158 Eu β^- decay 1974Kl11,1975Bl03,1996Gr20

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 141, 1 (2017)	1-Feb-2017

Parent: ¹⁵⁸Eu: E=0; $J^{\pi}=(1^{-})$; $T_{1/2}=45.9 \text{ min } 2$; $Q(\beta^{-})=3434 \ 10$; $\%\beta^{-}$ decay=100.0

The decay scheme and γ data are primarily from 1974K111; that of 1975B103 is in substantial agreement. The sum of the intensities of the β - branches to the 0- and 79-keV levels is from the $4\pi\gamma$ - β - measurement of 1996Gr20. Other measurements: 1997Gr09, 1972K101, 1972H008, 1969RiZY, 1966Da19, 1966Da06, 1965Sc19, 1965Mu16, 1963Da07.

158Gd Levels

See ¹⁵⁸Gd Adopted Levels for band assignments.

E(level) [†]	J π ‡	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	$J^{\pi \ddagger}$
0.0	0^{+}	1265.48 10	3+	2215.5? 3	1	2600.3? 12	$1^{(+)}$
79.51 7	2+	1402.97 14	3-	2221.63 22	2-	2620.92 24	
261.47 10	4+	1451.51 <i>21</i>	0^{+}	2269.29 14	$(0,1,2)^+$	2642? 2	
977.15 7	1-	1517.5 <i>3</i>	2^{+}	2325.33 10	$1^{-},2^{+}$	2670.6 <i>3</i>	
1023.66 8	2-	1793.50 8	2-	2340.3? <i>3</i>	2+	2761.94 22	
1041.62 8	3-	1847.80 12	1^{+}	2395.40 13	(3^{+})	2823.5? 6	1-
1187.13 8	2+	1894.39 10	2+	2447.30 25	1	2844.2? 8	
1196.00 11	0^{+}	1930.16 9	1^{+}	2450.9 4	$1,2^{+}$	2859.6 6	
1259.95 12	2+	1964.14 8	2+	2475.5 <i>3</i>	$1,2^{+}$		
1263.67 12	1-	2023.93 11	1^{+}	2499.19 12	$(1,2)^+$		

[†] From least-squares fit to γ energies.

[‡] From ¹⁵⁸Gd Adopted Levels.

β^{-} radiations

Below 2100 keV, these calculated $I_{\beta-}$ are in excellent agreement with those deduced from the total absorption γ spectrometer, TAGS, data of 1997Gr09. Above this energy, these $I_{\beta-}$ are lower than those from the TAGS data which is consistent with the fact that there are a number of unplaced, high-energy γ rays. For the larger differences, the TAGS results are given in comments.

Measured $E(\beta)$ in keV include:

3400 150 (1966Da06).

2430 100 (1966Da06), 2520 120 (1965Sc19).

1550 100 (1966Da06), 1950 230 (1965Sc19).

≈ 1100 (1966Da06), 1150 90 (1965Sc19).

Measured I(β -) include:

 $I\beta(3400 \text{ keV})/I\beta(2430 \text{ keV})=0.11 (1966Da06) \text{ and } I\beta(3400 \text{ keV})=5\%.$

E(decay)	E(level)	Ιβ ^{-†#}	$\log ft^{\ddagger}$	Comments
(574 10)	2859.6	0.036 10	7.76 13	av $E\beta = 177.5$ 36
(672 10)	2761.94	0.22 4	7.21 9	$\mu = 0.110$ from TAGS data (1997Gr09). av E β =212.9 37
(763 10)	2670.6	0.075 18	7.87 11	$I\beta^-: 0.51$ from TAGS data (1997Gr09). av $E\beta=247.1 \ 38$
(912-10)	2620.02	0.12.2		$I\beta^{-1}$: 0.159 from TAGS data (1997Gr09).
(813 10)	2620.92	0.13 3	1.12 11	$I\beta = 200.039$ I β^- : 0.27 from TAGS data (1997Gr09).
(935 10)	2499.19	0.55 7	7.31 6	av E β =313.3 40

Continued on next page (footnotes at end of table)

158 Eu β^- decay 1974K111,1975B103,1996Gr20 (continued)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger \#}$	$\log ft^{\ddagger}$	Comments
(959 10)	2475.5	0.17 3	7.86 8	av $E\beta = 322.7 \ 40$
(983 10)	2450.9	0.44 10	7.49 10	av $E\beta = 332.4 \ 40$
(987 10)	2447.30	1.55 18	6.95 6	av $E\beta = 333.9 \ 40$
(1039 10)	2395.40	0.32 5	$8.28^{1u} 8$	av $E\beta = 362.4 \ 39$
(1109 10)	2325.33	3.2 4	6.82 6	av $E\beta = 383.0 \ 41$
				$I\beta^{-}$: 4.45 from TAGS data (1997Gr09).
(1165 10)	2269.29	1.63 23	7.19 7	av E β =405.8 41
· /				$I\beta^{-}$: 2.24 from TAGS data (1997Gr09).
(1212 10)	2221.63	0.14 4	8.32 13	av E β =425.5 42
				$I\beta^{-1}$: 0.198 from TAGS data (1997Gr09).
(1410 10)	2023.93	3.5 4	7.17 6	av $E\beta = 508.1 \ 43$
(1470 10)	1964.14	6.6 7	6.96 5	av E β =533.4 43
(1504 10)	1930.16	7.6 8	6.94 5	av Eβ=547.9 43
(1540 10)	1894.39	0.95 11	7.88 6	av E β =563.1 44
(1586 10)	1847.80	2.6 3	7.49 6	av Eβ=583.1 43
(1641 10)	1793.50	7.0 8	7.12 5	av E β =606.5 44
(1917 10)	1517.5	0.066 17	9.41 12	av E β =726.8 44
(1982 10)	1451.51	0.08 3	9.38 17	av E β =755.8 45
(2031 10)	1402.97	0.11 5	9.29 20	av E β =777.3 45
				Log ft: Value highly questionable for a (1^{-}) to 3^{-} transition.
(2169 10)	1265.48	0.7 6	$9.7^{1u} 4$	av Eβ=827.7 44
(2170 10)	1263.67	3.7 6	7.87 7	av E β =839.1 45
(2174 10)	1259.95	0.39 12	8.85 14	av E β =840.7 45
(2238 10)	1196.00	0.87 14	8.56 7	av E β =869.2 45
(2247 10)	1187.13	<0.9	>8.5	av E β =873.2 45
				Additional information 1.
(2392 10)	1041.62	0.31 25	9.1 4	av E β =938.3 45
				Log ft: Value highly questionable for a (1^{-}) to 3^{-} transition.
(2410 10)	1023.66	25 <i>3</i>	7.23 6	av E β =946.4 45
(2457 10)	977.15	21.3 24	7.33 5	av E β =967.3 45
(3173 10)	261.47	0.8 4	9.21 22	av E β =1291.9 46
				Log ft: Value highly questionable for a (1^-) to 4^+ transition.
(3354 10)	79.51	9 <i>3</i>	8.26 15	av E β =1375.1 46
				$I\beta^-$: From $I_{\beta-}(0) + I_{\beta-}(79) = 8.6\% 24$ (1996Gr20) and the assumption that $I_{\beta-}(0)$
				= 0.0.

