Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 141, 1 (2017)	1-Feb-2017

 $Q(\beta^{-}) = -7534$ (syst) 358; S(n) = 9645 (syst) 247; S(p) = -448 13; $Q(\alpha) = 6124$ 4 2017Wa10 Q(\varepsilon)=10936 (syst) 197; S(2n)=21448 (syst) 247; S(2p)=2045 13; Q(\varepsilon)=7985 (syst) 196 2017Wa10 Additional information 1.

¹⁵⁸Ta Levels

Cross Reference (XREF) Flags

- ^{158}Ta IT decay:6.1 μs A
- 162 Re α decay (107 ms) В
- 162 Re α decay (77 ms) С D
 - 102 Pd(58 Ni,pn γ)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	(2 ⁻)	55 ms 15	В	$%\alpha \approx 91$; %ε+%β ⁺ ≈9 J ^π : From 1997Da07 and based on suggested series of α branches between (2 ⁻) levels from ¹⁶⁶ Ir to ¹⁵⁴ Lu. T _{1/2} : From consideration of 46 ms 4 (1996Pa01) and 72 ms 12 (1997Da07). %α: From gross beta-decay theory (1997Mo25), T _{1/2} for the ε+β+ decay is ≈ 0.61 s
141 9	(9 ⁺)	36.7 ms 15	A CD	$%\alpha$ =95 5; %ε+%β ⁺ =5 5 Additional information 2. J ^π : From 1997Da07 and based on suggested series of α branches between (9 ⁺) levels from ¹⁶⁶ Ir to ¹⁵⁴ Lu. T _{1/2} : From average of 36.8 ms <i>16</i> (1997Ho10), 35 ms <i>1</i> (1996Pa01), and 37.7 ms <i>15</i> (1997Da07). %α: From 93% 6 (1979Ho10), 99% <i>13</i> (1996Pa01), and 100% 8 (1997Da07). Measured Eα=6048 5 (1997Da07). Possible configuration= $\pi h_{11/2} \otimes v f_{7/2}$ based on that for 9 ⁺ isomers in neighboring nuclei (2016Ca15 cite 1997Da07).
207.10 [#] 20	(10^{+})		A CD	
919.50 10	(11^+)		A D	J ^{π} : interpreted by 2016Ca15 (¹⁰² Pd(⁵⁸ Ni,pn γ)) as $\pi h_{11/2}^3 \otimes r f_{7/2}^3$ in analogy with 11 ⁺ and 13 ⁺ states in ¹⁵² Ho and ¹⁵⁴ Tm (13 ⁺ not found).
923.2? 8			A D	
953.40 [#] 22	(12^{+})		A D	
1358.5? 8			A D	
$1551.53^{\#}.24$	(14^{+})			
$1804.2^{\#}$ 3	(16^+)		A D	
1824.92 25	(10)		A D	
2025.47 25			A D	
2098.2 3	(16^{+})		A D	J^{π} : stretched E3 γ from (19 ⁻).
2387.2 3	(17^{+})		A D	
2601.63	(10-)	(1)	D	
2805.5 ° 4	(19 ⁻)	6.1 μs 1	A D	 %α=1.4 2 (2014Ca03); %IT=98.6 2 E(level): same physical level is placed 2805.5 4 in the ¹⁰²Pd(⁵⁸Ni,pnγ) dataset and at 2809.2 <i>14</i> in the IT decay dataset, because of the systemantic differences in between the energies of otherwise (physically) the same transitions (the Eγ's are 0.5 to 1 keV higher in the IT decay). Possible configuration=πh⁻³_{11/2} ⊗v(f_{7/2},h_{9/2},i_{13/2}) (2014Ca03, 2016Ca15). An α peak observed at 8644 keV <i>11</i> from this isomer, assignment based on

Continued on next page (footnotes at end of table)

¹⁵⁸Ta Levels (continued)

E(level) XREF Comments	Comments					
correlated γ rays with this α line. No protons were observed from this isomer, even	en though allowed by					
decay Q value. T \rightarrow From $r(t)$ (2014C-02)						
$1_{1/2}$: From $\gamma(t)$ (2014Ca03).						
2673.0 <i>A</i> D						
2017.7 7 D						
2959 7 3 D						
3021.4 3 D						
$3063.2^{\textcircled{0}}4$ D						
3330.0 4 D						
$33875^{@}4$ D						
3626.6 4 D						
3676.2 ^{&} 3 D						
3776.0 [@] 4 D						
3794.1 <i>4</i> D						
3851.4 <i>4</i> D						
4088.3 ^{&} 3 D						
4349.4 <i>3</i> D						
4613.5 ^{&} 3 D						
4645.0 <i>4</i> D						
4652.2 <i>4</i> D						
4779.1 <i>4</i> D						
4955.9 <i>4</i> D						
$4996.2^{\&} 4$ D						
5064.8 5 D						
5142.2 ^{&} 4 D						
5229.2 4 D						
5362.1 4 D						
5415.3 4 D						
5628.9 4 D						
0100.U 4 D						
0239.5 4 U 6610 22 4 D						
6781 7 5 D						

