Adopted Levels

History

Type Author Citation Literature Cutoff Date
Full Evaluation Filip G. Kondev ENSDF 20-Feb-2017

 $Q(\beta^-)=9725$ (syst) 361; S(n)=3861 (syst) 424; S(p)=11688 (syst) 500; $Q(\alpha)=-5225$ (syst) 424 2017Wa10 S(2n)=8905 (syst) 424; S(2p)=25857 (syst) 500; $Q(\beta^-n)=4060$ (syst) 301; $Q(\beta^-2n)=0$ (syst) 361 2017Wa10 Additional information 1.

2017Wu04: The ¹⁵⁸Pr nuclide was produced at the RIBF-RIKEN facility using the 9 Be(238 U,F) reaction at E=345 MeV/nucleon. Two experiments, optimized for the transmission of 158 Nd and 170 Dy ions, were carried out with average beam intensities of 7 pnA and 12 pnA, respectively. The identification of the nuclide of interest was made in the BigRIPS separator by determining the atomic number and the mass-to-charge ratio of the ion using the TOF-B ρ - Δ E method. The reaction products were transported through the ZeroDegree Spectrometer and implanted into the beta-counting system WAS3ABi that was surrounded by the EURICA array comprising of 84 HPGe detectors. The typical implantation rate was 100 ions/s. Measured: implanted ion- β --t, implanted ion- β -- γ -t and implanted ions- γ -t correlations. Deduced: $T_{1/2}$.

¹⁵⁸Pr Levels

 $\frac{\text{E(level)}}{0.0} = \frac{J^{*}}{(5^{-})} = \frac{\Gamma_{1/2}}{0.181 \text{ s.} 14}$

Comments

 $\%\beta^-=100; \%\beta^-n=?$

 $\%\beta^-$: Only β^- decay mode is expected.

 J^{π} : From systematics of known quasiparticle states in neighboring nuclei and the proposed configuration (by the evaluator). The assignment is tentative.

 $T_{1/2}$: From 2017Wu04, using a fit to the implanted ion- β^- -t spectrum using the least-squares and maximum-likelihood methods. The data analysis included contributions from the parent, daughter and grand-daughter decays, as well as a constant background. The assignment to the ground state is ambiguous, given the possible existence of an isomeric state.

configuration: From systematics of well-deformed nuclei in this mass region, the $\pi 3/2[541]$ and $\nu 7/2[633]$ Nilsson orbitals are expected near the proton and neutron Fermi surfaces, respectively. Thus, using the Gallagher-Moszkowski rule, one may expect the $K^{\pi}=5^-$, $\pi 3/2[541] \otimes \nu 7/2[6333]$ configuration for the ground state. The existence of a $K^{\pi}=2^-$ isomer, arising from the same configuration, is also possible. The assignment is made by the evaluator.