$^{158} \mathrm{Sm}\,\beta^-$ decay $$ 1980Ba51,1997Gr09

History					
Type	Author Citation		Literature Cutoff Date		
Full Evaluation	N. Nica	NDS 141, 1 (2017)	1-Feb-2017		

Parent: 158 Sm: E=0; J^{π} =0⁺; $T_{1/2}$ =5.30 min 3; $Q(\beta^{-})$ =2005 10; $\%\beta^{-}$ decay=100.0 Source produced by 252 Cf SF followed by chemical separation with measurement of total absorption γ spectrum (1996Gr20,1997Gr09) and γ spectra (1980Ba51 and unpublished study).

¹⁵⁸Eu Levels

E(level) [†]	E(level) [†]	E(level) [†]	E(level) [†]
0.0	324.7	551.3	1110
38.9	338.8	632.8	1209.6
97.7	363.6	660	1342.9
189.5	373.4	741.1	1395.3
224.2	467.8	791.5	1421.0
229.9	470	921.3	1448.0
295.8	507.3	1010	1550

[†] The level energies quoted to 0.1 keV are from an unpublished study of the γ rays from this decay and are given in 1997Gr09. The level energies given with no decimal point are from the analysis of the total absorption γ spectrum.

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Comments
(455 10)	1550	0.66	
(557 10)	1448.0	2.5	
(584 10)	1421.0	0.57	
(610 10)	1395.3	0.81	
(662 10)	1342.9	2.6	
(795 10)	1209.6	3.9	
(895 10)	1110	0.90	
(995 10)	1010	0.80	
(1084 10)	921.3	2.4	
(1214 10)	791.5	5.0	
(1264 10)	741.1	0.93	
(1345 10)	660	1.2	
(1372 10)	632.8	0.75	
(1454 10)	551.3	35.	
(1498 10)	507.3	1.5	
(1535 10)	470	3.3	
(1537 10)	467.8	0.7	
(1632 10)	373.4	1.4	
(1641 10)	363.6	17.	
(1666 10)	338.8	12.	
(1680 10)	324.7	6.3	
(1907 10)	97.7	< 2.6	Additional information 1.
			Iβ ⁻ : The value is the total for levels at 0, 39, and 97 keV (1996Gr20), which is 0.6 20, is adopted here as limit.

[†] From total absorption γ spectrometry (1997Gr09).

[‡] Absolute intensity per 100 decays.

¹⁵⁸Sm β⁻ decay **1980Ba51,1997Gr09** (continued)

$\gamma(^{158}\text{Eu})$

Iy normalization: 0.106 12 determined by 1980Ba51 from $%I_{\gamma}(944) = 25\ 2\ (1974KL11,\ 1975BL03)$ and $I_{\gamma}(324)/I_{\gamma}(944)$ ratio measured by them at five different moments of the parent – daughter decay (944γ is from 158 Eu β- decay to 158 Gd and 324γ from this decay). With the updated value $%I_{\gamma}(944) = 30\ 4$ (see 158 Eu β- decay dataset in this evaluation), one can reestimate the normalization constant N=0.127 20 adopted here. Uncertainty does not include contribution from change in $T_{1/2}$ from 5.51 min 9 used by 1980Ba51 to the actual value, 5.30 min 3; also since the decay scheme is unknown, no correction for coincidence summing in the 324–γ ray was made. If included the uncertainty would increase.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	$E_i(level)$	E_{γ}^{\dagger}	I_{γ} †‡	$E_i(level)$	E_{γ}^{\dagger}	I_{γ} †‡	$E_i(level)$
^x 100.2 3	43.8 25		^x 229.7 3	63 4		x363.6 3	117 7	
^x 108.7 3	11.0 <i>13</i>		^x 283.0 3	6.6 6		x376.5 3	5.0 4	
^x 132.3 3	6.9 10		^x 285.4 3	15.9 <i>19</i>		^x 551.2 3	28.5 19	
^x 149.0 3	46. <i>3</i>		x299.7 3	19.8 <i>21</i>		^x 791.4 3	15.5 <i>11</i>	
^x 177.7 3	37.4 20		x321.3 3	78 <i>4</i>		^x 988 1		
x189.4 3	143 9		x324.5 3	100 5		^x 1162.9 3	11.4 6	
^x 190.7 3	39 <i>4</i>		x326.8 3	19.4 <i>13</i>		^x 1209.9 3	8.3 12	
x224.1 3	80 4		x338.6 3	35 <i>3</i>		x1343.3 3	7.8 6	
^x 226.6 3	49 <i>4</i>		^x 361.7 3	62 4		^x 1448.5 3	3.4 <i>3</i>	

[†] From 1980Ba51. The uncertainties in the energies are from a general comment. The intensities are not corrected for coincidence summing and this correction may be large.

[‡] For absolute intensity per 100 decays, multiply by 0.127 20.

 $^{^{}x}$ γ ray not placed in level scheme.