[†] Deduced from least-squares fit to $E\gamma$ data. Reduced χ^2 =3.4 is lager than critical χ^2 =1.8 at 95% confidence level, probably due to underestimated uncertainty of 0.1 keV for many γ rays, especially for some unresolved structures. Five $E\gamma$ values deviate by 2-3 σ from the fitted values.

[‡] Above (9⁺): from measured stretched multipolarities and increasing spin values with increasing energy excitation based on the heavy-ion reaction type.

Band(A): γ cascade based on 10⁺. Configuration= $\pi h_{11/2} \otimes v(f_{7/2}^2 h_{9/2})$ (2014Ca03).

[@] Band(B): γ cascade based on 19⁻ isomer.

[&] Band(C): γ cascade based on 3676.5 level.

$\gamma(^{158}\text{Ta})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} [‡]	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α ^d	Comments
207.10	(10 ⁺)	66.1 ^{&} 2	100	141	(9+)	(M1)	2.46	α (L)=1.90 4; α (M)=0.432 8 α (N)=0.1034 18; α (O)=0.0164 3; α (P)=0.001130 19 Mult.: From intensity balance arguments (¹⁵⁸ Ta IT decay, 2014Ca03).
919.50	(11 ⁺)	778.5 1	100	141	(9+)	(E2) ^b	0.00723	$\alpha(K)=0.00586 \ 9; \ \alpha(L)=0.001057 \ 15; \alpha(M)=0.000244 \ 4 \alpha(N)=5.80\times10^{-5} \ 9; \ \alpha(O)=8.85\times10^{-6} \ 13; \alpha(P)=5.03\times10^{-7} \ 7$
923.2?		782.2 <mark>&</mark> 10	100	141	(9+)			
953.40	(12 ⁺)	(33.9 [@])		919.50	(11 ⁺)	(M1)	17.52	α (L)=13.57 <i>19</i> ; α (M)=3.08 <i>5</i> α (N)=0.737 <i>11</i> ; α (O)=0.1165 <i>17</i> ; α (P)=0.00804 <i>12</i>
		746.3 1	100	207.10	(10 ⁺)	(E2) ^b	0.00792	$\alpha(K)=0.00640 \ 9; \ \alpha(L)=0.001176 \ 17; \alpha(M)=0.000271 \ 4 \alpha(N)=6.45\times10^{-5} \ 9; \ \alpha(O)=9.83\times10^{-6} \ 14; \alpha(P)=5.49\times10^{-7} \ 8$
1358.5?		435.3 1	100	923.2?				
1391.88		(33.4 [@])		1358.5?				E_{γ} : possible transition discussed in text (2016Ca15), not shown in authors' level scheme (Fig. 3).
		438.5 1	100	953.40	(12^{+})			
1551.53	(14 ⁺)	159.5 ^{<i>f</i>} 2	2.0 2	1391.88				placement based on level-energy difference (IT decay dataset).
		598.1 <i>I</i>	100	953.40	(12 ⁺)	(E2) ^b	0.01306	$\alpha(K)=0.01031 \ 15; \ \alpha(L)=0.00212 \ 3; \alpha(M)=0.000494 \ 7 \alpha(N)=0.0001172 \ 17; \ \alpha(O)=1.757\times10^{-5} \ 25; \alpha(P)=8.79\times10^{-7} \ 13$
1804.2	(16 ⁺)	252.9 1	100	1551.53	(14 ⁺)	(E2) ^b	0.1387	$\alpha(K)=0.0886 \ 13; \ \alpha(L)=0.0382 \ 6; \ \alpha(M)=0.00935 \ 14 \ \alpha(N)=0.00220 \ 3; \ \alpha(O)=0.000305 \ 5; \ \alpha(P)=6.76\times10^{-6} \ 10 \ E_{\rm ev}$ evel-energy difference=252 7
1824.92		273.1 ^e 1	100 ^e	1551.53	(14+)			 E_γ: unresolved triplet, placed from 1825, 2099 and 5415 levels. E_γ: level-energy difference=273.4.
		434 ∫		1391.88				,
2025.47		200.2 2 474.0 <i>1</i> 633.7 2	10.0 <i>6</i> 39.8 <i>11</i> 100 <i>8</i>	1824.92 1551.53 1391.88	(14+)			
2098.2	(16+)	$(72.7^{@})$ 273.1 ^e 1	100 ^e	2025.47 1824.92				
2387.2	(17 ⁺)	583.0 ^{<i>a</i>} 2	100	1804.2	(16 ⁺)	(M1)	0.0350	α (K)=0.0293 5; α (L)=0.00444 7; α (M)=0.001003 14 α (N)=0.000240 4; α (O)=3.81×10 ⁻⁵ 6;
2601.6		503.3 1	100.0 13	2098.2	(16 ⁺)			$\alpha(P)=2.68\times10^{-6} 4$
2005 5	(10^{-1})	797.6 2	31.5 15	1804.2	(16^+)		0 279	x(K) = 0.222 4. $x(L) = 0.0425$ 7.
2805.5	(19)	418.5° /	4.8° 0	2387.2	(1/')	(M2)	0.278	$\alpha(\mathbf{K})=0.223 \ 4; \ \alpha(\mathbf{L})=0.0425 \ 7; \\ \alpha(\mathbf{M})=0.00990 \ 15 \\ \alpha(\mathbf{N})=0.00238 \ 4; \ \alpha(\mathbf{O})=0.000373 \ 6; \\ \alpha(\mathbf{P})=2.46\times10^{-5} \ 4 \\ \mathbf{B}(\mathbf{M}2)(\mathbf{W}.\mathbf{u}.)=0.00054 \ 8 $

