158 Tm ε decay 1975Ag01

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 141, 1 (2017)	1-Feb-2017

Parent: ¹⁵⁸Tm: E=0.0; $J^{\pi}=2^-$; $T_{1/2}=3.98 \text{ min } 6$; $Q(\varepsilon)=6600 \ 30$; $\%\varepsilon+\%\beta^+$ decay=100.0 Source produced by ¹⁶²Er(p,5n) at 157 MeV and mass separation, measured E_{γ}, I_{γ}, $\gamma\gamma$ -coin, ce, $T_{1/2}$ (1975Ag01); other: 1970De13, 1993Al03.

E(level) [†]	Jπ‡	T _{1/2}	Comments
0.0#	0^{+}	2.29 h 6	Tue: from Adopted Levels
192 19 [#] 4	2+	257 ps 18	$T_{1/2}$. from Adopted Levels
$527.22^{\#}.5$	$\frac{2}{4^+}$	135 ps 4	$T_{1/2}$. from Adopted Levels.
$80642^{@}6$	0^{+}	15.5 ps 7	
820.12° 5	0 2 ⁺		
970 35 [#] 8	2 6 ⁺	2.59 ps 8	Tue: from Adopted Levels
$989.09^{@}$ 6	0 2+	2.57 ps 0	
$1043 41^{\&} 6$	2 3 ⁺		
$118379^{\&} 6$	4 ⁺		
1210.58 9	+		
1257.31 [@] 7	4+		
1304.96 17	$2^+, 3, 4^+$		
1341.96 7	3^{-}		
1386.9? 5	0^{+} 2 ⁺		
1418.28 7	(1^{-})		
1426.82 25	2+,3,4+		
1438.18 10	5+		
1489.47 7	$2^+, 3^+$		
1520.290 $1570.22^{a}.8$	(2,3) (2^+)		
$1614 \ 48^{\#} \ 10$	(2^{-})		
1630.22? 20	$(1,2^+)$		
1640.87 12	(2 ⁺)		
1674.03 8	$(2^+,3)$		
1687.02 14	$(1,2^+)$ $(1^-,2,3)$		
1700.12 11	(1, 2, 3)		
1742.63 9	(2,3,4)		
1769.63 13			
1809.09 20	$(2^+,3,4^+)$		
1977.46? 19	(1.2^{+})		
2029.25 11	(-,-)		
2059.71 12	$(1,2^{+})$		
2143.59? 17	$(1,2^+)$ $(2^+,2^+)$		
2305.18? 15	(2, 3) $(2^+, 3, 4^+)$		
2368.35? 20	$(1,2^+)$		
2389.6? 3	$(1,2^{+})$		
2673.69? 16	$(1,2^+)$		
3017.72? 10	$(1,2^{+})$		

¹⁵⁸Tm ε decay **1975Ag01** (continued)

¹⁵⁸Er Levels (continued)

[†] From least-squares fit to γ energies.

[‡] From ¹⁵⁸Er Adopted Levels.

- [#] Band(A): K^{π} 0⁺ ground-state band.
- [@] Band(B): $K^{\pi} = 0^{+} \beta$ -vibrational band.
- & Band(C): $K^{\pi}=2^+ \gamma$ -vibrational band.

^{*a*} Band(D): $K^{\pi} = 0^+$ band.

ε, β^+ radiations

This scheme is quite incomplete since there are 78 unplaced γ 's and the I_(ε + β +) measurements of 1982By03 indicate that 57% of the decays go to levels above those of the current scheme. However as the total unplaced γ -ray intensity is only about 2.3% of the Q value obtained by 2012Wa38 from the atomic mass difference, it results that the main components of the decay are already present in the level scheme. Because of these rather contradictory statements, while the complete figures of intensities and log *ft* (including uncertainties) are listed in the ε + β + table, the evaluator recommends to use them rather as limits (see also comments on I β ,I ε).

E(decay)	E(level)	Ιβ ⁺ †‡#	$\mathrm{I}\varepsilon^{\dagger\ddagger\#}$	Log <i>ft</i>	$I(\varepsilon + \beta^+)^{\text{#}}$	Comments
$(3.58 \times 10^3 \ 3)$	3017.72?	0.17 3	0.29 5	7.10 8	0.46 8	av Eβ=1157 14; εK=0.526 7; εL=0.0806 11; εM+=0.0239 4
$(3.93 \times 10^3 \ 3)$	2673.69?	0.25 5	0.30 5	7.17 8	0.55 10	av E β =1314 14; ϵ K=0.450 7; ϵ L=0.0687 10; ϵ M+=0.0204 3
$(4.21 \times 10^3 \ 3)$	2389.6?	0.11 3	0.094 24	7.73 11	0.20 5	av E β =1444 <i>14</i> ; ε K=0.392 <i>6</i> ; ε L=0.0598 <i>9</i> ; ε M+=0.0177 <i>3</i>
$(4.23 \times 10^3 \ 3)$	2368.35?	0.25 4	0.22 4	7.37 8	0.47 8	av E β =1454 <i>14</i> ; ε K=0.388 <i>6</i> ; ε L=0.0592 <i>9</i> ; ε M+=0.0176 $_{3}$
$(4.29 \times 10^3 \ 3)$	2305.18?	0.27 4	0.23 3	7.37 7	0.50 7	av E β =1483 <i>14</i> ; ε K=0.376 <i>6</i> ; ε L=0.0573 <i>9</i> ; ε M+=0.0170
$(4.37 \times 10^3 \ 3)$	2228.77	0.50 8	0.38 6	7.15 7	0.88 14	av $E\beta$ =1518 14; ε K=0.362 6; ε L=0.0552 9; ε M+=0.01637 25
$(4.46 \times 10^3 \ 3)$	2143.59?	0.24 4	0.17 3	7.52 8	0.41 7	av $E\beta$ =1557 14; ε K=0.347 6; ε L=0.0529 8; ε M+=0.01568 24
$(4.54 \times 10^3 \ 3)$	2059.71	0.37 6	0.24 4	7.38 8	0.61 10	av $E\beta$ =1596 <i>14</i> ; ε K=0.332 <i>5</i> ; ε L=0.0507 <i>8</i> ; ε M+=0.01502 <i>23</i>
$(4.57 \times 10^3 \ 3)$	2029.25	0.49 7	0.32 5	7.27 7	0.81 12	av Eβ=1610 14; εK=0.327 5; εL=0.0499 8; εM+=0.01479 23
$(4.62 \times 10^3 \ 3)$	1977.46?	0.15 3	0.096 19	7.81 9	0.25 5	av $E\beta$ =1634 <i>14</i> ; ε K=0.319 <i>5</i> ; ε L=0.0486 <i>8</i> ; ε M+=0.01441 <i>23</i>
$(4.77 \times 10^3 \ 3)$	1834.65	0.29 5	0.16 3	7.61 8	0.45 8	av $E\beta$ =1700 <i>14</i> ; ε K=0.297 <i>5</i> ; ε L=0.0452 <i>7</i> ; ε M+=0.01340 <i>21</i>
$(4.79 \times 10^3 \ 3)$	1809.09	0.19 5	0.11 2	7.79 11	0.30 7	av $E\beta$ =1712 <i>14</i> ; ε K=0.293 <i>5</i> ; ε L=0.0446 <i>7</i> ; ε M+=0.01323 <i>21</i>
$(4.83 \times 10^3 \ 3)$	1769.63	0.87 16	0.46 8	7.16 8	1.33 24	av $E\beta$ =1730 <i>14</i> ; ε K=0.287 <i>5</i> ; ε L=0.0437 <i>7</i> ; ε M+=0.01297 <i>20</i>
$(4.86 \times 10^3 \ 3)$	1742.63	1.7 3	0.85 14	6.90 7	2.5 4	av $E\beta$ =1743 <i>14</i> ; ε K=0.283 <i>5</i> ; ε L=0.0431 <i>7</i> ; ε M+=0.01279 <i>20</i>
$(4.90 \times 10^3 \ 3)$	1700.12	0.47 7	0.24 4	7.46 7	0.71 11	av $E\beta$ =1763 <i>14</i> ; ε K=0.277 <i>5</i> ; ε L=0.0422 <i>7</i> ; ε M+=0.01252 <i>20</i>
$(4.90 \times 10^3 \ 3)$	1697.97	0.59 8	0.30 4	7.37 6	0.89 12	av $E\beta$ =1764 <i>14</i> ; ε K=0.277 <i>5</i> ; ε L=0.0422 <i>7</i> ; ε M+=0.01250 <i>20</i>
$(4.91 \times 10^3 \ 3)$	1687.02	0.52 7	0.26 4	7.43 7	0.78 11	av Eβ=1769 14; εK=0.276 5; εL=0.0419 7; εM+=0.01243 19
$(4.93 \times 10^3 \ 3)$	1674.03	0.51 7	0.25 4	7.44 7	0.76 11	av E β =1775 14; ε K=0.274 5; ε L=0.0417 7;

