	Mult.: R(ADO)=0.5 2.
164.9 5	2.4 2	831.6	17/2-	666.7	15/2-		I_{γ} : From the γ -branching data of 2003Ju02, $I\gamma$ =3.7 7 is computed.
169.5 2	5.4 10	666.7	15/2-	497.19	13/2-		I _{γ} : From 2003Ju02. From the γ -branching data of 2002Su03, I γ =2.7 3 is computed.
177.6 5	8.0 7	177.61	$5/2^{+}$	0.0	$3/2^{-}$		
177.7 5	23 3	543.0	15/2+	365.2	13/2+		I _{γ} : From 2003Ju02. From the γ -branching data of 2002Su03, I γ =8.5 7 is computed.
179.1 5	3.6 13	235.75	9/2-	56.626	$5/2^{-}$		
182.9 2	10.0 12	699.5	$15/2^{-}$	516.2	$13/2^{-}$		
186.2 2	4.0 3	1227.5	$21/2^{-}$	1041.3	$19/2^{-}$		
202.2 5	1.2 3	1672.3	$25/2^{-}$	1470.4	$23/2^{-}$		I_{γ} : 2003Ju02 report this γ but do not list an I_{γ} value for it.
203.0 5	8.2 7	903.3	$17/2^{-}$	699.5	$15/2^{-}$		
209.6 5	3.9 8	1041.3	19/2-	831.6	17/2-	D	I _{γ} : From 2003Ju02. From the γ -branching data of 2002Su03, I γ =2.0 4 is computed.
210.2.5	60 1	575 6	17/2+	265 2	12/2+		Mult.: $R(ADO)=0.5 2$.
210.5 5	00 4	5/5.0	$1/2^{+}$ $15/2^{+}$	303.2	$\frac{13}{2}$		
213.2 3	24 2	343.0	$\frac{13}{2^{-1}}$	327.03	$11/2^{-1}$		E constant at the 2002 L-02
217.9.5	8.00	2157.0	$\frac{29}{2}$	1940.5	27/2	D	E_{γ} : γ not reported by 2005Ju02. Mult. $P(ADO)=0.8.2$
221.1 2	9.00	260.99	19/2	905.5	1//2	D	Mult.: $R(ADO)=0.8.5$.
224.4 2	10 2	300.88	$\frac{11}{2}$	130.45	1/2		E constant and her 2002 Le02
230.3 3	2.0.5	2081.8	33/2 21/2-	2445.5	$\frac{31}{2}$	D	E_{γ} : γ not reported by 2005Ju02.
238.8 3	10.1 9	1303.8	21/2	1124.0	19/2	D	Mult.: $R(ADO)=0.82$.
242.9 2	2.8 3	14/0.4	23/2	1227.5	21/2		
254.1 2	5.4 0	1017.8	$\frac{23}{2}$	1363.8	21/2		
261.5 2	6.0.5	497.19	13/2	235.75	9/2		
267.3 5	2.3 3	1940.5	27/2	16/2.3	25/2		
268.3 5	4.1.5	1885.2	25/2	1617.8	23/2		
219.5 2	3.5 4	2164.6	21/2	1885.2	25/2		I_{γ} : From the γ -branching data of 2003Ju02, $I_{\gamma}=2.5$ 6 is computed.
00440	7 4 10	960.0	10/2+	575 (17/0+	D	Mult.: $R(ADO)=1.03$.
284.4 2	7.4 10	800.0	19/2	575.0	17/2	D	I_{γ} : From 2005/002. From the γ -branching data of 2002Su03, I_{γ} =4.6 5 is computed.
00775	151	2445.2	21/2-	2157 (20/2-		Mult.: $R(ADO) = 0.40 II.$
287.75	1.5 4	2445.3	31/2	2157.6	29/2		Mult.: $R(ADO)=1.04$.
288.0 5	2.8 3	2452.7	29/2	2164.6	27/2	(17.1.)	
288.6 1	0.82 4	831.6	1 //2	543.0	15/21	[E1]	E_{γ} : From 2003Ju02. γ not reported by 2002Su03. I _{γ} : Computed from the γ -branching data of 2003Ju02, adjusted to the intensity scale of 2002Su03.
293.9 1		2746.6	$31/2^{-}$	2452.7	$29/2^{-}$		E_{γ} : From 2003Ju02. 2002Su03 do not report this γ .
297.1 1		3043.7	33/2-	2746.6	$31/2^{-}$		E_{γ} : From 2003Ju02, 2002Su03 do not report this γ .
298.6 1		3342.3	35/2-	3043.7	33/2-		E_{γ} : From 2003Ju02. Computed from the level-energy difference. The authors report E_{γ} =303.2, but this leads to a poor energy fit. 2002Su03 do not report this γ .
303.0 1	96 7	878.6	$21/2^{+}$	575.6	$17/2^{+}$		
306.4 5	14.8 13	666.7	$15/2^{-}$	360.88	$11/2^{-}$		Mult.: R(ADO)=2.5 5.
317.0 2	28 2	860.0	$19/2^{+}$	543.0	$15/2^{+}$		
327.9 1		2681.8	33/2-	2353.9	$31/2^+$	[E1]	I_{γ} : 2003Ju02 report this γ but do not list an I_{γ} value for it.
334.4 2	12.0 10	831.6	$17/2^{-}$	497.19	$13/2^{-}$	ĨE2Ì	
347.0 2	3.7 9	699.5	15/2-	352.68	$11/2^{-}$		I _{γ} : From the γ -branching data of 2003Ju02, I γ =1.4 3 is computed.
367.5 1	2.6 4	1227.5	21/2-	860.0	19/2+	[E1]	E_{γ} : From 2003Ju02. γ not reported by 2002Su03. I _γ : Computed from the γ-branching data of 2003Ju02, adjusted to the intensity scale of 2002Su03.

