		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 141, 1 (2017)	1-Feb-2017

Parent: ¹⁵⁸Ho: E=0.0; $J^{\pi}=5^+$; $T_{1/2}=11.3 \text{ min } 4$; $Q(\varepsilon)=4220\ 27$; $\%\varepsilon+\%\beta^+$ decay=100.0 Parent: ¹⁵⁸Ho: E=67.20 *1*; $J^{\pi}=2^-$; $T_{1/2}=28 \text{ min } 2$; $Q(\varepsilon)=4220\ 27$; $\%\varepsilon+\%\beta^+$ decay<19.0

These activities have been studied in equilibrium following the decay of 2.4-h ¹⁵⁸Er which has been produced by spallation of Ta with 660-MeV protons with chemical separation or chemical and mass separation (1968Ab14,1974Al30) and by ¹⁵⁰Sm(¹²C,4n) and ¹⁵¹Eu(¹¹B,4n) reactions (1975Ru02,1978An11). The Ho activities have also been produced by Ta(p,x) (1974Al30) and ¹⁴⁸Nd(¹⁴N,4n) (1975Ru02) reactions. Others: 2013KaZW, 1974AlZG, 1973Ch28, 1966La11, 1966Ab02, 1965St08, 1962Sc10, 1961Gr25, 1961Bo24, 1961Ba32, 1961Ab04, 1960Dn01, 1960Ba66, 1960Ab07.

¹⁵⁸Dy Levels

1978An11 have suggested the assignment of a number of excited states as members of octupole bands having $K^{\pi}=0^{-}$, 1⁻ and 2⁻. The evaluator, however, has not adopted these band assignments.

E(level) [†]	J ^{π‡}	T _{1/2} #	Comments
0.0 [@]	0+		
98.901 [@] 10	2+	1.66 ns <i>3</i>	$T_{1/2}$: 1.63 NS 8 measured by 1970Mo39 by ce-G-delay coin.
317.101 [@] 14	4+	72 ps 4	
637.641 [@] 23	6+	9.1 ps 10	
946.29 ^a 3	2+	0.85 ps 11	
990.49 ^{&} 5	0^{+}		
1043.81 [@] 7	8^+	2.9 ps 5	
1044.302 24	3* 2+	0.52 10	
1083.34^{a} 3 1163.71^{a} 3	2+ 4+	0.55 ps 10	
1279.96 ^{&} 5	4+		
1314.73 ^a 3	5+		
1371.70 5	$(1,2,3)^{-}$		
1397.14 4	3-		
1441.74 5	1-		
1486.324 18	6'		
1501.15 9	2+ 3 4+		
1518.42.8	$2^{-},3,4^{-}$		
1528.00 7	5-,1		
1547.28 ^{&} 7	6+		
1607.98 9	$(2)^{+}$	>0.18 ps	
1618.50 15	3-,4-,5-		
1634.50 16			
1671.61 15	2+,3,4+		
16/5.76 ^a 20	/+ (+)		
1/10.30 1/	(\cdot)		1/13 postulated as 0° candidate by 2008 vaz.U.
1818.75 10	2+ 3 4+		
$185104^{b}6$	2,3,1		
1891.94 0 1895 12 [°] 3	$\frac{2}{4^+}$	<0.11 ns	
1920.39 8	$3^+.4^+.5^+$	NU.11 115	
1940.71^{b} 4	3+		
1975.74 10	1+,2+		

¹⁵⁸Ho ε decay (11.3 min+28 min) 1978An11,1974Al30,1975Ru02 (continued)

¹⁵⁸Dy Levels (continued)

E(level) [†]	Jπ‡	E(level) [†]	J ^{π‡}	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡
2021.90 [°] 6	5+	2382.42 6	4+	2518.65 13	4+	2989.28 9	2+
2055.38 ^b 4	4+	2388.75 ^b 13	(6 ⁺)	2538.52 11	3+,4+	3530.16 19	4+
2107.64 4	4+	2409.53 7	2-,3-,4-	2605.94 11	1-	3547.75 12	(3-)
2153.58 ^c 11	6+	2409.67 5	4+	2644.50 7	$(^{+})$	3582.30 22	2^{+}
2211.06 ^b 8	(5 ⁺)	2436.48 6	3+,4+	2672.29 11	4+		

[†] From least-squares fit to the γ energies. χ^2 norm = 1.88 greater than χ^2 critical = 1.32.

[‡] From Adopted Levels.

[#] From Adopted Levels. Measurements from this decay mode only are given in comments Adopted Levels for all values.

^(a) Band(A): $K^{\pi}=0^+$ ground-state band. ^(b) Band(B): $K^{\pi}=0^+ \beta$ -vibrational band.

^{*a*} Band(C): $K^{\pi}=2^+ \gamma$ -vibrational band.

^{*b*} Band(D): $K^{\pi}=2^+$ band.

^{*c*} Band(E): $K^{\pi} = 4^+$ two-quasineutron band.

 $\gamma(^{158}\text{Dy})$

The longest list of γ 's is from 1978An11, but substantial lists are also given by 1968Ab14, 1974Al30, and 1975Ru02. There are many γ 's that are only reported by one or two authors. Any γ 's reported by only one author are flagged. The coincidence data are from 1978An11.