Continued on next page (footnotes at end of table)

¹⁵⁸Tm ε decay **1975Ag01** (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Iβ ⁺ †‡#	$\mathrm{I}\varepsilon^{\dagger\ddagger\#}$	Log <i>ft</i>	$I(\varepsilon + \beta^+)^{\#}$	Comments
$(4.96 \times 10^3 \ 3)$	1640.87	0.47 7	0.22 4	7.50 7	0.69 11	ε M+=0.01235 <i>19</i> av E β =1790 <i>14</i> ; ε K=0.269 <i>4</i> ; ε L=0.0410 7; ε M+=0.01215 <i>19</i>
$(4.97 \times 10^3 \ 3)$	1630.22?	0.19 5	0.090 23	7.90 11	0.28 7	av $E\beta$ =1795 <i>14</i> ; ε K=0.268 <i>4</i> ; ε L=0.0408 <i>7</i> ; ε M=-0.01208 <i>1</i> 9
$(4.99 \times 10^3 \ 3)$	1614.48	0.41 6	0.19 3	7.57 7	0.60 9	av $E\beta = 1802 I4$; $\epsilon K = 0.266 4$; $\epsilon L = 0.0404 7$; sM+-0.01109 I9
$(5.03 \times 10^3 \ 3)$	1570.22	1.03 14	0.47 6	7.19 6	1.50 20	av $E\beta$ =1823 14; ϵ K=0.260 4; ϵ L=0.0395 6; ϵ M+=0.01172 18
$(5.07 \times 10^3 \ 3)$	1526.29	2.9 4	1.2 2	6.77 7	4.1 6	av $E\beta$ =1843 <i>14</i> ; ε K=0.254 <i>4</i> ; ε L=0.0387 <i>6</i> ; ε M+=-0.01146 <i>18</i>
$(5.11 \times 10^3 \ 3)$	1489.47	0.77 10	0.33 4	7.36 6	1.10 14	av $E\beta$ =1861 <i>14</i> ; ε K=0.250 <i>4</i> ; ε L=0.0380 <i>6</i> ; ε M=-0.01125 <i>18</i>
$(5.17 \times 10^3 \ 3)$	1426.82	0.12 3	0.049 12	8.19 11	0.17 4	av $E\beta$ =1890 <i>14</i> ; ε K=0.242 <i>4</i> ; ε L=0.0368 <i>6</i> ; ε M+=0.0100 <i>17</i>
$(5.18 \times 10^3 \ 3)$	1418.28	1.9 3	0.78 12	6.99 7	2.7 4	av $E\beta$ =1894 <i>14</i> ; ϵ K=0.241 <i>4</i> ; ϵ L=0.0366 <i>6</i> ; ϵ M+=-0.01086 <i>17</i>
$(5.18 \times 10^3 \ 3)$	1417.57	0.85 14	0.35 6	7.35 8	1.2 2	av $E\beta$ =1894 <i>14</i> ; ϵ K=0.241 <i>4</i> ; ϵ L=0.0366 <i>6</i> ; sM+-0.01086 <i>17</i>
$(5.21 \times 10^3 \ 3)$	1386.9?	0.008 4	0.008 4	$11.00^{1u} \ 22$	0.016 8	av $E\beta$ =1878 <i>14</i> ; ϵ K=0.412 <i>5</i> ; ϵ L=0.0638 <i>8</i> ; ϵ M=-0.01897 23
$(5.26 \times 10^3 \ 3)$	1341.96	6.3 9	2.4 3	6.52 7	8.7 12	av $E\beta$ =1929 <i>14</i> ; ε K=0.232 <i>4</i> ; ε L=0.0353 <i>6</i> ; ε M=-0.01045 <i>16</i>
$(5.30 \times 10^3 \ 3)$	1304.96	0.15 3	0.057 11	8.15 9	0.21 4	av $E\beta = 1947 \ I4; \ \varepsilon K = 0.228 \ 4; \ \varepsilon L = 0.0346 \ 6;$
$(5.34 \times 10^3 \ 3)$	1257.31	0.87 12	0.77 11	9.06 ¹ <i>u</i> 7	1.64 23	av $E\beta$ =1936 14; ϵ K=0.392 5; ϵ L=0.0606 8; ϵ M=-0.01803 22
$(5.39 \times 10^3 \ 3)$	1210.58	0.54 8	0.19 3	7.64 7	0.73 11	av $E\beta$ =1991 <i>I4</i> ; ε K=0.218 <i>4</i> ; ε L=0.0330 <i>5</i> ; ε M=-0.00979 <i>I5</i>
$(5.42 \times 10^3 \ 3)$	1183.79	1.0 2	0.87 14	9.03 ¹ <i>u</i> 7	1.9 <i>3</i>	av $E\beta$ =1970 <i>14</i> ; ε K=0.381 <i>5</i> ; ε L=0.0589 <i>7</i> ; ε M=-0.01751 <i>21</i>
$(5.56 \times 10^3 \ 3)$	1043.41	3.6 6	1.1 2	6.89 8	4.7 8	av $E\beta$ =2069 14; ϵ K=0.201 3; ϵ L=0.0304 5; ϵ M=-0.00902 14
$(5.61 \times 10^3 \ 3)$	989.09	3.2 5	0.98 14	6.96 7	4.2 6	av $E\beta$ =2094 14; ϵ K=0.195 3; ϵ L=0.0296 5; ϵ M=-0.00879 13
$(5.78 \times 10^3 \ 3)$	820.14	5.6 9	1.5 2	6.80 7	7.1 11	av $E\beta = 2174 \ I4$; $\epsilon K = 0.180 \ 3$; $\epsilon L = 0.0273 \ 4$; $\epsilon M = -0.00810 \ I2$
$(5.79 \times 10^3 \ 3)$	806.42	0.62 13	0.41 9	9.48 ¹ <i>u</i> 10	1.03 22	av $E\beta$ =2141 14; ϵ K=0.328 4; ϵ L=0.0507 7; sM+=0.01506 19
$(6.07 \times 10^3 \ 3)$	527.22	5.1 12	2.8 7	8.72 ¹ <i>u</i> 11	7.9 19	av E β =2268 14; ε K=0.294 4; ε L=0.0453 6; ε M=-0.01346 17
$(6.41 \times 10^3 \ 3)$	192.19	23 3	4.5 6	6.42 7	28 4	av E β =2470 15; ε K=0.1348 19; ε L=0.0204 3; ε M+=0.00605 9
$(6.60 \times 10^3 \ 3)$	0.0	77	33	8.9 ¹ <i>u</i> 5	10 10	av E β =2510 14; ε K=0.239 3; ε L=0.0367 5; ε M+=0.01089 14