Continued on next page (footnotes at end of table)

$\gamma(^{158}\text{Ta})$ (continued) Mult.[#] α^{d} E_i(level) E_{γ} \mathbf{E}_{f} \mathbf{J}^{π} Comments 2805.5 708.1[°] 9 11.7[°] 8 2098.2 (16^{+}) (E3) 0.0224 B(E3)(W.u.)=0.146 13 (19^{-}) $\alpha(K)=0.01644\ 24;\ \alpha(L)=0.00460\ 7;$ α(M)=0.001103 17 α (N)=0.000262 4; α (O)=3.85×10⁻⁵ 6; $\alpha(P)=1.598\times 10^{-6} 23$ 1001.6^c 11 100^C 5 1804.2 0.00949 B(E3)(W.u.)=0.110 8 (16^{+}) (E3) *α*(K)=0.00745 *11*; *α*(L)=0.001568 *23*; $\alpha(M)=0.000367~6$ $\alpha(N) = 8.75 \times 10^{-5} \ 13; \ \alpha(O) = 1.325 \times 10^{-5} \ 19;$ $\alpha(P)=7.01\times10^{-7}$ 10 2853.8 466.6 2 100 2387.2 (17^{+}) 1052.5 3 2877.9 100 8 1824.92 1074.1 3 84 8 1804.2 (16^{+}) 2938.3? 336.6 1 100 2601.6 2959.7 357.9^e 2 100.0^e 17 2601.6 572.6 3 5.2 13 2387.2 (17^{+}) 861.4 2 39.2 13 2098.2 (16^{+}) 1217.5 2 3021.4 100 1804.2 (16^{+}) 3063.2 257.7 1 100 2805.5 (19⁻) 3330.0 266.8^e 1 100^e 3063.2 E_{γ} : unresolved doublet, placed from 3330 and 5629 levels. 3387.5 324.3 1 100 3063.2 296.6 1 3330.0 3626.6 100 3676.2 655.2 2 10.08 3021.4 716.5 1 100.0 11 2959.7 737.7 2 20.3 8 2938.3? 3776.0 388.5 1 100 3387.5 3794.1 406.6^{*a*} 1 100 3387.5 3851.4 830.0 12 100 3021.4 893**f** 2959.7 236.9 1 4088.3 11.9 4 3851.4 412.1 1 100.0 8 3676.2 4349.4 261.0 1 100 4088.3 4613.5 525.2 1 100 4088.3 4645.0 868.9 2 100 3776.0 4652.2 876.3 2 100 3776.0 4779.1 1003.1 2 100 3776.0 4955.9 606.3 1 100 4349.4 4996.2 382.8 1 100 4613.5 5064.8 1288.8 3 100 3776.0 5142.2 146.0 1 4996.2 100 5229.2 576.5 3 4652.2 35 8 583.7^a 2 100 19 4645.0 E_{γ} : level-energy difference=584.2. 366.3 2 5362.1 65 4 4996.2 406.1^{*a*} 1 4955.9 100 11 1013.4 3 715 4349.4 E_{γ} : level-energy difference=1012.7. 5415.3 185.9 1 20.4 10 5229.2 273.1^e 1 100.0^e 14 5142.2 350^f 5064.8 199 636.7 7 4779.1 763.5 2 19.1 14 4652.2 770.7 2 40.5 14 4645.0 E_{γ} : level-energy difference=770.3. 266.8^e 1 5628.9 100^e 5362.1 6166.0 1023.8 2 100 5142.2 5415.3 844.0 2 6259.3 100