[†] Deduced from γ -ray intensity balances at the various levels and along with the $I_{\beta-}(0) + I_{\beta-}(79) = 8.6\%$ 24 from 1996Gr20. Other: $I_{\beta-}(0) = 0$ and $I_{\beta-}(79)=24$ from 1974K111. [‡] See $I_{\beta-}$ comments for assumptions and limitations.

[#] Absolute intensity per 100 decays.

¹⁵⁸Eu $β^-$ decay 1974Kl11,1975Bl03,1996Gr20 (continued)

 $\gamma(^{158}\text{Gd})$

Iγ normalization: calculated to give 91% β- feeding to the levels above 100 keV. The uncertainty allows for the large number of unplaced γ 's. This is based on 1996Gr20 that found by total absorption spectrometry that the summed population of the two states under 100 keV is 8.6% 24. This is in between the previously established figures of 5% (1966Da06) and 22.3% 80 (1974Kl11), rather assigned to the 79.5 state alone.

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E_i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	δ	α^{\dagger}	Comments
79.49 10	35 6	79.51	2+	0.0 0+	E2		5.94	α(K)=2.02 3; α(L)=3.02 5; α(M)=0.715 11; α(N+)=0.180 3 α(N)=0.1593 25; α(O)=0.0207 4; α(P)=9.94×10-5 15 %Iγ=10.6 5. Iγ: From Iβ-(79)=8.6% 24; measurements are 20 4 (1966Da06) and 44 4 (1974K111). If a portion of the β- goes to the ground state, this L will be less
181.97 <i>11</i>	7.8 8	261.47	4+	79.51 2+	E2		0.305	$\alpha(K)=0.206\ 3;\ \alpha(L)=0.0769\ 11;\ \alpha(M)=0.0178\ 3;\ \alpha(N+)=0.00455\ 7$ $\alpha(N)=0.00399\ 6;\ \alpha(O)=0.000544\ 8;\ \alpha(P)=1.156\times10^{-5}\ 17$ %Iy=2.4 4.
^x 218.4 4	0.15 5							$\%$ I γ =0.046 17.
245.33 17	0.32 4	2269.29	(0,1,2)+	2023.93 1+	M1,E2		0.14 3	$\alpha(\mathbf{K})=0.11 \ 3; \ \alpha(\mathbf{L})=0.0215 \ 19; \ \alpha(\mathbf{M})=0.0048 \ 6; \ \alpha(\mathbf{N}+)=0.00126 \ 12 \ \alpha(\mathbf{N})=0.00109 \ 11; \ \alpha(\mathbf{O})=0.000161 \ 8; \ \alpha(\mathbf{P})=8.\mathbf{E}-6 \ 3 \ \% \mathbf{I}\gamma=0.097 \ 18.$
528.05 10	5.1 3	1793.50	2-	1265.48 3+	E1		0.00417 6	$\alpha = 0.00417 6; \alpha(K) = 0.00356 5; \alpha(L) = 0.000479 7; \alpha(M) = 0.0001032$ $15; \alpha(N+) = 2.75 \times 10^{-5} 4$
								$\alpha(N)=2.36\times 10^{-5} 4; \ \alpha(O)=3.63\times 10^{-6} 5; \ \alpha(P)=2.35\times 10^{-7} 4$
606.39 9	13.2 7	1793.50	2-	1187.13 2+	E1		0.00309 5	%1γ=1.55 22. α=0.00309 5; α(K)=0.00264 4; α(L)=0.000353 5; α(M)=7.59×10 ⁻⁵ 11; α(N+)=2.02×10 ⁻⁵ 3
								α (N)=1.739×10 ⁻⁵ 25; α (O)=2.68×10 ⁻⁶ 4; α (P)=1.751×10 ⁻⁷ 25 %I γ =4.0 6.
698.63 12	3.52 19	1964.14	2+	1265.48 3+	E2+M1		0.0085 25	α =0.0085 25; α (K)=0.0072 22; α (L)=0.00104 24; α (M)=0.00023 5; α (N+)=6.0×10 ⁻⁵ 14
								$\alpha(N)=5.2\times10^{-5}$ 12; $\alpha(O)=8.0\times10^{-6}$ 20; $\alpha(P)=5.1\times10^{-7}$ 17 %I $\gamma=1.07$ 15.
743.02 9	12.0 6	1930.16	1+	1187.13 2+	M1+E2	+0.17 15	0.0093 3	$\alpha = 0.0093 \ 3; \ \alpha(K) = 0.0079 \ 3; \ \alpha(L) = 0.00108 \ 3; \ \alpha(M) = 0.000234 \ 7; \ \alpha(N+) = 6.29 \times 10^{-5} \ 18$
								α (N)=5.39×10 ⁻⁵ 16; α (O)=8.40×10 ⁻⁶ 25; α (P)=5.73×10 ⁻⁷ 20 % I γ =3.6 5.
751.70 16	0.94 15	1793.50	2-	1041.62 3-	M1+E2		0.0071 20	α =0.0071 20; α (K)=0.0060 18; α (L)=0.00086 20; α (M)=0.00019 5; α (N+)=5.0×10 ⁻⁵ 12
								$\alpha(N)=4.3\times10^{-5} \ 10; \ \alpha(O)=6.6\times10^{-6} \ 17; \ \alpha(P)=4.3\times10^{-7} \ 14$ %I $\gamma=0.29 \ 6.$