[†] $I_{(\varepsilon+\beta+)}$ values are from γ intensity balances and these are divided into $I(\beta+)$ and $I(\varepsilon)$ components based on the theoretical $\beta+/$ capture ratios. The associated uncertainties are given, but they do not include any contribution from the incompleteness of the decay scheme (as illustrated by the presence of 78 unplaced γ' s). Although they are not populated by ε decay, the calculated $I(\varepsilon+\beta+)$ for the levels at 970 and 1438 keV are each $\approx 0.4\%$, again indicating the limited quality of these values.

[‡] From total absorption γ spectra, 1982By03 deduce that $\approx 57\%$ of the $\varepsilon + \beta +$ decays go to levels above ≈ 2.8 MeV which are not in the known scheme. This suggests that in general the I($\varepsilon + \beta +$) in this scheme should be reduced by a factor of 2 (and the log *ft*)

Continued on next page (footnotes at end of table)

158 Tm ε decay 1975Ag01 (continued)

ε, β^+ radiations (continued)

values increased by 0.3 units). Also, it suggests that the small $I(\varepsilon + \beta +)$ values are not meaningful since these levels may be fed by γ 's from the unreported levels. # Absolute intensity per 100 decays.

 $\gamma(^{158}\mathrm{Er})$

I γ normalization: calculated to give 100% feeding of the ground state and assuming the ground-state $\varepsilon + \beta + \text{branching} = 10\%$ 10, based on log $f^{\text{lu}}t > 8.5$ for ground state which gives I $_{\varepsilon}(0) < 20\%$.

E_{γ}	$I_{\gamma}^{\&}$	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [†]	α #	Comments
^x 104.6 3	0.12 3							%Iγ=0.074 21.
172.0 3	0.12 3	1697.97	(1 ⁻ ,2,3)	1526.29	(2,3) ⁻	[D,E2]	0.419 7	α value given for E2; 0.0772 <i>12</i> if E1, 0.612 <i>9</i> if M1. % I γ =0.074 <i>21</i> .
^x 175.0 3	0.09 3							%Iy=0.056 20.
^x 177.9 4	0.10 3							$%I\gamma = 0.062 \ 20.$
182.3 <i>3</i>	0.16 7	989.09	2+	806.42	0^{+}	[E2]	0.344	α (K)=0.212 4; α (L)=0.1012 16; α (M)=0.0242 4
								α (N)=0.00550 9; α (O)=0.000673 11; α (P)=9.77×10 ⁻⁶ 15 %I γ =0.10 5.
192.14 6	100	192.19	2+	0.0	0^{+}	E2	0.288	$\alpha(K)=0.182 \ 3; \ \alpha(L)=0.0813 \ 12; \ \alpha(M)=0.0194 \ 3$
								α (N)=0.00442 7; α (O)=0.000543 8; α (P)=8.50×10 ⁻⁶ 12 % 1γ =62 7.
223.33 6	0.20 2	1043.41	3+	820.14	2+	[M1,E2]	0.24 7	$\alpha(K)=0.18$ 7; $\alpha(L)=0.041$ 4; $\alpha(M)=0.0093$ 12
								$\alpha(N)=0.00215\ 25;\ \alpha(O)=0.000287\ 12;\ \alpha(P)=1.0\times10^{-5}\ 5$
x240.00.20	0.40.8							%Iy = 0.124 Iy. %Iy = 0.25 6
x248.08.10	0.40.0							%Iy=0.25 0. %Iy=0.23 5
256.50 10	0.06 1	1674.03	$(2^+,3)$	1417.57	2^{+}			%Iy=0.037 8.
268.31 9	0.32 3	1257.31	4 ⁺	989.09	$\bar{2}^{+}$	(E2)	0.0974	$\alpha(K)=0.0694 \ 10; \ \alpha(L)=0.0216 \ 3; \ \alpha(M)=0.00509 \ 8$
								α (N)=0.001164 <i>17</i> ; α (O)=0.0001478 <i>21</i> ; α (P)=3.49×10 ⁻⁶ <i>5</i> %I γ =0.20 <i>3</i> .
								α (K)exp<0.078 (1975Ag01).
								Mult.: Assignment from $\alpha_{\rm K}(\exp)$ is E1,E2, but J^{π} 's require E2.
278.95 [‡] 15	0.07 1	1489.47	$2^+, 3^+$	1210.58	+			%Iγ=0.043 8.
287.00 20	0.04 1	1257.31	4+	970.35	6+	[E2]	0.0791	α (K)=0.0573 8; α (L)=0.01682 24; α (M)=0.00394 6
								α (N)=0.000902 13; α (O)=0.0001154 17; α (P)=2.92×10 ⁻⁶ 5
								$\%$ I γ =0.025 7.
305.82 8	0.11 2	1489.47	$2^+, 3^+$	1183.79	4+		0.0407	$\%1\gamma = 0.068$ 15.
335.08 6	27.1 24	527.22	4+	192.19	2^+	E2	0.0496	$\alpha(K)=0.03726; \alpha(L)=0.0096174; \alpha(M)=0.002234$
								$\alpha(N)=0.000512 \ 8; \ \alpha(O)=6.66\times 10^{-3} \ 10; \ \alpha(P)=1.95\times 10^{-6} \ 3$ %Iy=16.8.24
352.30 ^a 20	0.07 ^a 3	1341.96	3-	989.09	2^{+}	[E1]	0.01253	$\alpha(K)=0.01059$ 15; $\alpha(L)=0.001514$ 22; $\alpha(M)=0.000334$ 5
								$\alpha(N)=7.72\times10^{-5} II; \alpha(O)=1.090\times10^{-5} I6; \alpha(P)=5.55\times10^{-7} 8$ % $1_{V}=0.043, 20$
352.30^{a} 20	0.07^{a} 3	1769.63		1417.57	2+			%Iy=0.043 20.
356.10 20	0.11 3	1697.97	$(1^{-}, 2.3)$	1341.96	3-			$\% I_{\gamma} = 0.068 \ 20.$
x359.10 20	0.10 4		× , ,-,					%Íγ=0.06 <i>3</i> .
363.75 7	0.43 4	1183.79	4+	820.14	2^{+}	E2	0.0391	$\alpha(\mathbf{K})=0.0298$ 5; $\alpha(\mathbf{L})=0.00723$ 11; $\alpha(\mathbf{M})=0.001674$ 24

