¹⁵⁸Ta IT decay:6.1 μs 2016Ca15,2014Ca03

		History			
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	N. Nica	NDS 141, 1 (2017)	1-Feb-2017		

Parent: ¹⁵⁸Ta: E=2809.2 *14*; J^{π} =(19⁻); $T_{1/2}$ =6.1 µs *1*; %IT decay=98.6 2 ¹⁵⁸Ta-%IT decay: $\%\alpha$ =1.4 2 (2014Ca03).

2016Ca15, 2014Ca03: compiled for the XUNDL database by B. Singh (McMaster). References are related by common authors and setup.

2016Ca15: isomer produced in ¹⁰²Pd(⁵⁸Ni,pn),E=255 MeV from JYFL accelerator facility. Target $\approx 1 \text{ mg/cm}^2$ thick 90% enriched in ¹⁰²Pd. ¹⁵⁸Ta recoils were identified using recoil-decay tagging method and correlated with γ rays. Measured delayed γ -ray spectra, E γ , I γ , $\gamma\gamma$ -coin, E α , (¹⁵⁸Ta ions) $\gamma\alpha$ correlations using JUROGAM array of 43 Compton-suppressed Ge detectors for γ rays. Deduced high-spin levels and J^{π} .

2014Ca03: ¹⁰²Pd(⁵⁸Ni,pn γ), E(⁵⁸Ni)=255 MeV from JYFL accelerator facility. Target=1 mg/cm² thick enriched ¹⁰²Pd. ¹⁵⁸Ta recoils were separated by RITU separator and GREAT spectrometer. Measured prompt and delayed γ -ray spectra, E γ , I γ , $\gamma\gamma$ -coin, E α , (¹⁵⁸Ta ions) $\gamma\alpha$ correlations, half-life of a high-spin isomer using JUROGAM array for γ rays, and DSSDs for particles. Deduced isomer decay modes, levels and J^{π} in ¹⁵⁸Ta. Discussed (unobserved) proton emission from the high-spin isomer.

¹⁵⁸Ta Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments			
0.0 141 9	(2 ⁻) (9 ⁺)	55 ms 15 36.7 ms 15	 from Adopted Levels, not observed in the IT decay. %α=95 5; %ε+%β⁺=5 5 Additional information 1. Energy, half-life and decay modes from Adopted Levels dataset. Proton decay mode is also possible since S(p)(¹⁵⁸Ta g.s.)=-450 50 (2012Wa38). Measured Eα=6048 5 (1997Da07). Possible configuration=πh_{11/2}⊗vf_{7/2} based on that for 9⁺ isomers in neighboring nuclei (2016Ca15 cite 1997Da07). Half-life, J^π, and decay modes from Adopted Levels dataset. 			
207.10 [#] 20 919.8 10 923.2? 10	(10^+) (11^+)					
954.3 [#] 10 1359.1? 13 1393.3 12	(12 ⁺)					
1553.7 [#] 12 1807.2 [#] 13 1827.5 12 2027.7 12	(14 ⁺) (16 ⁺)					
2101.1 <i>13</i> 2390.9 <i>14</i>	(16^+) (17^+)		J^{π} : stretched E3 γ from (19 ⁻).			
2809.2 14	(19 ⁻)	6.1 μs <i>1</i>	 %α=1.4 2 (2014Ca03); %IT=98.6 2 E(level): other: 2805.5 4 from ¹⁰²Pd(⁵⁸Ni,pnγ) dataset (2016Ca15). There appears to be a consistent difference in Eγ, with the values from IT decay 0.5 to 1 keV higher than those given in ¹⁰²Pd(⁵⁸Ni,pnγ) dataset, although the former are reported with larger uncertainty. Proposed configuration=πh⁻³_{11/2}⊗v(f_{7/2},h_{9/2},i_{13/2}) (2014Ca03, 2016Ca15). An α peak observed at 8644 keV 11 from this isomer, assignment based on correlated γ rays with this α line. No protons were observed from this isomer, even though allowed by decay Q value. T_{1/2}: from γ(t) (2014Ca03). 			

[†] Deduced from least-squares fit to $E\gamma$ data.

¹⁵⁸Ta IT decay:6.1 μs **2016Ca15,2014Ca03** (continued)

¹⁵⁸Ta Levels (continued)

[‡] From measured stretched multipolarities starting with (9⁺) and increasing spin values with increasing energy excitation based on rotational character of deformed nuclei.

[#] Band(A): γ cascade based on 10⁺. Configuration= $\pi h_{11/2} \otimes \nu(f_{7/2}^2 h_{9/2})$ (2014Ca03).