Continued on next page (footnotes at end of table)

$\gamma(^{159}\text{Dy})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [@]	Comments
374.6.2	11.2.10	1041.3	$19/2^{-}$	666.7 15/2-	E2	Mult.: $R(ADO)=1.7.5$
382.8 1	1.9 6	2157.6	$\frac{29}{2}$	1774.8 27/2+	IE11	E_{α} : From 2003Ju02, γ not reported by 2002Su03.
					[]	L_{χ} : Computed from the γ -branching data of 2003Ju02.
						adjusted to the intensity scale of 2002Su03.
387 3 2	224	903 3	$17/2^{-}$	516.2 13/2-		L: From 20031u02 From the y-branching data of 2002Su03
501.5 2	2.2 /	200.0	17/2	510.2 15/2		$I_{\gamma} = 6.6.8$ is computed
393 7 5	100.7	1272.4	$25/2^{+}$	878 6 21/2+	F2	$Mult: R(\Delta DO) = 1.6.2$
394.0.5	67.8	1272.1	$23/2^+$	878.6 21/2+	112	M(1,0,0) = 1.02.
395.0.5	22.2	1275.0	$\frac{23}{2}$	831.6 17/2-	F2	Mult $\cdot R(\Delta D \Omega) = 1.3.2$
308 7 1	222	1672.3	25/2-	1273 6 23/2+	IE11	F : From $2003 \text{ Lu} 02$ or not reported by $2002 \text{ Su} 03$
590.7 1	2.7 0	1072.5	23/2	1275.0 25/2		L_{γ} . From 20051002. Y not reported by 20025005.
						r_{γ} . Computed from the γ -branching data of 2005002,
11362	24.2	1273.6	23/2+	860.0 10/2+		adjusted to the intensity scale of 20025005.
425.1.5	548	11275.0	$\frac{23}{2}$ 10/2 ⁻	$600.5 15/2^{-1}$		$Mult \cdot P(ADO) = 30.0$
423.1 3	10.9.0	1124.0	19/2	$1041.2 10/2^{-1}$	E2	Mult., $R(ADO) = 3.0.9$. Mult., $P(ADO) = 1.5.2$
428.7 3	10.8 9	1470.4	25/2	1041.3 19/2 $1227.5 21/2^{-1}$		Mult.: $R(ADO)=1.5.5$.
444.9 2	20 2	10/2.5	23/2	$1227.3 \ 21/2$	EΖ	Mult.: $R(ADO)=1.5 2$.
400.0 2	9.0 10	1303.8	$\frac{21}{2}$	903.3 17/2	[17:11]	E . Erren 20021-02
403./ 1	1.2.3	1041.5	19/2	5/5.0 1//2	[EI]	E_{γ} : From 2005Ju02. γ not reported by 2002Su03.
						I_{γ} : Computed from the γ -branching data of 2003Ju02,
470.0.0	10.0.10	1040 5	07/0-	1470 4 02/0-	50	adjusted to the intensity scale of 20025003.
470.22	10.8 10	1940.5	21/2	14/0.4 23/2	E2	I_{γ} : From the γ -branching data of 2003Ju02, $I_{\gamma}=21.5$ is
						computed.
	00 f					Mult.: $R(ADO)=1.9$ S.
477.4 2	88.6	1749.7	29/2+	1272.4 25/2*	E2	Mult.: $R(ADO)=1.6$ 2.
485.3 2	24.2	2157.6	29/2-	16/2.3 25/2-	E2	Mult.: $R(ADO)=2.1$ 4.
493.1 2	6.4 8	1617.8	23/2-	1124.6 19/2-		Mult.: $R(ADO)=1.8$ 6.