 \mathbf{v}

					158 Tm ε	decay	1975Ag01 (a	continued)
						γ(¹⁵⁸ Ε	Er) (continued)	
E_{γ}	Ιγ ^{&}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	$\delta^{@}$	α #	Comments
374.15 7	0.46 4	1417.57	2+	1043.41 3+	E2(+M1)	>2.	0.040 4	$\alpha(N)=0.000384 \ 6; \ \alpha(O)=5.04\times10^{-5} \ 7; \ \alpha(P)=1.584\times10^{-6} \ 23$ %Iy=0.27 4. $\alpha(K)exp=0.031 \ 5 \ (1975Ag01).$ Mult.: Assignment from $\alpha_{\rm K}(exp)$ is E2(+M1), but $J^{\pi\prime}$'s require E2. $\alpha(K)=0.031 \ 4; \ \alpha(L)=0.0068 \ 3; \ \alpha(M)=0.00157 \ 6$ $\alpha(N)=0.000361 \ 14; \ \alpha(O)=4.81\times10^{-5} \ 24; \ \alpha(P)=1.71\times10^{-6} \ 24$ %Iy=0.28 4.
390.65 20 395.12 20 ^x 406.00 20 ^x 415 0 3	0.14 2 0.11 2 0.07 2 0.09 2	1210.58 1438.18	+ 5 ⁺	820.14 2 ⁺ 1043.41 3 ⁺	(E2)		0.0309	α (K)exp=0.030 5 (1975Ag01). %Iy=0.087 16. %Iy=0.070 15. %Iy=0.043 14. %Iy=0.056 14
416.88 ^{<i>a</i>} 20 416.88 ^{<i>a</i>} 20 428.53 10	$\begin{array}{c} 0.05 \ 2 \\ 0.12^{a} \ 2 \\ 0.12^{a} \ 2 \\ 0.60 \ 6 \end{array}$	1674.03 1834.65 1417.57	(2 ⁺ ,3) 2 ⁺	1257.31 4 ⁺ 1417.57 2 ⁺ 989.09 2 ⁺	E2(+M1)	>1.5	0.029 5	$\%_{1\gamma=0.054} = 17.$ $\%_{1\gamma=0.074} = 15.$ $\alpha(K)=0.023 \ 4; \ \alpha(L)=0.0045 \ 4; \ \alpha(M)=0.00103 \ 7.$ $\alpha(N)=0.000239 \ 17; \ \alpha(O)=3.2\times10^{-5} \ 3; \ \alpha(P)=1.30\times10^{-6} \ 25.$ $\%_{1\gamma=0.076} = 0.37 \ 6.$
430.7 <i>3</i> 443.13 <i>7</i>	0.08 <i>3</i> 0.59 <i>6</i>	1614.48 970.35	(2 ⁻) 6 ⁺	1183.79 4 ⁺ 527.22 4 ⁺	E2		0.0226	α (K)exp=0.023 4 (1975Ag01). %Iy=0.050 20. α (K)=0.01772 25; α (L)=0.00377 6; α (M)=0.000866 13 α (N)=0.000199 3; α (O)=2.67×10 ⁻⁵ 4; α (P)=9.68×10 ⁻⁷ 14 %Iy=0.37 6.
445.90 20	0.23 2	1489.47	2+,3+	1043.41 3+	(E2)		0.0222	$\alpha(\mathbf{K}) \exp[=0.020 \ 4 \ (1975 \text{Ag01}).$ Mult.: Assignment from $\alpha_{\mathbf{K}}(\exp)$ is E2(+M1), but $J^{\pi'}$ s require E2. $\alpha(\mathbf{K})=0.01744 \ 25; \ \alpha(\mathbf{L})=0.00370 \ 6; \ \alpha(\mathbf{M})=0.000849 \ 12$ $\alpha(\mathbf{N})=0.000196 \ 3; \ \alpha(\mathbf{O})=2.62\times10^{-5} \ 4; \ \alpha(\mathbf{P})=9.54\times10^{-7} \ 14$ $\% I\gamma=0.142 \ 21.$
461.93 7	1.37 <i>13</i>	989.09	2+	527.22 4+	E2		0.0202	α (K)exp<0.018 (1975Ag01). Mult.: α _K (exp) indicates E1,E2, but placement requires E2. α (K)=0.01595 23; α (L)=0.00331 5; α (M)=0.000759 11 α (N)=0.0001749 25; α (O)=2.35×10 ⁻⁵ 4; α (P)=8.76×10 ⁻⁷ 13 %Iy=0.85 13. (K) = 0.016 2 (1075 A, 01)
482.85 25 484.85 25 500.40 10	0.14 2 0.12 2 0.69 7	1526.29 1304.96 1489.47	(2,3) ⁻ 2 ⁺ ,3,4 ⁺ 2 ⁺ ,3 ⁺	1043.41 3 ⁺ 820.14 2 ⁺ 989.09 2 ⁺	M1(+E2)	<0.5	0.0330 <i>19</i>	α(K)exp=0.010 5 (1975Ag01). Mult.: Assignment from $\alpha_{\rm K}(\text{exp})$ is E2(+M1), but $J^{\pi\prime}$'s require E2. %Iγ=0.087 16. %Iγ=0.074 15. α(K)=0.0277 17; α(L)=0.00408 18; α(M)=0.00090 4 α(N)=0.000211 9; α(O)=3.04×10 ⁻⁵ 14; α(P)=1.67×10 ⁻⁶ 11 %Iγ=0.43 7. α(K)=0.023 6 (1075 Ag01)
x504.70 20 516.28 20	0.72 <i>1</i> 8 1.1 <i>3</i>	1043.41	3+	527.22 4+	E2,M1		0.024 9	α (K)exp=0.055 0 (1975Ag01). %I γ =0.45 13. α (K)exp=0.009 3 (1975Ag01). α (K)=0.020 8; α (L)=0.0031 8; α (M)=0.00070 17