 $\boldsymbol{\omega}$

				¹⁵⁸ Eu	$\mathfrak{u}eta^-$ o	decay 1	974Kl11,1975B	103,1996Gr20 (continued)
							$\gamma(^{158}\text{Gd})$ (contin	nued)
${\rm E}_{\gamma}$ ‡	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$lpha^{\dagger}$	Comments
763.94 12	2.10 ^b 15	2023.93	1+	1259.95	2+	E2	0.00495 7	α =0.00495 7; α (K)=0.00413 6; α (L)=0.000637 9; α (M)=0.0001395 20; α (N+)=3.70×10 ⁻⁵ 6
769.87 12	2.16 <i>16</i>	1793.50	2-	1023.66	2-	E2	0.00486 7	$ \alpha(N)=3.19\times10^{-5} 5; \ \alpha(O)=4.84\times10^{-6} 7; \ \alpha(P)=2.84\times10^{-7} 4 \\ \%_{I}\gamma=0.64 \ I0. \\ \alpha=0.00486 \ 7; \ \alpha(K)=0.00406 \ 6; \ \alpha(L)=0.000625 \ 9; \ \alpha(M)=0.0001368 \ 20; $
								$\alpha(N+)=3.63\times10^{-5} 5$ $\alpha(N)=3.13\times10^{-5} 5$; $\alpha(O)=4.74\times10^{-6} 7$; $\alpha(P)=2.80\times10^{-7} 4$ %I $\gamma=0.66 10$.
776.98 15	2.6 3	1964.14	2+	1187.13	2+	M1	0.00842 12	$\alpha = 0.00842 \ I2; \ \alpha(K) = 0.00717 \ I0; \ \alpha(L) = 0.000981 \ I4; \ \alpha(M) = 0.000212 \ 3; \ \alpha(N+) = 5.69 \times 10^{-5} \ 8$
								$\alpha(N)=4.88 \times 10^{-5}$ /; $\alpha(O)=7.60 \times 10^{-6}$ /1; $\alpha(P)=5.20 \times 10^{-6}$ /8 %I $\gamma=0.79$ 14.
780.13 19	3.0 3	1041.62	3-	261.47	4+	E1	0.00183 <i>3</i>	α =0.00183 3; α (K)=0.001571 22; α (L)=0.000207 3; α (M)=4.46×10 ⁻⁵ 7; α (N+)=1.191×10 ⁻⁵ 17
								$\alpha(N)=1.023\times10^{-5}$ 15; $\alpha(O)=1.580\times10^{-6}$ 23; $\alpha(P)=1.050\times10^{-7}$ 15
816.33 16	1.22 8	1793.50	2-	977.15	1-	[M1,E2]	0.0059 16	$\alpha = 0.0059 \ 16; \ \alpha(\text{K}) = 0.0050 \ 14; \ \alpha(\text{L}) = 0.00070 \ 17; \ \alpha(\text{M}) = 0.00015 \ 4; \ \alpha(\text{N}+) = 4.1 \times 10^{-5} \ 10$
								$\alpha(N)=3.5\times10^{-5} 8; \alpha(O)=5.4\times10^{-6} 13; \alpha(P)=3.5\times10^{-7} 11$
824.11 10	4.3 3	1847.80	1+	1023.66	2-	E1	0.001646 23	α = 0.001646 23; α (K)=0.001410 20; α (L)=0.000186 3; α (M)=3.99×10 ⁻⁵ 6; α (N+)=1.066×10 ⁻⁵ 1
								$\alpha(N) = 9.15 \times 10^{-6} \ 13; \ \alpha(O) = 1.415 \times 10^{-6} \ 20; \ \alpha(P) = 9.44 \times 10^{-8} \ 14$
827 93 16	1 20 ^C 13	2023 03	1+	1106.00	0^{+}			$\%_{1}\gamma = 1.31$ 19. $\%_{1}\gamma = 0.30$ 7
852.81 12	1.32 9	1894.39	2+	1041.62	3-			%Iy=0.40 6.
870.67 [@] 11	0.81 ^{&} 9	1894.39	2+	1023.66	2-			%Iv=0.25.5.
870.70 [@] 20	4.2 ^{&} 4	1847.80	1+	977.15	1-			%Iv=1.28.21
x879.31 15	0.56 9	1017.00	1	<i><i>унннн</i></i>	1			$\% I \gamma = 0.17 4.$
								E_{γ} : May be an ¹⁶⁰ Tb impurity line.
897.61 9	41.2 21	977.15	1-	79.51	2+	[E1]	0.001394 20	α =0.001394 20; α (K)=0.001195 17; α (L)=0.0001567 22; α (M)=3.37×10 ⁻⁵ 5; α (N+)=9.00×10 ⁻⁶
								$\alpha(N)=7.73 \times 10^{-6} 11; \ \alpha(O)=1.196 \times 10^{-6} 17; \ \alpha(P)=8.01 \times 10^{-8} 12$
906.50 10	6.1 4	1930.16	1+	1023.66	2-	E1	0.001368 20	$\alpha = 0.001368 \ 20; \ \alpha(\text{K}) = 0.001172 \ 17; \ \alpha(\text{L}) = 0.0001537 \ 22; \ \alpha(\text{M}) = 3.30 \times 10^{-5}$ 5; $\alpha(\text{N}+) = 8.83 \times 10^{-6}$
								$\alpha(N)=7.58\times10^{-6}$ 11; $\alpha(O)=1.173\times10^{-6}$ 17; $\alpha(P)=7.86\times10^{-8}$ 11
017 29 16	0.02.12	1004 20	2+	077 15	1-			$\%_{1\gamma=1.9}3.$
917.28 10	1.00° 10	1074.39	∠ · 1= 2+	977.13	1 2-			701Y = 0.200
922.4 - 3	1.02~ 12	2323.33	1 ,2' 2+	1402.97	3 2-	(E1)	0.001222.10	$\%1\gamma = 0.51$ 0. ≈ -0.001222 10, $\alpha(K) = 0.001124$ 16, $\alpha(L) = 0.0001485$ 21, $\alpha(M) = 2.10 \times 10^{-5}$
922.31 11	5.4 0	1904.14	2	1041.62	3	(EI)	0.001323 19	α =0.001323 19; α (K)=0.001134 10; α (L)=0.0001485 21; α (M)=3.19×10 5