Continued on next page (footnotes at end of table)

$\gamma(^{158}\text{Ta})$ (continued)

E _i (level)	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	
6619.2?	1203.9 ^{<i>f</i>} 2	100	5415.3	
6781.7	615.7 2	100	6166.0	

[†] From ¹⁰²Pd(⁵⁸Ni,pn γ) dataset (2016Ca15) that are more precise than those from IT decay, which are systematically 0.5 to 1 keV higher in energy.

^{\ddagger} Values from ¹⁰²Pd(⁵⁸Ni,pn γ) dataset (2016Ca15).

[#] From ¹⁵⁸Ta IT decay:6.1 μs dataset (2016Ca15, 2014Ca03) based on intensity balance arguments and transition rates for expected level lifetime, except where noted. Only pure multipolarities were assumed.

[@] γ not observed, its existence required by $\gamma\gamma$ -coin data. Energy was deduced from difference of connecting levels.

[&] From 2016Ca15 (Table II) for delayed γ rays from the 6.1– μ s isomer.

^a 583.0+583.7 and 406.1+406.6 form unresolved doublets; however, based on $\gamma\gamma$ -coin data, separated intensities are assigned.

^b From consistency with angular correlation data in 2016Ca15, although, no data are provided, reason for which the assignments are still to be confirmed by futher study.

^c From the IT decay dataset.

^{*d*} Additional information 3.

^e Multiply placed with undivided intensity.

^f Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas Legend Level Scheme Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given $\rightarrow \gamma$ Decay (Uncertain) _ _ _ _ 4 615,2 100 S 6781.7 1203.91 <u>_6619.2</u> + ⁸⁴0 100 1 10] 1 1023.8 100 6259.3 6166.0 1 - 20: 8 100 -001 -001 +05 0.581 + 5628.9 036, 201 101. 101. 305.3 100 305.3 100 100 , ², ³, ¹ ~. ~?? 330 5415.3 5362.1 526.4 S83. ģ È 5229.2 6 5142.2 8 5064.8 ŧ 4996.2 8 + 00 - 100 -4955.9 1003.1 907 6.r 8 4779.1 4652.2 <u>_</u> ¥ 4645.0 1 ^{261,0} 100 | 4613.5 = 412, 100,000 = 11,00,000 4349.4 4088.3 007 0:08 + 40 400 100 | - 89₃ Ş 3851.4 3794.1 Ť 3776.0 ~ 22 ŝ ķ 3676.2 + 324,3 100 | 3626.6 3387.5 3330.0 3063.2 3021.4 2959.7 ŧ _2<u>938.3</u> (2-) 0.0 55 ms 15

¹⁵⁸₇₃Ta₈₅

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given $--- \blacktriangleright \gamma$ Decay (Uncertain) 4 266.8 1004 3330.0 1-35,2 412.5 100 *0001 c_{c} s. 3063.2 3021.4 8 . e. 2959.7 / 9.90 - 9.90 - 9.90 -2 20% ŝ 2938.3 ×181 $\left[\frac{3_{2,6}}{3_{2,3}}, \frac{3_{2,6}}{3_{2,3}}\right]$ 2877.9 2853.8 2805.5 (19 6.1 μs 1 + 383,0 A1, | 190 2601.6 (17^+) 2387.2 + 233, 1004 (16^{+}) 2098.2 - 420 (2) 190 -4 273, 100-2025.47 434 1824.92 $-\frac{1}{2} \frac{s_{\theta_i}}{s_{\theta_i}} \frac{s_{\theta_i}}{s_{\theta_i}} \frac{s_{\theta_i}}{s_{\theta_i}} + \frac{1}{2} \frac{s_{\theta_i}}{s_{\theta_i}} + \frac{1}{2} \frac{s_{\theta_i}}{s_{\theta_i}} \frac{s_{\theta_i}}{s_{\theta_i}} + \frac{1}{2} \frac{s_{\theta_i}}{s_{\theta_i}} \frac{s_{\theta_i}}{s_{\theta$ (16⁺) 1804.2 (14^{+}) + 438.5 100 1551.53 : 435,3 100 33.4 .4 1391.88 _1358.5 .1 2463 (23) 100 953.40 923.2 919.50 (12^{+}) (11+) (10⁺) 207.10 0.0 55 ms 15 (2-) ¹⁵⁸₇₃Ta₈₅

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Adopted Levels, Gammas

¹⁵⁸₇₃Ta₈₅