501.2 5	24 2	1774.8	$27/2^+$	1273.6 23/2+		
504.8 5	14.0 12	2445.3	$31/2^{-}$	1940.5 27/2-	E2	Mult.: $R(ADO)=1.4$ 4.
521.8 5	7.6 9	1885.2	$25/2^{-}$	1363.8 21/2-	E2	Mult.: $R(ADO) = 1.85$.
524.2 5	28 2	2681.8	33/2-	2157.6 29/2-	E2	Mult.: $R(ADO)=1.4$ 2.
540.2 2	15.6 12	2985.5	35/2-	2445.3 31/2-	E2	Mult.: $R(ADO)=2.2$ 7.
546.6 2	5.7 7	2164.6	27/2-	1617.8 23/2-	E2	Mult.: $R(ADO)=2.1 \ 10.$
552.7 2	57 4	2302.5	33/2+	1749.7 29/2+	E2	Mult.: $R(ADO)=1.8 2$.
562.6 2	4.0 5	4889.1	$47/2^{-}$	4326.5 45/2+	[E1]	
567.8 5	9.4 9	2452.7	29/2-	$1885.2 \ 25/2^{-1}$		
568.7 5	24 2	3250.5	37/2-	2681.8 33/2-	E2	Mult.: $R(ADO)=1.6 3$.
579.0 5	21 2	2353.9	$31/2^{+}$	1774.8 27/2+	E2	Mult.: $R(ADO)=2.05$.
582.0 <i>1</i>	8.3 10	2746.6	$31/2^{-}$	2164.6 27/2-		E_{γ} : From 2003Ju02. 2002Su03 do not report this γ .
						I_{γ} : Value from 2003Ju02. It is based on their intensity scale,
						which differs from that of 2002Su03, the one used here, and
						thus is not directly comparable to the other listed I γ values.
582.6 5	15.2 <i>13</i>	3567.9	39/2-	2985.5 35/2-	E2	Mult.: $R(ADO)=1.4$ 3.
591.1 <i>1</i>	6.0 8	3043.7	$33/2^{-}$	2452.7 29/2-		E_{γ} : From 2003Ju02. 2002Su03 do not report this γ .
						I_{γ} : Value from 2003Ju02. It is based on their intensity scale,
						which differs from that of 2002Su03, the one used here, and
						thus is not directly comparable to the other listed I γ values.
592.0 2	4.0 4	1470.4	$23/2^{-}$	878.6 21/2+	[E1]	Mult.: R(ADO)=0.9 3.
595.7 <i>1</i>		3342.3	$35/2^{-}$	2746.6 31/2-		E_{γ} : From 2003Ju02. 2002Su03 do not report this γ .
601.4 2	9.4 8	4201.1	$43/2^{-}$	3599.5 41/2+	[E1]	E_{γ} : γ not reported by 2003Ju02.
618.5 5	18 2	3869.0	$41/2^{-}$	3250.5 37/2-	E2	Mult.: R(ADO)=1.6 4.
619.3 5	48 <i>3</i>	2922.0	$37/2^{+}$	2302.5 33/2+	E2	Mult.: R(ADO)=1.41 14.
633.4 2	12.0 11	4201.1	$43/2^{-}$	3567.9 39/2-	E2	Mult.: R(ADO)=1.6 6.
647.0 5	6.0 5	3567.9	39/2-	2922.0 37/2+	[E1]	Mult.: R(ADO)=0.8 3.
647.8 5	12.0 10	3001.7	$35/2^+$	2353.9 31/2+		
669.1 5	6.7 7	1940.5	$27/2^{-}$	1272.4 25/2+	[E1]	Mult.: R(ADO)=0.6 2.
671.0 5	12.0 9	4540.0	$45/2^{-}$	3869.0 41/2-	E2	Mult.: R(ADO)=1.4 2.