4

 $^{158}_{64}\mathrm{Gd}_{94}\text{-}4$

					¹⁵⁸ Eı	β^{-} decay	1974Kl11,1	975Bl03,1996G	r20 (continued)
							$\gamma(^{158}\text{Gd})$	(continued)	
E_{γ} ‡	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. [#]	δ	α^{\dagger}	Comments
									5; α (N+)=8.53×10 ⁻⁶ α (N)=7.32×10 ⁻⁶ 11; α (O)=1.134×10 ⁻⁶ 16; α (P)=7.61×10 ⁻⁸ 11 %I γ =1.6 3.
925.6 [@] 3	0.40 ^{&} 11	1187.13	2+	261.47	4+	[E2]		0.00324 5	$\begin{aligned} &\alpha = 0.00324 \ 5; \ \alpha(\text{K}) = 0.00273 \ 4; \ \alpha(\text{L}) = 0.000401 \ 6; \\ &\alpha(\text{M}) = 8.74 \times 10^{-5} \ 13; \ \alpha(\text{N}+) = 2.33 \times 10^{-5} \ 4 \\ &\alpha(\text{N}) = 2.00 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 3.06 \times 10^{-6} \ 5; \ \alpha(\text{P}) = 1.89 \times 10^{-7} \ 3 \\ &\% \text{I}\gamma = 0.12 \ 4. \end{aligned}$
940.6 <i>3</i>	1.1 3	1964.14	2^{+}	1023.66	2^{-}				%Iy=0.33 <i>10</i> .
944.15 <i>10</i>	100.	1023.66	2-	79.51	2+	E1		0.001266 18	$ \begin{array}{l} \alpha = 0.001266 \ 18; \ \alpha(\text{K}) = 0.001085 \ 16; \ \alpha(\text{L}) = 0.0001420 \ 20; \\ \alpha(\text{M}) = 3.05 \times 10^{-5} \ 5; \ \alpha(\text{N}+) = 8.16 \times 10^{-6} \\ \alpha(\text{N}) = 7.00 \times 10^{-6} \ 10; \ \alpha(\text{O}) = 1.084 \times 10^{-6} \ 16; \ \alpha(\text{P}) = 7.28 \times 10^{-8} \ 11 \\ \varphi_{1} = 30 \ 4 \end{array} $
953.03 10	6.6 4	1930.16	1+	977.15	1-	(E1)		0.001243 18	$\begin{array}{l} \alpha = 0.001243 \ 18; \ \alpha(\text{K}) = 0.001066 \ 15; \ \alpha(\text{L}) = 0.0001395 \ 20; \\ \alpha(\text{M}) = 3.00 \times 10^{-5} \ 5; \ \alpha(\text{N}+) = 8.01 \times 10^{-6} \\ \alpha(\text{N}) = 6.88 \times 10^{-6} \ 10; \ \alpha(\text{O}) = 1.065 \times 10^{-6} \ 15; \ \alpha(\text{P}) = 7.16 \times 10^{-8} \ 10 \\ \alpha(\text{M}) = 2.0.3 \end{array}$
962.09 9	6.3 4	1041.62	3-	79.51	2+	E1		0.001221 18	$\begin{array}{l} \alpha = 0.001221 \ 18; \ \alpha(\text{K}) = 0.001047 \ 15; \ \alpha(\text{L}) = 0.0001369 \ 20; \\ \alpha(\text{M}) = 2.94 \times 10^{-5} \ 5; \ \alpha(\text{N}+) = 7.87 \times 10^{-6} \\ \alpha(\text{N}) = 6.75 \times 10^{-6} \ 10; \ \alpha(\text{O}) = 1.046 \times 10^{-6} \ 15; \ \alpha(\text{P}) = 7.03 \times 10^{-8} \ 10 \\ \alpha(\text{M}) = 0.33 \times 10^{-6} \ 10; \ \alpha(\text{O}) = 1.046 \times 10^{-6} \ 15; \ \alpha(\text{P}) = 7.03 \times 10^{-8} \ 10 \\ \alpha(\text{M}) = 0.33 \times 10^{-8} \ 10 \\ \alpha(\text{M}) = 0.33 \times 10^{-8} \ 10^{$
977.14 9	54.3 27	977.15	1-	0.0	0+	E1		0.001186 <i>17</i>	$\begin{array}{l} \alpha = 0.001186 \ 17; \ \alpha(\text{K}) = 0.001017 \ 15; \ \alpha(\text{L}) = 0.0001329 \ 19; \\ \alpha(\text{M}) = 2.85 \times 10^{-5} \ 4; \ \alpha(\text{N}+) = 7.64 \times 10^{-6} \\ \alpha(\text{N}) = 6.55 \times 10^{-6} \ 10; \ \alpha(\text{O}) = 1.015 \times 10^{-6} \ 15; \ \alpha(\text{P}) = 6.83 \times 10^{-8} \ 10 \\ \alpha(\text{M}) = 16 \ 5 \ 22 \end{array}$
986.96 10	4.5 3	1964.14	2+	977.15	1-	E1		0.001164 <i>17</i>	$\alpha = 0.001164 \ 17; \ \alpha(K) = 0.000998 \ 14; \ \alpha(L) = 0.0001304 \ 19; \alpha(M) = 2.80 \times 10^{-5} \ 4; \ \alpha(N+) = 7.49 \times 10^{-6} \alpha(N) = 6.43 \times 10^{-6} \ 9; \ \alpha(O) = 9.96 \times 10^{-7} \ 14; \ \alpha(P) = 6.71 \times 10^{-8} \ 10 \ \% \text{ [y = 1.37, 20]}$
998.47 <i>15</i>	1.27 14	1259.95	2+	261.47	4+	E2		0.00276 4	$\alpha = 0.00276 \ 4; \ \alpha(\text{K}) = 0.00233 \ 4; \ \alpha(\text{L}) = 0.000337 \ 5; \alpha(\text{M}) = 7.34 \times 10^{-5} \ 11; \ \alpha(\text{N}+) = 1.96 \times 10^{-5} \ 3 \alpha(\text{N}) = 1.682 \times 10^{-5} \ 24; \ \alpha(\text{O}) = 2.58 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 1.614 \times 10^{-7} \ 23 \% \text{I}\gamma = 0.39 \ 7.$
1004.0 [@] 3	1.6 ^{&} 3	1265.48	3+	261.47	4+	E2+M1	-23 +19-7	0.00273 11	$ \begin{array}{l} \alpha = 0.00273 \ 11; \ \alpha(\mathrm{K}) = 0.00231 \ 10; \ \alpha(\mathrm{L}) = 0.000334 \ 12; \\ \alpha(\mathrm{M}) = 7.3 \times 10^{-5} \ 3; \ \alpha(\mathrm{N}+) = 1.93 \times 10^{-5} \ 7 \\ \alpha(\mathrm{N}) = 1.66 \times 10^{-5} \ 6; \ \alpha(\mathrm{O}) = 2.55 \times 10^{-6} \ 10; \ \alpha(\mathrm{P}) = 1.60 \times 10^{-7} \ 8 \\ \% I \gamma = 0.49 \ 11. \end{array} $

