¹⁵⁸Tb IT decay (0.40 ms) 1984Bu30,1961Kr01

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 141, 1 (2017)	1-Feb-2017

Parent: ¹⁵⁸Tb: E=388.4; $J^{\pi}=7^-$; $T_{1/2}=0.40$ ms 4; %IT decay=100.0 Activity produced by ¹⁵⁹Tb(γ ,n) with bremsstrahlung source (1961Kr01,1967Hi08,1968Ga17) and by ¹⁵⁴Sm(⁷Li,3n) with E=27 MeV (1984Bu30).

¹⁵⁸Tb Levels

Additional information 1.

E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\ddagger}$	Comments
0.0#	3-		Configuration= $((\pi \ 3/2(411)) + (\nu \ 3/2(521)))$ (1984BU30).
55.04 [@] 5	4+		Configuration= $((\pi 3/2(411))+(\nu 5/2(642)))$ (1984BU30).
128.24 [@] 7	5+		
217.31 [@] 8	6^{+}		
322.64 [@] 8	7+		
388.39 ^{&} 8	7-	0.40 ms 4	Configuration= $((\pi 3/2(411))+(\nu 11/2(505)))$ (1984BU30).
† From ¹⁵⁸	³ Tb Ad	dopted Levels.	
‡ From 19	61Kr0	1.	

[#] Band(A): $K^{\pi}=3^{-}$ band.

[@] Band(B): $K^{\pi}=4^+$ band.

& Band(C): $K^{\pi}=7^{-}$ band.

$\gamma(^{158}\text{Tb})$

I γ normalization: calculated to give an average of 100% decay through each of six planes in the scheme. This gives 108% from the isomer and 92% into the ground state. Small M2 admixtures to the 66 E1 γ depopulating the isomer or to the 55 E1 γ populating the g.s. can improve the intensity balance at these levels. Intensity balances within the scheme depend on the unknown $\delta(73)$ and $\delta(89)$ values.

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	α [@]	Comments
55.04 5	75 2	55.04	4+	0.0 3-	E1	1.439	α (K)=1.177 <i>17</i> ; α (L)=0.206 <i>3</i> ; α (M)=0.0450 <i>7</i> α (N)=0.01011 <i>15</i> ; α (O)=0.001402 <i>20</i> ; α (P)=6.08×10 ⁻⁵ <i>9</i>
65.76 5	56 2	388.39	7-	322.64 7+	E1	0.913	α (K)=0.754 <i>11</i> ; α (L)=0.1247 <i>18</i> ; α (M)=0.0272 <i>4</i> α (N)=0.00614 <i>9</i> ; α (O)=0.000865 <i>13</i> ; α (P)=3.95×10 ⁻⁵ <i>6</i>
73.21 5	24 2	128.24	5+	55.04 4+	[M1+E2]	7.0 16	$\alpha(K)=3.4$ 12; $\alpha(L)=2.7$ 21; $\alpha(M)=0.65$ 51 $\alpha(N)=0.15$ 12; $\alpha(O)=0.019$ 14; $\alpha(P)=2.3\times10^{-4}$ 12 δ,α : If one requires an intensity balance at the 55 level and assigns a 10% uncertainty to the I _y values, one can deduce $\alpha(73)=5.8$ 10 and then $\delta < 0.8$.
89.08 5	34 2	217.31	6+	128.24 5+	[M1+E2]	3.5 5	α (K)=2.05 54; α (L)=1.15 78; α (M)=0.27 19 α (N)=0.061 42; α (O)=0.0081 52; α (P)=1.34×10 ⁻⁴ 59
105.33 5	28 2	322.64	7+	217.31 6+	[M1+E2]	2.02 14	α (K)=1.3 3; α (L)=0.56 33; α (M)=0.131 81 α (N)=0.030 18; α (O)=0.0040 22; α (P)=8.4×10 ⁻⁵ 35
162.22 10	15 2	217.31	6+	55.04 4+	[E2]	0.466	$\alpha(K)=0.293 5; \alpha(L)=0.1334 19; \alpha(M)=0.0313 5$

¹⁵⁸**Tb IT decay (0.40 ms)** 1984Bu30,1961Kr01 (continued)

$\gamma(^{158}\text{Tb})$ (continued)

E_{γ}^{\dagger}	I_{γ} ^{‡&}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α [@]	Comments
171.07 5	100 2	388.39	7-	217.31	6+	[E1]	0.0711	α (N)=0.00704 <i>10</i> ; α (O)=0.000939 <i>14</i> ; α (P)=1.594×10 ⁻⁵ <i>23</i> α (K)=0.0600 <i>9</i> ; α (L)=0.00870 <i>13</i> ; α (M)=0.00189 <i>3</i> α (N)=0.000432 6: α (O)=6 40×10 ⁻⁵ 0: α (P)=3.58×10 ⁻⁶ 5
194.41 5	37 2	322.64	7+	128.24	5+	[E2]	0.252	$\alpha(K) = 0.1707 \ 24; \ \alpha(L) = 0.0628 \ 9; \ \alpha(M) = 0.01462 \ 21 \ \alpha(N) = 0.00330 \ 5; \ \alpha(O) = 0.000446 \ 7; \ \alpha(P) = 9.69 \times 10^{-6} \ 14$

[†] From 1984Bu30, no uncertainties given.

[‡] From 1984Bu30, no uncertainties given; other: 1968Ga17.

[#] From α deduced from intensity balances (1984Bu30) or from adopted J^{π} assignments. [@] Additional information 2. [&] For absolute intensity per 100 decays, multiply by 0.504 *10*.

¹⁵⁸Tb IT decay (0.40 ms) 1984Bu30,1961Kr01

¹⁵⁸₆₅Tb₉₃

