Adopted Levels, Gammas

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 141, 1 (2017)	1-Feb-2017

 $Q(\beta^{-})=5035$ (syst) 201; S(n)=5664 (syst) 202; S(p)=12803 (syst) 361; Q(\alpha)=-4260 (syst) 283 2017Wa10 S(2n)=9724 (syst) 202; S(2p)=23813 (syst) 361; Q(\beta^{-}n)=171 (syst) 200 2017Wa10

Additional information 1.

1997Be12: this nuclide was observed in projectile fission of ²³⁸U at a beam energy of 750 MeV/nucleon with fragment separator at GSI (1997Be12, figure 7). No decay or structure data measured.

2012Ku26: measured production cross-section σ =201 11 nb in reaction with ²³⁸U impinging on Be target at 1 GeV/nucleon using fragment separator at GSI.

2016Id02, 2015TaZX: ⁹Be(²³⁸U,F), E=345 MeV/nucleon, see ¹⁵⁸Nd IT Decay dataset.

All data are from 2016Id02, ¹⁵⁸Nd IT Decay dataset, unless noted otherwise.

2017Wu04: ¹⁵⁸Nd nuclides produced at the RIBF-RIKEN facility using the ${}^{9}Be({}^{238}U,F)$ reaction at E=345 MeV/nucleon. identification of the nuclide of interest made in the BigRIPS separator by determining the atomic number and the mass-to-charge ratio of the ion using the tof-B ρ - Δ E method. The reaction products were transported through the ZeroDegree Spectrometer and implanted into the beta-counting system WAS3ABi that was surrounded by the EURICA array comprising of 84 HPGe detectors. Measured: implanted ion- β^- - γ -t and implanted ions- γ -t correlations. Deduced: T_{1/2}.

 α : Additional information 2.

 δ : Additional information 3.

¹⁵⁸Nd Levels

Cross Reference (XREF) Flags

A ¹⁵⁸Nd IT decay

E(level) [†]	J π ‡	T _{1/2}	XREF	Comments
0.0#	0+	0.820 s +15-36	A	$\%\beta^{-}=100; \%\beta^{-}n=?$ T _{1/2} : From 2017Wu04 following a fit to the implanted ion- β^{-} -t spectrum using the least-squares and maximum-likelihood methods. The data analysis included contributions from the parent, daughter and grand-daughter decays, as well as a constant background.
65.9 [#] 10 217.6 [#] 12 451.0 [#] 13	(2^+) (4^+) (6^+)		A A A	
1648.1 <i>14</i>	(6 ⁻)	339 ns 20	A	configuration= $v5/2[523] \otimes v7/2[633]$. J ^{π} : based on coin relations and decay pattern; K^{π} =(6 ⁻) (2016Id02), which corrects K^{π} =(7 ⁻), $\pi5/2[532] \otimes \pi9/2[404]$ (2015TaZX). 2016Id02 argue that the latter state is energetically unfavored and lie about 200 keV higher in energy than the former state. T _{1/2} : from γ (t) (2016Id02, 2015TaZX).

[†] From $E\gamma$ values.

[‡] Postulated by 2016Id02 based on analogy with ¹⁵⁶Nd (2009Si21) and the expected rotational character of these nuclei.

[#] Band(A): G.s. rotational band.

Adopted Levels, Gammas (continued)

$\gamma(^{158}\text{Nd})$

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$E_f J_f^{\pi}$	Mult.	α	Comments
65.9	(2+)	(65.9 10)	100	0.0 0+	[E2]	10.2 7	α (K)=3.45 <i>12</i> ; α (L)=5.3 <i>4</i> ; α (M)=1.21 <i>10</i> ; α (N)=0.260 <i>20</i> ; α (O)=0.0329 <i>25</i> ; α (P)=0.000148 <i>6</i>
							E_{γ} : estimated from moment of inertia (2016Id02) by including the unc of the measured γ rays.
217.6	(4+)	151.7 5	100	65.9 (2+)	[E2]	0.503 10	$\alpha(K)=0.345\ 6;\ \alpha(L)=0.1239\ 25;\ \alpha(M)=0.0278\ 6;\ \alpha(N)=0.00605\ 12;\ \alpha(O)=0.000805\ 16\ \alpha(P)=1.65\times10^{-5}\ 3$
451.0	(6+)	233.4 5	100	217.6 (4+)	[E2]	0.1173 19	$\alpha(K) = 0.0895 \ 14; \ \alpha(L) = 0.0218 \ 4; \ \alpha(M) = 0.00482$ 8; \alpha(N) = 0.001054 \ 18; \alpha(O) = 0.0001452 \ 24
1648.1	(6 ⁻)	1197.1 5	100	451.0 (6 ⁺)	[E1]	6.98×10 ⁻⁴	$\alpha(P)=4.69\times10^{-8} 8$ $\alpha(K)=0.000580 \ 9; \ \alpha(L)=7.29\times10^{-5} \ 11;$ $\alpha(M)=1.529\times10^{-5} \ 22; \ \alpha(N)=3.42\times10^{-6} \ 5;$ $\alpha(O)=5.20\times10^{-7} \ 8$ $\alpha(P)=3.44\times10^{-8} \ 5$

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

Adopted Levels, Gammas