S

 $^{158}_{64}{
m Gd}_{94}$ -5

¹⁵⁸Eu β⁻ decay **1974Kl11,1975Bl03,1996Gr20** (continued)

$\gamma(^{158}\text{Gd})$ (continued)

Eγ‡	$I_{\gamma}^{\ddagger d}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ	α^{\dagger}	Comments
1005.4 [@] 3 1034.5 2	4.1 ^{&} 5 0.48 <i>10</i>	2269.29 2221.63	$(0,1,2)^+$ 2 ⁻	1263.67 1187.13	$\frac{1^{-}}{2^{+}}$	E1		0.001066 15	% I γ =1.25 22. α =0.001066 15; α (K)=0.000915 13; α (L)=0.0001193 17; α (M)=2.56×10 ⁻⁵ 4; α (N+)=6.85×10 ⁻⁶ α (N)=5 88×10 ⁻⁶ 9; α (Q)=0.11×10 ⁻⁷ 13; α (R)=6.15×10 ⁻⁸ 9
1061.68 <i>16</i> 1107.63 <i>9</i>	1.08 <i>9</i> 17.1 8	2325.33 1187.13	1 ⁻ ,2 ⁺ 2 ⁺	1263.67 79.51	1^{-} 2 ⁺	E2		0.00223 4	$ \begin{array}{l} \alpha(N) = 5.35 \times 10^{-5} \ 9, \ \alpha(G) = 9.11 \times 10^{-1} \ 13, \ \alpha(T) = 0.15 \times 10^{-5} \ 9 \\ \Re I\gamma = 0.33 \ 5. \\ \alpha = 0.00223 \ 4; \ \alpha(K) = 0.00189 \ 3; \ \alpha(L) = 0.000268 \ 4; \\ \alpha(M) = 5.81 \times 10^{-5} \ 9; \ \alpha(N+) = 1.592 \times 10^{-5} \ 23 \\ \alpha(N) = 1.334 \times 10^{-5} \ 19; \ \alpha(O) = 2.05 \times 10^{-6} \ 3; \ \alpha(P) = 1.308 \times 10^{-7} \end{array} $
1116.49 <i>10</i>	4.2 3	1196.00	0+	79.51	2+	E2		0.00219 <i>3</i>	19; α (IPF)=3.97×10 ⁻⁷ 6 %Iy=5.2 7. α =0.00219 3; α (K)=0.00186 3; α (L)=0.000263 4; α (M)=5.71×10 ⁻⁵ 8; α (N+)=1.580×10 ⁻⁵ 23 α (N)=1.311×10 ⁻⁵ 19; α (O)=2.01×10 ⁻⁶ 3; α (P)=1.287×10 ⁻⁷
x1130.2 4 1138.3 3 1141.5 3	0.06 <i>3</i> 0.71 <i>9</i> 0.61 <i>9</i>	2325.33 1402.97	1 ⁻ ,2 ⁺ 3 ⁻	1187.13 261.47	2+ 4+	E1		0.000897 13	<i>18</i> ; α (IPF)=5.53×10 ⁻⁷ 8 %I γ =1.28 <i>19</i> . %I γ =0.018 <i>10</i> . %I γ =0.22 <i>4</i> . α =0.000897 <i>13</i> ; α (K)=0.000764 <i>11</i> ; α (L)=9.93×10 ⁻⁵ <i>14</i> ; α (M)=2.13×10 ⁻⁵ <i>3</i> ; α (N+)=1.262×10 ⁻⁵ <i>1</i>
^x 1166.5 5 1180.4 [@] 3	0.05 <i>3</i> 1.1 ^{&} 2	1259.95	2+	79.51	2+	M1		0.00309 5	$\alpha(N)=4.89 \times 10^{-6} 7; \ \alpha(O)=7.59 \times 10^{-7} 11; \ \alpha(P)=5.15 \times 10^{-8} 8; \ \alpha(IPF)=6.92 \times 10^{-6} 12 \$ %I γ =0.19 4. %I γ =0.015 10. α =0.00309 5; $\alpha(K)=0.00263$ 4; $\alpha(L)=0.000355$ 5; $\alpha(M)=7.65 \times 10^{-5} 11; \ \alpha(N+1)=2.46 \times 10^{-5} 4$
1184.1 [@] 3	10.1 ^{&} 12	1263.67	1-	79.51	2+	E1(+M2)	+0.11 6	0.00093 11	$\alpha(\mathrm{N}) = 1.762 \times 10^{-5} 25; \ \alpha(\mathrm{O}) = 2.75 \times 10^{-6} 4; \ \alpha(\mathrm{P}) = 1.90 \times 10^{-7} 3; \alpha(\mathrm{IPF}) = 4.05 \times 10^{-6} 7 \% \mathrm{Iy} = 0.33 8. \alpha = 0.00093 11; \ \alpha(\mathrm{K}) = 0.00078 9; \ \alpha(\mathrm{L}) = 0.000102 13; \alpha(\mathrm{M}) = 2.2 \times 10^{-5} 3; \ \alpha(\mathrm{N} +) = 2.43 \times 10^{-5} 6 $
1186.0 [@] 3	9.8 ^{&} 18	1265.48	3+	79.51	2+	E2		0.00195 3	$\begin{aligned} \alpha(N) &= 5.1 \times 10^{-7}; \ \alpha(O) &= 7.8 \times 10^{-7} \ D; \ \alpha(P) &= 5.3 \times 10^{-6} \ 7; \\ \alpha(IPF) &= 1.84 \times 10^{-5} \ 4 \\ \% I\gamma &= 3.1 \ 6. \\ \alpha &= 0.00195 \ 3; \ \alpha(K) &= 0.001646 \ 23; \ \alpha(L) &= 0.000231 \ 4; \\ \alpha(M) &= 5.01 \times 10^{-5} \ 7; \ \alpha(N+) &= 1.752 \times 10^{-5} \ 25 \\ \alpha(N) &= 1.150 \times 10^{-5} \ 17; \ \alpha(O) &= 1.770 \times 10^{-6} \ 25; \ \alpha(P) &= 1.142 \times 10^{-7} \end{aligned}$
1187.1 [@] 2	14.7 ^{&} 10	1187.13	2+	0.0	0^{+}	E2		0.00194 3	<i>16</i> ; α (IPF)=4.14×10 ⁻⁶ 7 %I γ =3.0 7. α =0.00194 3; α (K)=0.001643 23; α (L)=0.000231 4;