Continued on next page (footnotes at end of table)

$\gamma(^{159}\text{Dy})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	Comments
677.4 2	25 2	3599.5	$41/2^{+}$	2922.0	$37/2^{+}$	E2	Mult.: R(ADO)=1.5 2.
682.7 5	6.3 6	2985.5	35/2-	2302.5	$33/2^{+}$	[E1]	Mult.: R(ADO)=0.8 4.
688.0 2	10.0 7	4889.1	$47/2^{-}$	4201.1	$43/2^{-}$	E2	Mult.: R(ADO)=2.3 6.
695.7 2	6.4 6	2445.3	$31/2^{-}$	1749.7	$29/2^{+}$	[E1]	Mult.: R(ADO)=0.2 2.
707.3 2	8.9 8	3709.0	$39/2^{+}$	3001.7	$35/2^{+}$		Mult.: R(ADO)=2.8 14.
723.4 5	6.5 5	5263.4	$49/2^{-}$	4540.0	$45/2^{-}$	E2	Mult.: R(ADO)=1.4 2.
727.0 5	16.1 12	4326.5	$45/2^{+}$	3599.5	$41/2^{+}$	E2	Mult.: R(ADO)=1.6 2.
742.8 2	4.8 4	5631.9	$51/2^{-}$	4889.1	$47/2^{-}$		
757.5 2	3.8 5	4466.5	$43/2^{+}$	3709.0	39/2+		
768.8 2	9.0 7	5095.3	49/2+	4326.5	$45/2^{+}$	E2	Mult.: R(ADO)=1.5 2.
774.6 2	5.6 4	6038.0	53/2-	5263.4	49/2-		Mult.: R(ADO)=1.0 2.
794.5 2	4.0 4	6426.4	$55/2^{-}$	5631.9	$51/2^{-}$		
803.6 2	5.6 5	5898.9	53/2+	5095.3	$49/2^{+}$	E2	Mult.: R(ADO)=1.8 4.
813.8 2	2.0 3	5280.3	$47/2^{+}$	4466.5	$43/2^{+}$		
823.1 2	3.2 3	6861.1	$57/2^{-}$	6038.0	$53/2^{-}$		
843.2 2	5.5 5	6742.1	$57/2^{+}$	5898.9	$53/2^{+}$		
881.2 2	2.0 2	7623.3	$61/2^+$	6742.1	$57/2^{+}$		
923		8546	$65/2^+$	7623.3	$61/2^+$		
968		9514	$69/2^+$	8546	$65/2^+$		
1019		10533	73/2+	9514	$69/2^+$		
1070		11603	77/2+	10533	$73/2^{+}$		
1124		12727	$81/2^{+}$	11603	$77/2^{+}$		
1170 <mark>&</mark>		13897?	$(85/2^+)$	12727	$81/2^{+}$		

[†] 2002Su03 state that the "Uncertainties in γ -ray energies vary from 0.1 to 1.0 keV depending on the extent to which peaks are overlapping". Based on this comment, the evaluator has assigned the uncertainties as follows: 0.5 keV for γ 's separated by less than 3 keV below 300 keV and less than 5 keV above 300, and 0.2 keV for all larger separations.

[‡] Value from the Adopted Gammas. See the comment on the level energies.

[#] Unless noted otherwise, data are from 2002Su03. For several levels, the γ -branching reported by 2003Ju02 differs from those listed here. In these instances, the I γ value for the weaker transition deduced from the γ -branching of 2003Ju02 is given as a comment to give an indication of the difference.

^(a) 2002Su03 and 2003Ju02 do not give γ multipolarities, although they can be deduced from their decay schemes. From their analysis, they seem to take quadrupole transitions to be E2 and dipole transitions to be E1 or M1, depending on whether they connect bands of opposite or of the same parity, respectively.

[&] Placement of transition in the level scheme is uncertain.

7

$(HI,xn\gamma)$

Legend

 $^{159}_{66}\text{Dy}_{93}$

<u>(HI,xnγ)</u>

¹⁵⁹₆₆Dy₉₃

$(HI,xn\gamma)$

¹⁵⁹₆₆Dy₉₃