¹⁵⁸₆₈Er₉₀-6

					¹⁵⁸ Tm	ε decay	1975Ag01 (c	ontinued)		
γ ⁽¹⁵⁸ Er) (continued)										
E_{γ}	Ι _γ &	E_i (level)	\mathbf{J}_i^{π}	E _f J	$\frac{\pi}{f}$ Mult.	$\delta^{@}$	α #	Comments		
571.20 10	0.35 4	1614.48	(2 ⁻)	1043.41 3	+ (E1)		0.00418	$\begin{aligned} \alpha(N) &= 0.00016 \ 4; \ \alpha(O) &= 2.3 \times 10^{-5} \ 7; \ \alpha(P) &= 1.2 \times 10^{-6} \ 5 \\ \% I\gamma &= 0.68 \ 20. \\ \alpha(K) &= x = 0.019 \ 9 \ (1975 \text{Ag}01). \\ \alpha(K) &= 0.00355 \ 5; \ \alpha(L) &= 0.000493 \ 7; \ \alpha(M) &= 0.0001083 \ 16 \\ \alpha(N) &= 2.51 \times 10^{-5} \ 4; \ \alpha(O) &= 3.59 \times 10^{-6} \ 5; \ \alpha(P) &= 1.91 \times 10^{-7} \ 3 \\ \% I\gamma &= 0.22 \ 4. \\ \alpha(K) &= x = x = 0.0085 \ (1075 \text{A} = 01). \end{aligned}$		
580.5 ^b 5	< 0.05	1386.9?	0+	806.42 0	+ E0			α (K)exp<0.0085 (1975Ag01). %I γ =0.015 <i>16</i> . I _(γ+ce) : From I _{ce} (K)=0.023 <i>4</i> , I(γ +ce)=0.026 <i>5</i> if transition is pure		
597.12 20	0.15 3	1417.57	2+	820.14 2	+ E0+M1,	E2	0.20 8			
^x 599.80 <i>10</i>	0.30 <i>3</i>				M1(+E2) ≤1.0	0.019 3	α: Calculated from $\alpha_{\rm K}(\exp)$. $\alpha({\rm K})=0.016$ 3; $\alpha({\rm L})=0.0024$ 3; $\alpha({\rm M})=0.00053$ 6 $\alpha({\rm N})=0.000123$ 15; $\alpha({\rm O})=1.77\times10^{-5}$ 23; $\alpha({\rm P})=9.6\times10^{-7}$ 16 %Iγ=0.19 3.		
611.19 8	0.42 5	1417.57	2+	806.42 0	+ (E2)		0.00999	α (K)exp=0.021 8 (1975Ag01). α (K)=0.00811 12; α (L)=0.001461 21; α (M)=0.000330 5 α (N)=7.64×10 ⁻⁵ 11; α (O)=1.051×10 ⁻⁵ 15; α (P)=4.55×10 ⁻⁷ 7 %I γ =0.26 5. α (K)exp<0.010 (1975Ag01).		
614.26 6	2.74 25	806.42	0+	192.19 2	+ E2		0.00987	Mult.: Assigned E1,E2 from $\alpha_{\rm K}(\exp)$, but $J^{\pi'}s$ require E2. $\alpha({\rm K})=0.00802$ 12; $\alpha({\rm L})=0.001441$ 21; $\alpha({\rm M})=0.000326$ 5 $\alpha({\rm N})=7.53\times10^{-5}$ 11; $\alpha({\rm O})=1.037\times10^{-5}$ 15; $\alpha({\rm P})=4.50\times10^{-7}$ 7 %I $\gamma=1.70$ 25. $\alpha({\rm K})\exp=0.0079$ 20 (1975Ag01).		
628.03 6	10.8 <i>10</i>	820.14	2+	192.19 2	+ E2(+M1) >1.7	0.0107 14	Mult.: Assignment from $\alpha_{\rm K}(\exp)$ is E2(+M1), but $J^{\pi'}$ s require E2. $\alpha({\rm K})=0.0088 \ I2; \ \alpha({\rm L})=0.00149 \ I4; \ \alpha({\rm M})=0.00033 \ 3$ $\alpha({\rm N})=7.7\times10^{-5} \ 7; \ \alpha({\rm O})=1.08\times10^{-5} \ I1; \ \alpha({\rm P})=5.0\times10^{-7} \ 8$ $\%_{\rm IY}=6.7 \ I0.$		
^x 635.5 <i>3</i> 656.57 <i>7</i>	0.05 <i>3</i> 2.76 <i>25</i>	1183.79	4+	527.22 4	.+ E2(+M1) ≥1.0	0.0107 23	α (K)exp=0.0083 15 (1975Ag01). %I γ =0.031 19. α (K)=0.0089 20; α (L)=0.00143 23; α (M)=0.00032 5 α (N)=7.4×10 ⁻⁵ 12; α (O)=1.05×10 ⁻⁵ 18; α (P)=5.1×10 ⁻⁷ 13 %I γ =1.71 25.		
^x 667.40 <i>15</i> 669.37 <i>15</i>	0.19 <i>3</i> 0.38 <i>4</i>	1489.47	2+,3+	820.14 2	+			α (K)exp=0.0092 20 (1975Ag01). %Iy=0.118 23. %Iy=0.24 4.		
^x 676.80 ⁺ 10 684.85 10	0.17 <i>5</i> 0.54 <i>5</i>	1674.03	(2+,3)	989.09 2	+			$\%_{1\gamma=0.11}$ 4. $\%_{1\gamma=0.33}$ 5.		

From ENSDF

¹⁵⁸₆₈Er₉₀-7

						1	⁵⁸ Tm ε decay	1975Ag01 (continued)	
							γ (¹⁵⁸ Er) (continued)		
	E_{γ}	Ι _γ &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α #	I _(γ+ce) &	Comments
	^x 697.3 8	< 0.05					E0			$ α(K)exp<0.0064 (1975Ag01). $ Mult.: $α_K(exp)$ is consistent with E1 or E2. $%I_Y=0.015 \ 16.$ α(K)exp>0.195 (1975Ag01).
	698.9 <i>3</i> 702.40 <i>15</i>	0.10 <i>3</i> 0.50 <i>10</i>	1742.63 2228.77	(2,3,4) $(2^+,3^+)$	1043.41 1526.29	3 ⁺ (2,3) ⁻	(E1)	0.00272		$\alpha_{(y+ce)}$. From $I_{ce}(\mathbf{K})$, $I(y+ce)=0.0092$ 17 if γ is pure E0. %I γ =0.062 20. $\alpha(\mathbf{K})$ =0.00231 4; $\alpha(\mathbf{L})$ =0.000317 5; $\alpha(\mathbf{M})$ =6.96×10 ⁻⁵ 10 $\alpha(\mathbf{N})$ =1.616×10 ⁻⁵ 23; $\alpha(\mathbf{O})$ =2.32×10 ⁻⁶ 4; $\alpha(\mathbf{P})$ =1.255×10 ⁻⁷ 18
	x703.9 <i>3</i> 706.05 <i>10</i>	0.38 <i>10</i> 1.20 <i>11</i>	1526.29	(2,3)-	820.14	2+	E1	0.00269		%1 γ =0.31 7. %1 γ =0.24 7. α (K)=0.00229 4; α (L)=0.000314 5; α (M)=6.89×10 ⁻⁵ 10 α (N)=1.599×10 ⁻⁵ 23; α (O)=2.29×10 ⁻⁶ 4; α (P)=1.242×10 ⁻⁷ 18 %1 γ =0.74 11
,	729.8 5		1257.31	4+	527.22	4+	E0(+M1+E2)			α (K)exp<0.0031 (1975Ag01). I_{γ} : Measured value is < 0.10; intensity balance at 527 level requires < 0.03. α (K)exp>0.705 (1975Ag01).
	763.90 <i>15</i> 777.45 <i>25</i> 780.7 <i>3</i> 788.5 ^b <i>3</i>	0.13 2 0.10 3 0.12 3	1570.22 1304.96 1769.63	(2^+) $2^+,3,4^+$ $(1,2^+)$	806.42 527.22 989.09	0^+ 4^+ 2^+ $(2^+, 2^+)$				$I_{(\gamma+ce)}$: Equals $I(ce)=0.080$ 9 if γ is pure E0. % $I\gamma=0.081$ 16. % $I\gamma=0.062$ 20. % $I\gamma=0.074$ 21. % $I_{V}=0.003$ 22
	794.00 <i>15</i> 796.85 <i>15</i>	0.13 5 0.45 5 1.83 15	1614.48 989.09	$(1,2^{-})$ (2^{-}) 2^{+}	820.14 192.19	(2, 3) 2^+ 2^+	E0+E2+M1	0.113 17		$%I\gamma = 0.093 22.$ $%I\gamma = 0.28 5.$ $\alpha(K) = 0.093 15; \alpha(L) = 0.015$ $\%I\gamma = 1.26 18.$ $\alpha(K) \exp = 0.100 15 (1975 \text{Ag01}).$
	806.2 5	< 0.02	806.42	0^{+}	0.0	0+	E0		0.038 6	$ α$: Calculated from $α_{\rm K}(\exp)$. %Iγ=0.006 7.
	814.75 8	1.86 <i>15</i>	1341.96	3-	527.22	4+	E1	0.00202		α (K)exp>1.2 (19/5Ag01). α (K)=0.001722 25; α (L)=0.000234 4; α (M)=5.14×10 ⁻⁵ 8 α (N)=1.195×10 ⁻⁵ 17; α (O)=1.718×10 ⁻⁶ 24; α (P)=9.39×10 ⁻⁸ 14
	820.09 7	5.3 4	820.14	2+	0.0	0+	E2	0.00511		
	^x 831.02 20 834.40 20	0.13 <i>3</i> 0.18 <i>4</i>	1640.87	(2 ⁺)	806.42	0+				%Iγ=3.3 5. α(K)exp=0.0036 9 (1975Ag01). %Iγ=0.081 21. %Iγ=0.11 3.