6

				¹⁵⁸ Eu	β^{-} d	lecay	1974Kl11,1975B	103,1996Gr20 (continued)
							$\gamma(^{158}\text{Gd})$ (conti	nued)
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	α^{\dagger}	Comments
								$\alpha(M) = 5.00 \times 10^{-5} 7; \ \alpha(N+) = 1.759 \times 10^{-5} 25$ $\alpha(N) = 1.148 \times 10^{-5} 16; \ \alpha(O) = 1.767 \times 10^{-6} 25; \ \alpha(P) = 1.140 \times 10^{-7} 16;$ $\alpha(IPF) = 4.24 \times 10^{-6} 7$ %Iy=4.57.
1215.7 4 1233.7 2 *1245.1 4 *1250.4 4 *1256.0 8	0.28 6 0.52 11 0.10 4 0.11 4 <0.10	2475.5 2499.19	$1,2^+$ $(1,2)^+$	1259.95 1265.48	2+ 3+			$\%_{1\gamma} = 0.085 \ 22.$ $\%_{1\gamma} = 0.085 \ 22.$ $\%_{1\gamma} = 0.030 \ 13.$ $\%_{1\gamma} = 0.033 \ 13.$ $\%_{1\gamma} = 0.015 \ 16.$
1259.9 <i>3</i>	1.3 ^{&} 2	1259.95	2+	0.0	0+	E2	0.001734 25	$\begin{aligned} &\alpha = 0.001734\ 25;\ \alpha(\text{K}) = 0.001462\ 21;\ \alpha(\text{L}) = 0.000203\ 3;\ \alpha(\text{M}) = 4.40 \times 10^{-5} \\ &7;\ \alpha(\text{N}+) = 2.51 \times 10^{-5}\ 4 \\ &\alpha(\text{N}) = 1.011 \times 10^{-5}\ 15;\ \alpha(\text{O}) = 1.559 \times 10^{-6}\ 22;\ \alpha(\text{P}) = 1.014 \times 10^{-7}\ 15; \\ &\alpha(\text{IPF}) = 1.337 \times 10^{-5}\ 20 \\ &\% \text{I}\gamma = 0.40\ 8. \end{aligned}$
1263.6 4	0.7 <mark>&</mark> 3	2450.9	1,2+	1187.13	2^{+}			%Iy=0.21 10.
1263.61 20	7.3 ^{&} 6	1263.67	1-	0.0	0+	E1	0.000796 12	$ \begin{array}{l} \alpha = 0.000796 \ 12; \ \alpha(\text{K}) = 0.000638 \ 9; \ \alpha(\text{L}) = 8.25 \times 10^{-5} \ 12; \ \alpha(\text{M}) = 1.770 \times 10^{-5} \\ 25; \ \alpha(\text{N}+) = 5.86 \times 10^{-5} \ 9 \\ \alpha(\text{N}) = 4.07 \times 10^{-6} \ 6; \ \alpha(\text{O}) = 6.31 \times 10^{-7} \ 9; \ \alpha(\text{P}) = 4.30 \times 10^{-8} \ 6; \\ \alpha(\text{IPF}) = 5.39 \times 10^{-5} \ 8 \\ \Re_{\text{IV}} = 2.2 \ 4 \end{array} $
1284.0 2 1292.3 2 1301.68 <i>14</i> 1312.08 <i>12</i>	0.21 <i>3</i> 0.89 <i>11</i> 0.61 <i>6</i> 0.89 <i>7</i>	2325.33 2269.29 2325.33 2499.19	$1^{-},2^{+}$ (0,1,2) ⁺ $1^{-},2^{+}$ (1,2) ⁺	1041.62 977.15 1023.66 1187.13	3 ⁻ 1 ⁻ 2 ⁻ 2 ⁺			$\%_1\gamma = 0.064 \ I3.$ $\%_1\gamma = 0.064 \ I3.$ $\%_1\gamma = 0.27 \ 5.$ $\%_1\gamma = 0.19 \ 3.$ $\%_1\gamma = 0.27 \ 4.$
1323.46 <i>14</i>	0.76 6	1402.97	3-	79.51	2+	E1	0.000770 11	$\begin{aligned} &\alpha = 0.000770 \ 11; \ \alpha(\text{K}) = 0.000588 \ 9; \ \alpha(\text{L}) = 7.60 \times 10^{-5} \ 11; \ \alpha(\text{M}) = 1.629 \times 10^{-5} \\ &2.3; \ \alpha(\text{N}+) = 8.95 \times 10^{-5} \ 1 \\ &\alpha(\text{N}) = 3.74 \times 10^{-6} \ 6; \ \alpha(\text{O}) = 5.81 \times 10^{-7} \ 9; \ \alpha(\text{P}) = 3.97 \times 10^{-8} \ 6; \\ &\alpha(\text{IPF}) = 8.51 \times 10^{-5} \ 12 \\ &\% \mid_{Y} = 0.23 \ 4. \end{aligned}$
1347.95 <i>13</i> 1353.64 <i>14</i> ×1363 2 <i>4</i>	5.5 <i>3</i> 0.39 <i>5</i> 0.12 <i>3</i>	2325.33 2395.40	1 ⁻ ,2 ⁺ (3 ⁺)	977.15 1041.62	1- 3-			$\%_1\gamma = 1.67$ 24. $\%_1\gamma = 0.119$ 22. $\%_1\gamma = 0.036$ 11
1372.0 ^f 2	0.25^{f} 10	1451.51	0+	79.51	2+	E2	0.001492 <i>21</i>	$\alpha = 0.001492 \ 21; \ \alpha(\text{K}) = 0.001239 \ 18; \ \alpha(\text{L}) = 0.0001705 \ 24; \ \alpha(\text{M}) = 3.68 \times 10^{-5} 6; \ \alpha(\text{N}+) = 4.57 \times 10^{-5} \alpha(\text{N}) = 8.46 \times 10^{-6} \ 12; \ \alpha(\text{O}) = 1.307 \times 10^{-6} \ 19; \ \alpha(\text{P}) = 8.59 \times 10^{-8} \ 12; \alpha(\text{IPF}) = 3.59 \times 10^{-5} \ 5 \% \text{I}\gamma = 0.08 \ 4.$
1372.0 ^{<i>f</i>} 2 1433.7 <i>3</i> 1438.0 <i>3</i> 1475.2 <i>4</i>	0.44 ^{<i>f</i>} 10 0.21 8 0.12 4 0.16 4	2395.40 2620.92 1517.5 2499.19	(3^+) 2^+ $(1,2)^+$	1023.66 1187.13 79.51 1023.66	2 ⁻ 2 ⁺ 2 ⁺ 2 ⁻			$\% 1\gamma = 0.13$ 4. $\% 1\gamma = 0.06$ 3. $\% 1\gamma = 0.036$ 13. $\% 1\gamma = 0.049$ 14.

