#### **Adopted Levels, Gammas**

|                 | History              | 7        |                        |  |
|-----------------|----------------------|----------|------------------------|--|
| Туре            | Author               | Citation | Literature Cutoff Date |  |
| Full Evaluation | B. Singh and N. Nica | ENSDF    | 31-Dec-2017            |  |

S(n)=12234 (syst) 500; S(p)=1328 (syst) 335;  $Q(\alpha)=6613$  3  $Q(\varepsilon)=7534 \text{ (syst) } 358; S(2p)=394 \text{ (syst) } 335; Q(\varepsilon p)=7982 \text{ (syst) } 358$ 2017Wa10

## 158W Levels

With S(2p)(158W)=390 340 (syst,2017Wa10), all the observed excited states are expected to be unbound towards two-proton emission, but no evidence has been found for this decay mode for the decay of the (8<sup>+</sup>) isomer.

### Cross Reference (XREF) Flags

 $^{159}\mathrm{Re}$  p decay (20  $\mu\mathrm{s})$  $^{162}$ Os  $\alpha$  decay (2.1 ms) В  $^{102}$ Pd( $^{58}$ Ni,2n $\gamma$ )

| E(level) <sup>†</sup>    | $J^{\pi \ddagger}$ | T <sub>1/2</sub>   | XREF | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------|--------------------|--------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                      | 0+                 | 1.25 ms <i>21</i>  | ABC  | $\%\alpha$ =100 $T_{1/2}$ : weighted average of 0.9 ms 3 (1989Ho12), 0.9 ms +4-3 (1996Pa01), and 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                          |                    |                    |      | ms 2 (2000Ma95), all from $^{158}$ W $\alpha$ decay.<br>% $\alpha$ : from gross beta theory (1973Ta30), $T_{1/2}(\varepsilon+\beta+)\approx 2$ seconds, so $\%\varepsilon+\%\beta+\approx 0.05$ . Similarly, 1997Mo25 give 0.33 s which would correspond to $\%\varepsilon+\%\beta+\approx 0.3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 913 <sup>#</sup> &       | $(2^{+})$          |                    | C    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1679 <mark>#&amp;</mark> | $(4^{+})$          |                    | C    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1888 <sup>a</sup> 8      | (8+)               | 0.143 ms <i>19</i> | С    | <ul> <li>%α≈100; %2p≤0.17 (2017Jo09); %IT=?</li> <li>%2p branch at 90% confidence level, corresponding to partial T<sub>1/2</sub>≥85 ms for 2p-decay mode (2017Jo09).</li> <li>Spin-trap isomer, with configuration=νf<sub>7/2</sub>⊗νh<sub>9/2</sub> (2017Jo09).</li> <li>E(level): from 2000Ma95 based on α decay of this level with E<sub>α</sub>=8286 7 and the assumption that this α branch populates the daughter ground state. This level was earlier proposed by 1989Ho12 with only slightly different energies.</li> <li>J<sup>π</sup>: proposed by 1989Ho12 and 2000Ma95, based on analogy with a supposedly similar situation in <sup>156</sup>Hf. The hindrance factor for the implied resulting ΔL=8 α transition is consistent with those in several near-lying nuclides (1996Pa01).</li> <li>T<sub>1/2</sub>: weighted average of 0.16 ms 5 (1996Pa01) and 0.14 ms 2 (2000Ma95); other: 0.01 ms &lt; T<sub>1/2</sub> &lt; 1 ms (1989Ho12).</li> </ul> |
| 2048 <mark>#&amp;</mark> | $(6^+)$            |                    | C    | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2846 <sup>@</sup> a      | $(10^{+})$         |                    | С    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3690 <sup>@</sup> a      | $(12^{+})$         |                    | С    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4165 <sup>@</sup> a      | $(14^{+})$         |                    | C    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4368 <sup>@</sup> a      | $(16^{+})$         |                    | C    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

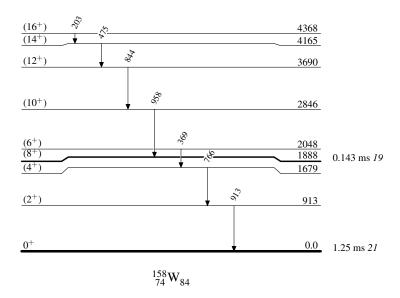
 $<sup>^\</sup>dagger$  From Ey values, except that the isomer energy is based on observed  ${\rm E}\alpha$  from its decay.

<sup>‡</sup> From 2017Jo09, based on yrast sequences built on g.s. and the  $(8^+)$  isomer, and shell-model configurations. # Proposed configuration= $\nu f_{7/2}^2$  (2017Jo09).

<sup>&</sup>lt;sup>@</sup> Proposed configuration= $\pi h_{11/2}^{2} \otimes v f_{7/2}^{2}$ , based on shell-model calculations (2017Jo09).

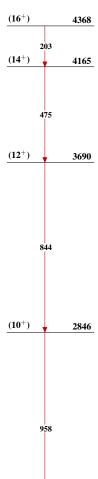
<sup>&</sup>amp; Seq.(A):  $\gamma$  cascade based on g.s.

<sup>&</sup>lt;sup>a</sup> Seq.(B):  $\gamma$  cascade based on (8<sup>+</sup>) isomer.

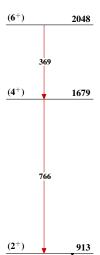

## Adopted Levels, Gammas (continued)

# $\gamma$ (158W)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}$ | $\mathbf{E}_f$ | $\mathbf{J}_f^{\pi}$ |
|--------------|----------------------|--------------|----------------|----------------------|
| 913          | (2+)                 | 913          | 0.0            | 0+                   |
| 1679         | $(4^{+})$            | 766          | 913            | $(2^{+})$            |
| 2048         | $(6^{+})$            | 369          | 1679           | $(4^{+})$            |
| 2846         | $(10^+)$             | 958          | 1888           | $(8^{+})$            |
| 3690         | $(12^{+})$           | 844          | 2846           | $(10^{+})$           |
| 4165         | $(14^{+})$           | 475          | 3690           | $(12^{+})$           |
| 4368         | $(16^{+})$           | 203          | 4165           | $(14^{+})$           |


### **Adopted Levels, Gammas**

## Level Scheme




## **Adopted Levels, Gammas**





Seq.(A): γ cascade based on g.s



$$^{158}_{\ 74}W_{84}$$

 $(8^{+})$ 

1888