 ∞

					158 Tm ε decay		1975Ag01 (continued)		
						γ(¹⁵⁸ Ε	r) (continued)		
E_{γ}	$I_{\gamma}^{\&}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	$\delta^{@}$	α #	Comments	
851 19 9	767	1043 41	3+	192.19 2^+	$F2(\pm M1)$	>1.2	0.0056.10	$\alpha(\mathbf{K}) = 0.0047.8$; $\alpha(\mathbf{I}) = 0.00072.10$; $\alpha(\mathbf{M}) = 0.000161.22$	
051.177	7.07	10+5.+1	5	192.19 2	L2(+1411)	≥1.2	0.0050 10	$\alpha(N)=0.004778, \alpha(L)=0.00072719, \alpha(M)=0.000101722$ $\alpha(N)=3.7\times10^{-5}5; \alpha(O)=5.3\times10^{-6}8; \alpha(P)=2.7\times10^{-7}5$ %Iy=4.77. $\alpha(K)$ exp=0.00459 (1975Ag01).	
853.90 20 ^x 889.6 4	0.50 8 0.20 7	1674.03	(2+,3)	820.14 2+				%Iy=0.31 6. %Iy=0.12 5.	
890.65 25	0.43 11	1417.57	2+	527.22 4+	(E2)		0.00428	$\alpha(K)=0.00356\ 5;\ \alpha(L)=0.000561\ 8;\ \alpha(M)=0.0001253\ 18$ $\alpha(N)=2.91\times10^{-5}\ 4;\ \alpha(O)=4.10\times10^{-6}\ 6;\ \alpha(P)=2.02\times10^{-7}\ 3$ $\%I\gamma=0.27\ 8.$ $\alpha(K)\exp<0.007\ (1975Ag01).$	
000.0.4	0.10.2	1426.02	2 + 2.4 +	507.00 4+				Mult.: Assigned E1,E2 from $\alpha_{\rm K}(\exp)$, but $J^{\rm A'}$'s require E2.	
900.0 4	0.102	1420.82	2',3,4' 5+	$527.22 4^{+}$				$\%1\gamma = 0.062$ 15.	
910.87 10	0.04 /	1436.16	(234)	327.22 4 820.14 2+				$\%1\gamma = 0.407$.	
922.30 20	0.50 4	1742.03	(2,3,4)	820.14 2				$\frac{901}{4} = 0.194$	
940.9 J 061.68 15	0.35 20	1/09.03	$2^{+} 2^{+}$	520.14 2 $527.22 4^+$				$\gamma_{01} = 0.54$ 15.	
x068.3 1	0.20 3	1407.47	2,5	521.22 4				$\frac{1}{2} \frac{1}{2} \frac{1}$	
908.3 4	0.072 0.134	7778 77	$(2^+ 2^+)$	1257 31 4+				$\gamma_{01} = 0.043$ 14.	
x078 15 15	0.134 0.142	2220.11	(2,3)	1237.31 4				$\%_{1} = 0.085.$	
080.06.10	505	080.00	2+	$0.0 0^{+}$	E2		0.00244	$\alpha(K) = 0.00287 4; \alpha(L) = 0.000441 7; \alpha(M) = 0.81\times10^{-5} 14$	
989.06 10	5.9 5	989.09	2	0.0 0	E2		0.00344	$\begin{aligned} \alpha(\mathbf{K}) &= 0.00287 \ 4; \ \alpha(\mathbf{L}) = 0.0004417; \ \alpha(\mathbf{M}) = 9.81 \times 10^{-7} \ 14 \\ \alpha(\mathbf{N}) &= 2.28 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 3.23 \times 10^{-6} \ 5; \ \alpha(\mathbf{P}) = 1.635 \times 10^{-7} \ 23 \\ \% &I\gamma = 3.7 \ 5. \\ \alpha(\mathbf{K}) &= 0.0027 \ 7 \ (1975 \text{Ag01}). \end{aligned}$	
999.32 <i>10</i> ^x 1008.6 <i>4</i> ^x 1011 5 3	0.59 9 0.20 3 0.22 6	1526.29	(2,3) ⁻	527.22 4+				%Iy=0.37 7. %Iy=0.124 24. %Iy=0.14 4	
1018.36 10	1.11 10	1210.58	+	192.19 2+	E2.M1		0.0046 14	$\alpha(K) = 0.0039 \ 12; \ \alpha(L) = 0.00056 \ 15; \ \alpha(M) = 0.00012 \ 4$	
					,			$\alpha(N) = 2.9 \times 10^{-5} 8$; $\alpha(O) = 4.1 \times 10^{-6} 12$; $\alpha(P) = 2.3 \times 10^{-7} 8$ %I $\gamma = 0.69 10$.	
1043.05 <i>10</i>	1.30 <i>13</i>	1570.22	(2+)	527.22 4+	(E2)		0.00308	$\alpha(K)=0.00258 \ 4; \ \alpha(L)=0.000391 \ 6; \ \alpha(M)=8.69\times10^{-5} \ 13$ $\alpha(N)=2.02\times10^{-5} \ 3; \ \alpha(O)=2.87\times10^{-6} \ 4; \ \alpha(P)=1.470\times10^{-7} \ 21$ $\%_{I}\gamma=0.81 \ I2.$ $\alpha(K)\exp<0.003 \ (1975Ag01).$ Mult: Assigned E1.E2 from $\alpha_{K}(\exp)$, but $J^{\pi'}s$ require E2.	
x1048.75 25	0.18 3							%Iy=0.111 23.	
^x 1052.45 25	0.15 6							%Iy=0.09 4.	
1065.07 8	2.50 20	1257.31	4+	192.19 2+	E2		0.00295	$\alpha(K) = 0.00248 \ 4; \ \alpha(L) = 0.000374 \ 6; \ \alpha(M) = 8.30 \times 10^{-5} \ 12$ $\alpha(N) = 1.93 \times 10^{-5} \ 3; \ \alpha(O) = 2.74 \times 10^{-6} \ 4; \ \alpha(P) = 1.411 \times 10^{-7} \ 20$ $\% I\gamma = 1.55 \ 22.$ $\alpha(K) \exp = 0.0029 \ 8 \ (1975 \text{Ag01}).$ Mult: Assignment from $\alpha_{T}(\exp)$ is $F2(+M1)$ but $I^{\pi/s}$ require F2	
^x 1109.8.3	0.16.3							%Iv=0.099 22.	
1113.4 ^{<i>a</i>} 4	0.12^{a} 3	1304.96	2+,3,4+	192.19 2+				%Iy=0.074 21.	