7

 $^{158}_{64}{
m Gd}_{94}$ -7

¹⁵⁸Eu β⁻ decay **1974Kl11,1975Bl03,1996Gr20** (continued)

$\gamma(^{158}\text{Gd})$ (continued)

${\rm E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	α^{\dagger}	Comments
^x 1492.5 7	0.08 4							%Iγ=0.024 <i>13</i> .
1517.4 5	0.10 3	1517.5	2+	0.0	0+	E2	0.001280 18	$\alpha = 0.001280 \ 18; \ \alpha(K) = 0.001022 \ 15; \ \alpha(L) = 0.0001391 \ 20; \ \alpha(M) = 3.00 \times 10^{-5} \ 5; \\ \alpha(N+) = 8.81 \times 10^{-5} \\ \alpha(N) = 6.90 \times 10^{-6} \ 10; \ \alpha(O) = 1.067 \times 10^{-6} \ 15; \ \alpha(P) = 7.00 \times 10^{-8} \ 10; $
								α (IPF)=8.01×10 ⁻⁵ 12 %I γ =0.030 10.
1531.4 5	0.20 4	1793.50	2-	261.47	4+	[M2]	0.00387 6	α =0.00387 6; α (K)=0.00326 5; α (L)=0.000455 7; α (M)=9.86×10 ⁻⁵ 14; α (N+)=6.27×10 ⁻⁵ 9
								$\alpha(N)=2.2/\times10^{-5} 4; \ \alpha(O)=3.54\times10^{-6} 5; \ \alpha(P)=2.42\times10^{-7} 4; \ \alpha(IPF)=3.62\times10^{-5} 6 $ %Iy=0.061 15.
^x 1552.0 7	0.11.3							%Iy=0.033 10.
^x 1563.8 6	0.09.3							%Iy=0.027 10.
1596.9 7	0.08 2	2620.92		1023.66	2^{-}			$\%$ I γ =0.024 7.
1644.0 4	0.12 4	2620.92		977.15	1-			$\%$ I γ =0.036 13.
^x 1657.3 8	0.06 3							$\%$ I γ =0.018 10.
1693.4 <i>3</i>	0.21 5	2670.6		977.15	1-			$\%I\gamma = 0.064$ 18.
1702.8 2	0.45 ^a 6	1964.14	2+	261.47	4^{+}			%Iy=0.14 3.
1714.1 2	0.61 7	1793.50	2-	79.51	2^{+}			%Iy=0.19 4.
1738.0 <i>3</i>	0.42 8	2761.94		1023.66	2^{-}			%Iy=0.13 <i>3</i> .
1768.5 5	0.13 3	1847.80	1^{+}	79.51	2^{+}			%Iγ=0.040 <i>11</i> .
1785.0 <i>3</i>	0.24 4	2761.94		977.15	1-			%Iγ=0.073 <i>16</i> .
1793.5 15	0.05 2	1793.50	2-	0.0	0^{+}	[M2]	0.00271 4	$ \substack{\alpha = 0.00271 \ 4; \ \alpha(K) = 0.00222 \ 4; \ \alpha(L) = 0.000306 \ 5; \ \alpha(M) = 6.63 \times 10^{-5} \ 10; \\ \alpha(N+) = 0.0001180 \ 17 $
								α (N)=1.527×10 ⁻⁵ 22; α (O)=2.38×10 ⁻⁶ 4; α (P)=1.633×10 ⁻⁷ 24; α (IPF)=0.0001002 15
								$\%$ I γ =0.015 7.
1814.8 <i>4</i>	0.12 3	1894.39	2+	79.51	2+			$\%1\gamma = 0.036$ 11.
1835.9 6	0.12 3	2859.6	4 ±	1023.66	2-			$\%1\gamma = 0.036$ 11.
1850.3 4	0.50 10	1930.16	I ⁺	79.51	2+			$\%1\gamma = 0.15$ 4.
~1857.0.5	0.32 /	10(4.14	2+	70.51	a +			$\%1\gamma = 0.09/25.$
1884.62 20	4.1 2	1964.14	2 · 1 +	/9.51	2 · 0+			$\sqrt[9]{\gamma=1.25}$ 1/.
1930.2 0	0.155	1930.10	1+	0.0	0^{+}			$\sqrt[9]{1} = 0.040 \ II.$
1944.47 20 x1056 2 2	5.4 <i>5</i>	2023.93	1	/9.51	2			$\sqrt[9]{1} = 1.04 23.$
*1950.2.5	0.30 4	1064.14	2^+	0.0	0+			$\%1\gamma = 0.091$ 17.
1904.2 3	$0.44 \ 3$	1904.14	2 · 1+	0.0	0+			$\%1\gamma = 0.134 \ 23.$
2025.95	5.08 18	2025.95	1	0.0	0 ⁺			$\%1\gamma = 0.94$ 15.
2130.4° 9 x2130.0 4	0.42 14	2213.3?	1	/9.51	Ζ.			$\gamma_{01}\gamma_{=0.15}$ J. $\gamma_{-14}=0.27$ 8
×2159.0 4	0.00 22							70Ty = 0.27 0. $07 I_{0} = 0.042$ 0
2103.4 4 2180 3 8	0.142	2260.20	$(0 \ 1 \ 2)^+$	70 51	2^+			$701\gamma = 0.043$ 9. 0/2 Ly = 0.027. 7
2107.3 0 X2104 2 7	0.09 2	2209.29	(0,1,2)	19.31	2			$0_{1}y = 0.0277$.
2194.2 / X2203 8 1	0.11.5							$\frac{1}{2} \frac{1}{2} \frac{1}$
2203.0 4	0.20 4							//1/-0.005 1/.

