¹⁶¹**Dy**(**p**,*α*) **1989Bu03**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	N. Nica	NDS 141, 1 (2017)	1-Feb-2017					

¹⁵⁸Tb Levels

 $J^{\pi}(^{161}Dy)=5/2^+.$

 (p,α) reaction with E(p)=17 MeV, measured $\alpha(\theta)$ in magnetic spectrograph with FWHM $\approx 16 \text{ keV}$ (1989Bu03). Other: 1984Bu30.

$E(level)^{\dagger}$	$J^{\pi \ddagger}$	$d\sigma/d\omega(\mu b/sr)^{\#}$	E(level) [†]	$J^{\pi \ddagger}$	$d\sigma/d\omega(\mu b/sr)^{\#}$
55	4+	3.8	665	7-	2.2
127	5+	3.2	693		0.6
180	1+	1.2	737	(4^{-})	2.0
208	$2^+ \& 6^+$	2.8	759	8-	0.9
240	3+	2.2	780	(3^{-})	0.4
298	4+	1.5	805		0.9
322	7+	0.3	837		0.3
362	5+	0.6	859		0.5
445	8+ & 6+	0.4	879	(6 ⁻)	0.6
484		0.5	891	(5^{-})	1.0
501	5-	1.1	916		0.7
536		0.2	943		0.5
556		0.1	963		0.3
587	6-	2.0	998		0.9
613		0.9	1138		1.1
≈650		0.4			

 † Energies are reported relative to the 55-keV level.

[‡] J^{π} and band assignments are from authors (1989Bu03) and are based on the characteristic pattern of cross sections among rotational-band members ("fingerprint") based on Nilsson configurations, and on angular distributions and comparison of measured calculated cross sections for (d,t), (³He, α), and (p, α) reactions. See ¹⁵⁸Tb Adopted Levels for band assignments and configurations.

[#] Cross section for (p,α) reaction at 15°.