 $^{158}_{68}{
m Er}_{90}$ -9

 $^{158}_{68}{
m Er}_{90}$ -9

From ENSDF

					¹⁵⁸ Tm	$\mathbf{r} \in \mathbf{decay}$	1975Ag01 ((continued)				
	γ ⁽¹⁵⁸ Er) (continued)											
Eγ	Ι _γ &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	$\alpha^{\#}$	Comments				
1113.4 ^{<i>a</i>} 4	$0.12^{a} 3$	1640.87	(2+)	527.22	4+			%Iγ=0.074 21.				
1132.90 10	12.2 10	1341.96	3-	192.19	2+	E1	1.07×10^{-3}	$\alpha(K)=0.000905 \ 13; \ \alpha(L)=0.0001213 \ 17; \ \alpha(M)=2.66\times 10^{-5} \ 4$				
								α (N)=6.17×10 ⁻⁶ 9; α (O)=8.92×10 ⁻⁷ 13; α (P)=4.97×10 ⁻⁸ 7; α (IPF)=7.52×10 ⁻⁶ 11 %Iy=7.6 11. α (K)exp=0.00083 20 (1975Ag01).				
1172.90 <i>10</i> x1206.9 <i>3</i>	1.15 <i>10</i> 0.14 <i>4</i>	1700.12		527.22	4+			%Iy=0.71 10. %Iy=0.09 3.				
1215.32 <i>15</i> <i>x</i> 1217.2 <i>5</i>	1.04 <i>11</i> 0.19 8	1742.63	(2,3,4)	527.22	4+			$\% I \gamma = 0.64 \ 10.$ $\% I \gamma = 0.12 \ 6.$				
1225.90 ^{<i>ab</i>} 8	2.20 ^{<i>a</i>} 18	1417.57	2^{+}	192.19	2+			$\%1\gamma = 1.36$ 19. $\alpha(K) \exp < 0.0018$ (1975A ≈ 0.1)				
1225.90 ^a 8	2.20 ^a 18	1418.28	(1 ⁻)	192.19	2^{+}			%Iy=1.36 <i>19</i> .				
1234.4 <i>3</i>	0.17 4	1426.82	2+,3,4+	192.19	2+			%Iy=0.11 <i>3</i> .				
1239.80 ^{<i>a</i>} 20	0.32^{a} 5	2059.71	$(1,2^{+})$	820.14	2+			$\%$ I γ =0.20 4.				
1239.80 ^{cr} 20	0.324 5	2228.77	$(2^+, 3^+)$	989.09	2+			$\%1\gamma = 0.20$ 4.				
1253.65 25 ^x 1262.4 4	0.19 8 0.14 5	2059.71	(1,2')	806.42	01			$\%_{1\gamma=0.12}$ 6. $\%_{1\gamma=0.09}$ 4.				
1275.38 <mark>b</mark> 20	0.18 4	3017.72?	$(1,2^+)$	1742.63	(2,3,4)			%Iγ=0.11 <i>3</i> .				
1282.00 25	0.16 3	1809.09	$(2^+, 3, 4^+)$	527.22	4+			%Iγ=0.099 22.				
^x 1295.0 5	0.20 4							%Iγ=0.12 <i>3</i> .				
*1303.30 15	0.60 9	1024 65		507.00	4+			$\%1\gamma = 0.37$ 7.				
1307.33 13 x1311.85 15	0.009	1834.03		521.22	4			$\%1\gamma = 0.57$ /. % $I_{2} = 0.17$ /				
^x 1319.45 25	0.27 5							$\% I_{\gamma} = 0.17 4.$				
1334.03 10	5.3.5	1526.29	$(2.3)^{-}$	192.19	2+	(E1)	9.01×10^{-4}	$\alpha(K) = 0.000696 \ 10; \ \alpha(L) = 9.28 \times 10^{-5} \ 13; \ \alpha(M) = 2.03 \times 10^{-5} \ 3$				
								α (N)=4.72×10 ⁻⁶ 7; α (O)=6.83×10 ⁻⁷ 10; α (P)=3.83×10 ⁻⁸ 6; α (IPF)=8.61×10 ⁻⁵ 12 %I γ =3.3 5.				
X10(0 4 4	0.00.3							$\alpha(K)\exp(-0.016)(1975Ag01).$				
~1300.4 <i>4</i> 1377 58 <i>15</i>	0.28 3	1570.22	(2^{+})	102 10	2+			$\%1\gamma = 0.1 / 5.$				
x1407.8.3	0.425 0.284	1370.22	(2)	192.19	2			%Iy=0.20 5. %Iy=0.17 4				
1418 55 10	2.23.20	1418 28	(1^{-})	0.0	0^{+}	[E1]	8.73×10^{-4}	$\alpha(K) = 0.000626.9; \ \alpha(L) = 8.33 \times 10^{-5}.12; \ \alpha(M) = 1.82 \times 10^{-5}.3$				
1110.55 10	2.23 20	1110.20	(1)	0.0	0		0.75/10	$\alpha(N)=4.24\times10^{-6} 6; \ \alpha(O)=6.14\times10^{-7} 9; \ \alpha(P)=3.45\times10^{-8} 5; \\ \alpha(IPF)=0.0001406 \ 20 \\ \%I\gamma=1.38 \ 20.$				
^x 1428.5 5	0.13 5							%Iy=0.08 4.				
1438.0 ^b 3	0.30 9	1630.22?	$(1,2^{+})$	192.19	2^{+}			%Iγ=0.19 <i>6</i> .				
1448.80 15	0.48 8	1640.87	(2^{+})	192.19	2+			%Iy=0.30 <i>6</i> .				
^x 1453.7 3	0.20 10							%Iy=0.12 7.				

$^{158}_{68}\mathrm{Er}_{90}$ -10

From ENSDF

 $^{158}_{68}\mathrm{Er}_{90}$ -10

$\gamma(^{158}\text{Er})$ (continued)