$\gamma(^{158}\text{Ta})$

I γ normalization: From weighted average of 0.889 32 deduced from I(γ +ce)(778, 748 and 782)=100 and 0.853 38 from I(γ +ce)(418, 708 and 1002)=100.

E_{γ}	Ι _γ & <i>c</i>	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^{†a}	α b	$I_{(\gamma+ce)}^{c}$	Comments
(34.2 [‡])		1393.3		1359.1?					E_{γ} : possible transition discussed in text (2016Ca15), not shown in authors' level scheme (Fig. 3).
(34.5 [‡])		954.3	(12+)	919.8	(11+)	[M1]	16.63	58 <i>3</i>	$I_{(\gamma+ce)}$: from transition intensity balance at 954.3 level.
66.1 2	14.9 8	207.10	(10 ⁺)	141	(9 ⁺)	(M1)	2.46		Mult.: E1 or M1 restricted by α - γ prompt coinc (higher mult would imply too long T _{1/2} 's); M1 from intensity balance.
(73.4^{\ddagger}) 159.5 ^e 2	2.0 2	2101.1 1553.7	(16 ⁺) (14 ⁺)	2027.7 1393.3					Placement by evaluator based on level-energy difference.
(200.2 [#] 2)	0.29 [#] 6	2027.7		1827.5					
253.5 6	91.1 <i>47</i>	1807.2	(16 ⁺)	1553.7	(14^+)	(E2)	0.1376 22		
2/3.74 6	4.0 ^a 6	1827.5		1553.7	(14')				E_{γ} : unresolved doublet, placed from 1825 and 2099 levels.
273.7 <mark>d</mark> 6	4.0 ^d 6	2101.1	(16 ⁺)	1827.5					
418.5 [@] 7	4.8 6	2809.2	(19 ⁻)	2390.9	(17^{+})	(M2)	0.278		
434 ^e	507	1827.5		1393.3					
435.97 43928	5.8 / 4 2 6	1359.17		923.2?	(12^{+})				
$(474.0^{\#}1)$	1.2 0	2027.7		1553.7	(12^{+})				
583.9 8	7.5 7	2390.9	(17^{+})	1807.2	(16^+)	(M1)	0.0349		
599.2 8 634 5 8	100.0	1553.7	(14 ⁺)	954.3 1393 3	(12 ⁺)	(E2)	0.01300		
$708.1^{@}9$	11 5 8	2809.2	(10^{-})	2101 1	(16^{+})	(F3)	0.0224		
747.2 9	48.8 26	954.3	(12^+)	207.10	(10^{+})	(E2)	0.00790		
778.8 10	57.9 31	919.8	(11^{+})	141	(9 ⁺)	(E2)	0.00722		
782.2 10	5.0 7	923.2?	(10^{-1})	141	(9^+)	(E2)	0.00040		
1001.0 11	98.4 31	2809.2	(19)	1807.2	(10.)	(E3)	0.00949		

[†] 254 γ , 599 γ , 747 γ , and 778 γ , ΔJ =2, quadrupole, most likely E2 transitions by angular distribution measurements; 1002 γ , 708 γ , compatible with E3 multipolarity based on lifetime. all E2 assignments and the E3 for 1003 γ are compatible with measured intensities after allowing for internal conversion. 418 γ and 583 γ are assigned M2 and M1 character, respectively, (both stretched) based on lifetime and intensity balance.

Continued on next page (footnotes at end of table)

¹⁵⁸Ta IT decay:6.1 μs **2016Ca15,2014Ca03** (continued)

$\gamma(^{158}\text{Ta})$ (continued)

 $^{\ddagger} \gamma$ not observed, its existence required by $\gamma\gamma$ -coin data. Energy is deduced by evaluator from difference of connecting levels.

- [#] Values taken by evaluator from Table I in 2016Ca15, based on its observation in the prompt γ spectrum.
- [@] This γ ray is assigned to the decay of the 6.1- μ s isomer since it is absent in the prompt γ spectrum (Fig. 6a in 2016Ca15).
- [&] Values listed in Table II in 2016Ca15 divided by a factor of 10.
- ^{*a*} From Table II in 2016Ca15, based on intensity balance arguments, and transition rates for expected level lifetime. Pure multipolarities were assumed.
- ^b From BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" appr.
- ^c For absolute intensity per 100 decays, multiply by 0.86 3.
- ^d Multiply placed with undivided intensity.
- e Placement of transition in the level scheme is uncertain.

¹⁵⁸Ta IT decay:6.1 μs 2016Ca15,2014Ca03

¹⁵⁸Ta IT decay:6.1 μs 2016Ca15,2014Ca03

¹⁵⁸₇₃Ta₈₅