From ENSDF

 $^{158}_{64}{
m Gd}_{94}{
m -8}$

158 Eu β^- decay 1974Kl11,1975Bl03,1996Gr20 (continued)

$\gamma(^{158}\text{Gd})$ (continued)

${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
2215.3 ⁸ 3	0.37 5	2215.5?	1	0.0	0^{+}	%Iy=0.112 21.
2246.1 3	1.53 11	2325.33	$1^{-},2^{+}$	79.51	2^{+}	%I _Y =0.46 7.
2260.7 <mark>8</mark> 3	0.82 8	2340.3?	2+	79.51	2^{+}	% y=0.25 4.
^x 2268.2 5	0.21 3					% jy=0.064 13.
^x 2273.7 5	0.17 3					% jy=0.052 12.
2315.3 10	0.07 3	2395.40	(3^{+})	79.51	2^{+}	% y=0.021 10.
2326.0 15	0.06 2	2325.33	1-,2+	0.0	0^{+}	% jy=0.018 7.
2340.5 <mark>8</mark> 10	0.10 3	2340.3?	2+	0.0	0^{+}	% jy=0.030 <i>10</i> .
2367.7 3	2.62 14	2447.30	1	79.51	2^{+}	% y=0.80 11.
2395.6 ^e 5	0.17 ^e 3	2395.40	(3^{+})	0.0	0^{+}	% y=0.052 <i>12</i> .
2395.6 ^e 5	0.17 ^e 3	2475.5	1.2+	79.51	2^{+}	% jy=0.052 <i>12</i> .
^x 2402.7 4	0.16 3		<i>,</i>			%1y=0.049 11.
2421.0 11	0.05 2	2499.19	$(1,2)^+$	79.51	2^{+}	% jy=0.015 7.
2447.4 4	2.54 20	2447.30	1	0.0	0^{+}	% y=0.77 12.
2451.2 6	0.75 2	2450.9	$1,2^{+}$	0.0	0^{+}	% ly=0.23 3.
^x 2464. 2	0.04 2		,			% ly=0.012 7.
2475.5 5	0.13 2	2475.5	$1,2^{+}$	0.0	0^+	$\%$ 1 γ =0.040 8.
2499.0 10	0.208 12	2499.19	$(1,2)^+$	0.0	0^{+}	%Iy=0.063 9.
^x 2514.0 5	0.36 <i>3</i>					$\%1\gamma = 0.109 \ 17.$
2520.5 <mark>8</mark> 12	0.023 12	2600.3?	$1^{(+)}$	79.51	2^{+}	% y=0.007 4.
2542.0 16	0.035 11	2620.92		79.51	2^{+}	$\%_{1} \gamma = 0.011 4.$
2564 <mark>8</mark> 2	0.030 10	2642?		79.51	2^{+}	$\%_{1} = 0.009 4.$
2601.0 <mark>8</mark> 12	0.097 18	2600.3?	$1^{(+)}$	0.0	0^{+}	% 1 = 0 029 7
2640 <mark>8</mark> 2	0.037 15	2642?	-	0.0	0^{+}	$\frac{1}{2} = 0.0115$
2673 2	0.040 16	2670.6		0.0	0^+	
x2703 2	0.11 2	207010		0.0	Ū	% [v=0.033 &
2743.8 <mark>8</mark> 15	0.21.2	2823.5?	1-	79.51	2^{+}	%1~=0.064 //
2764 2	0.062 12	2761.94	•	0.0	$\bar{0}^{+}$	[2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
x2806_3	0.017 8					%[v=0.005]3
2824 <mark>8</mark> 2	0.11.2	2823.5?	1-	0.0	0^{+}	[]~=0.033 &
2844 <mark>8</mark> 2	0.069 14	2844.2?	-	0.0	0^+	%[>=0.02] 5.
x2873 2	0.016 8	202.		0.0	Ŭ	%Iy=0.005 3.
x2884 2	0.018 9					%[v=0.005]3.
x2967 3	0.016 8					%Iy=0.005 <i>3</i> .

[†] Additional information 2. [‡] From 1974K111 for $\approx 130 \ \gamma'$ s; others: 1975B103 for 65 γ' s and 1966Da06, 1965Sc19, 1965Mu16, and 1963Da07 with <25 γ' s. [#] From ¹⁵⁸Gd Adopted γ radiations. [@] From level energy differences (1974K111).

From ENSDF

 $\gamma(^{158}\text{Gd})$ (continued)

& From coincidence data (1974K111).

^{*a*} Author's uncertainty (1974K111) of 0.60 is assumed by evaluator to be a misprint; evaluator used 0.06. ^{*b*} This value of 2.10 *15* is higher relative to that of the 1944 γ than that observed in ¹⁵⁷Gd(n, γ) where the relative values would give I_{γ}(763)=0.89 *13*.

^c This value of 1.29 13 is higher relative to that of the 1944 γ than that observed in ¹⁵⁷Gd(n, γ) where the relative values would give I_{γ}(827)=0.62 9.

^d For absolute intensity per 100 decays, multiply by 0.30 *3*.

^e Multiply placed with undivided intensity.

^{*f*} Multiply placed with intensity suitably divided.

^g Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁵⁸Eu β⁻ decay 1974Kl11,1975Bl03,1996Gr20

¹⁵⁸Eu β⁻ decay 1974Kl11,1975Bl03,1996Gr20

158 Eu β^- decay 1974Kl11,1975Bl03,1996Gr20