E_{γ}	Ιγ ^{&}	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
^x 1459.0 5	0.25 8				<u> </u>	%Iy=0.15 <i>6</i> .
^x 1473.0 4	0.15 4					%Iy=0.09 3.
^x 1482.6 4	0.30 5					%Iy=0.19 <i>4</i> .
^x 1489.75 25	0.30 5	1(07.00	$(1, 0^{+})$	102 10	2+	$\%1\gamma=0.19$ 4.
1494.80 15	1.00 10	1687.02	$(1,2^{+})$	192.19	2 · 4+	$\%_{1} = 0.02 \ 10.$
1505.65 15	0.90 9	1697.97	$(1^{-}, 2, 3)$	192.19	$\frac{1}{2^{+}}$	% Jy=0.56 9
1526.05 15	0.36 5	1526.29	$(2,3)^{-}$	0.0	$\bar{0}^{+}$	%Iy=0.22 <i>4</i> .
^x 1533.5 7	0.16 4					%Iy=0.10 3.
1550.50 10	2.58 23	1742.63	(2,3,4)	192.19	2+	%Iy=1.60 23.
x1567.4 3	0.20 4	1550.00	(2+)	0.0	0±	%Iy=0.12 3.
1570.45 15	0.57 9	1570.22	(2^{+})	0.0	$0' - 2^+$	$\%_{1\gamma=0.35}$ /.
1615.1.7	1.40 20	1/09.05	(2^{-})	192.19		$\%1\gamma = 0.8770.$
1616.7.3	0.32 8	1809.09	$(2^+, 3.4^+)$	192.19	2^{+}	%Iy=0.00 4.
1630.25^{b} 25	0.15 4	1630.22?	(1.2^+)	0.0	0^{+}	$\%$ J ν =0.09.3
1640.6 3	0.34 5	1640.87	(2^+)	0.0	$\ddot{0}^+$	%Iy=0.21 4.
1687.1 <i>3</i>	0.26 4	1687.02	$(1,2^+)$	0.0	0^+	%Iy=0.16 3.
^x 1693.90 20	0.36 5					$\%$ I γ =0.22 4.
1701.1 <i>4</i>	0.12 4	2228.77	$(2^+, 3^+)$	527.22	4+	$\%1\gamma = 0.07$ 3.
×1751.40 20 ×1761 40 20	0.21.3 0.21.3					$\%_{1}\gamma=0.13024$.
^x 1771.3.3	0.16.3					%Iy=0.099 22
1777.87 ^b 15	0.46 5	2305.18?	$(2^+, 3, 4^+)$	527.22	4^{+}	%Iy=0.28 5.
1785.30 ^b 20	0.23 5	1977.46?	$(1,2^+)$	192.19	2+	%Iy=0.14 <i>4</i> .
^x 1811.80 15	0.31 4					%Iy=0.19 4.
^x 1832.4 4	0.10 3					%Iy=0.062 20.
^x 1840.20 20	0.26 5					%Iy=0.16 <i>4</i> .
1867.25 ^a 15	0.484 5	2059.71	$(1,2^{+})$	192.19	2+	$\%1\gamma=0.30$ 5.
1867.25 ^{<i>ab</i>} 15	$0.48^{\prime\prime}$ 5	2673.69?	$(1,2^{+})$	806.42	0^{+}	$\%1\gamma=0.305$.
×18/9.1 4 ×1880 25 25	0.20.3					$\%_{1}\gamma=0.124$ 24. % $I_{2}\gamma=0.118$ 23
^x 1904.17.20	0.34.5					% Jy=0.21 4.
x1909.9 3	0.23 4					%Iy=0.14 3.
^x 1925.0 5	0.13 5					%Iy=0.08 4.
^x 1931.1 5	0.11 5					%Iy=0.07 4.
1951.7 ^b 3	0.26 5	2143.59?	$(1,2^+)$	192.19	2^{+}	%Iy=0.16 4.
1977.4 ^b 4	0.18 4	1977.46?	$(1,2^{+})$	0.0	0^{+}	%Iy=0.11 <i>3</i> .
2036.7 <i>3</i>	0.34 6	2228.77	$(2^+, 3^+)$	192.19	2^{+}	%Iy=0.21 5.
*2090.8 3	0.15 3		and a set			%1y=0.093 22.
2113.3° 3	0.34 5	2305.18?	$(2^+,3,4^+)$	192.19	2+	$\%1\gamma=0.21$ 4.
~2118.8 3	0.20 5					%17=0.12 4.

11

 $\gamma(^{158}\text{Er})$ (continued)

Eγ	Ι _γ &	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Comments
2143.45 ^b 20 ^x 2162.9 3	0.40 <i>5</i> 0.23 <i>4</i>	2143.59?	(1,2 ⁺)	0.0	0+	$\%$ I γ =0.25 5. %I γ =0.14 3.
2176.25 ^b 25 ^x 2186.8 3	0.45 <i>6</i> 0.32 <i>6</i>	2368.35?	(1,2 ⁺)	192.19	2+	$\%$ I γ =0.28 5. $\%$ I γ =0.20 5.
2197.4 ^{ab} 3	0.23 ^{<i>a</i>} 4	2389.6?	$(1,2^+)$	192.19	2^{+}	%Iy=0.14 <i>3</i> .
2197.4 ^{<i>ab</i>} 3 <i>x</i> 2208.8 5 <i>x</i> 2221.3 5 <i>x</i> 2241.2 4 <i>x</i> 2274.1 3	0.23 ^{<i>a</i>} 4 0.12 4 0.18 7 0.22 4 0.26 5	3017.72?	(1,2 ⁺)	820.14	2+	$\% I\gamma = 0.14$ 3. $\% I\gamma = 0.07$ 3. $\% I\gamma = 0.11$ 5. $\% I\gamma = 0.14$ 3. $\% I\gamma = 0.16$ 4.
2368.2 ^b 3	0.30 5	2368.35?	$(1,2^+)$	0.0	0^+	%Iy=0.19 <i>4</i> .
2389.6 ^b 5 ^x 2422.15 20 ^x 2453.8 15 ^x 2457.0 15 ^x 2470.5 15	0.10 <i>4</i> 0.42 <i>6</i> 0.25 <i>10</i> 0.19 <i>10</i> 0.25 <i>7</i>	2389.6?	(1,2 ⁺)	0.0	0+	$\%_1\gamma=0.06 \ 3.$ $\%_1\gamma=0.26 \ 5.$ $\%_1\gamma=0.15 \ 7.$ $\%_1\gamma=0.12 \ 7.$ $\%_1\gamma=0.15 \ 5.$
2480.5 ^b 15 ^x 2487.5 15 ^x 2548.5 15 ^x 2643 3 ^x 2656 [‡] 4	0.23 8 0.19 <i>10</i> 0.29 <i>10</i> 0.10 5 0.08 4	2673.69?	(1,2 ⁺)	192.19	2+	$\% I\gamma = 0.14$ 6. $\% I\gamma = 0.12$ 7. $\% I\gamma = 0.18$ 7. $\% I\gamma = 0.06$ 4. $\% I\gamma = 0.05$ 3
2673^{b} 2	0.00 7	2673 692	(12^{+})	0.0	0^{+}	$\%1\gamma = 0.03$ 3. $\%1\gamma = 0.11$ 4
^x 2686 [‡] 4 ^x 2816.5 20	0.07 <i>4</i> 0.33 8	2013.07	(1,2)	0.0	Ū	$\% I_{\gamma} = 0.04 \ 3.$ $\% I_{\gamma} = 0.20 \ 6.$
2826 ^b 4	0.09 5	3017.72?	$(1,2^{+})$	192.19	2^{+}	%Iy=0.06 4.
^x 2838 [‡] 4 ^x 2888 3 ^x 3000 4	0.06 <i>3</i> 0.12 <i>4</i> 0.09 <i>3</i>					$\%1\gamma=0.037$ 19. $\%1\gamma=0.07$ 3. $\%1\gamma=0.056$ 20.
3017 ^b 4 ^x 3036 4 ^x 3053 4	0.09 <i>3</i> 0.11 <i>3</i> 0.14 <i>4</i>	3017.72?	(1,2 ⁺)	0.0	0+	$\% I\gamma = 0.056 \ 20.$ $\% I\gamma = 0.068 \ 20.$ $\% I\gamma = 0.09 \ 3.$

[†] From ¹⁵⁸Er Adopted Gammas, but based primarily on $\alpha_{\rm K}(\exp)$ data of 1975Ag01 where the conversion electron intensities were normalized to the γ intensities by $\alpha_{\rm K}(192\gamma, E2)=0.185$ and $\alpha_{\rm K}(335\gamma, E2)=0.037$. These two γ' s are E2 since they are the 2⁺ to 0⁺ and 4⁺ to 2⁺ γ' s in the ground-state band.

[‡] γ not firmly assigned to ¹⁵⁸Tm decay (1975Ag01). [#] Additional information 1. [@] If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

¹⁵⁸Tm ε decay **1975Ag01** (continued)

 $\gamma(^{158}\text{Er})$ (continued)

[&] For absolute intensity per 100 decays, multiply by 0.62 7. ^{*a*} Multiply placed with undivided intensity. ^{*b*} Placement of transition in the level scheme is uncertain. ^{*x*} γ ray not placed in level scheme.

Decay Scheme (continued)

Decay Scheme (continued)

¹⁵⁸₆₈Er₉₀

¹⁵⁸₆₈Er₉₀