$E_{\gamma}^{\ddagger \&}$	Ι _γ #@&	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	α^{\dagger}	Comments
95.05 ⁸ 1	9.0 <mark>8</mark> 10	1085.54	2+	990.49	0^{+}			
98.19 ⁸ 9	1.9 <mark>8</mark> 9	1044.562	3+	946.29	2+			
98.90 1	700 50	98.901	2+	0.0	0^{+}	E2	2.83	α (K)=1.154 <i>17</i> ; α (L)=1.286 <i>18</i> ; α (M)=0.308 <i>5</i> ; α (N+)=0.0774 <i>11</i> α (N)=0.0691 <i>10</i> ; α (O)=0.00830 <i>12</i> ; α (P)=4.78×10 ⁻⁵ <i>7</i>
^x 105.6 ^e 1	1.5 ^e 4							
119.4 <mark>8</mark> 1	4.6 <mark>8</mark> 4	1163.71	4+	1044.562	3+			
150.97 <mark>8</mark> 4	3.0 <mark>8</mark> 6	1314.73	5+	1163.71	4+			
^x 186.77 9	3.0 8							I_{γ} : From 1978An11; other: 8.0 20 (1974Al30).
213.6 ^{ej} 2	15 ^e 4	1528.00	5-	1314.73	5+			
217.4 ^{ej} 10	е	1163.71	4+	946.29	2+			E_{γ} : Shown (1978An11) in scheme, but not in γ list.
218.20 1	1000 4	317.101	4+	98.901	2+	E2	0.1772	$\alpha(K)=0.1225\ 18;\ \alpha(L)=0.0422\ 6;\ \alpha(M)=0.00987\ 14;\ \alpha(N+)=0.00252$
								$\alpha(N)=0.00223$ 4; $\alpha(O)=0.000284$ 4; $\alpha(P)=5.97\times10^{-6}$ 9
^x 219.7 <mark>8</mark> 2	8 <mark>8</mark> 4							
$x_{261.3}f_{5}$	1.4 ^f 6							
270.22 ⁸ 7	2.68 5	1314.73	5+	1044.562	3+			
^x 275.2 ^e 2	0.6 ^e 2							
^x 294.1 ^e 1	2.7 ^e 3							
301.8 ⁱ 2	1.3 ⁱ 5	1920.39	$3^+, 4^+, 5^+$	1618.50	3-,4-,5-			
301.8 ⁱ 2	1.3 ⁱ 5	2409.53	$2^{-}, 3^{-}, 4^{-}$	2107.64	4+			E_{γ} : A γ of this energy might also depopulate the 2409.67 level.
320.51 2	111 <i>19</i>	637.641	6+	317.101	4+	E2	0.0528	$\alpha'(K)=0.0401 \ 6; \ \alpha(L)=0.00989 \ 14; \ \alpha(M)=0.00227 \ 4; \ \alpha(N+)=0.000587 \ 9$
								$\alpha(N)=0.000516.8; \alpha(O)=6.83\times10^{-5}.10; \alpha(P)=2.11\times10^{-6}.3$
327.0	≤33	1371.70	$(1,2,3)^{-}$	1044.562	3+			
^x 351.4 ^e 1	1.7 ^e 2							
^x 354.2 ^e 1	2.3 ^e 3							
406.11 7	1.9 4	1043.81	8+	637.641	6+			
^x 418.05 7	8.1 10					M1	0.0471	$\alpha(K)=0.0399 \ 6; \ \alpha(L)=0.00568 \ 8; \ \alpha(M)=0.001244 \ 18; \ \alpha(N+)=0.000332 \ 5$
								α (N)=0.000288 4; α (O)=4.22×10 ⁻⁵ 6; α (P)=2.44×10 ⁻⁶ 4
425.36 8	18 <i>3</i>	1371.70	$(1,2,3)^{-}$	946.29	2+			
442.10 14	1.9 6	2382.42	4+	1940.71	3+			
^x 447.2 ^e 2	1.4 ^e 3							
462.08 7	7.7 8	2382.42	4^{+}	1920.39	$3^+, 4^+, 5^+$	E2	0.0187	α (K)=0.01490 21; α (L)=0.00292 4; α (M)=0.000661 10;

ω

			158	Ho ε decay	(11.3 m	in+28 mir	n) 1978An1	1,1974Al30,1975Ru02 (continued)
						<u> </u>	(158Dy) (contin	ued)
Ε _γ ‡ &	Ι _γ #@&	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	α^{\dagger}	Comments
								α(N+)=0.0001725 25
			a-		a +			α (N)=0.0001510 22; α (O)=2.07×10 ⁻⁵ 3; α (P)=8.27×10 ⁻⁷ 12
473.98 1	4.98 7	1518.42	3 ⁻ ,4 ⁻	1044.562	3+	1.61	0.0210	
487.11 77	1.6 0	2382.42	4'	1895.12	4'	MI	0.0318	$\alpha(\mathbf{K}) = 0.0269 \ 4; \ \alpha(\mathbf{L}) = 0.00381 \ 6; \ \alpha(\mathbf{M}) = 0.000834 \ 12; \ \alpha(\mathbf{N}+) = 0.000223 \ 4$
ruce of a	of 1							$\alpha(N)=0.000193 3; \alpha(O)=2.83\times10^{\circ} 4; \alpha(P)=1.644\times10^{\circ} 23$
^498.4 ⁷ 8	3J I	1(71 (1	2+ 2 4+	11(2.71	4+			
508.28 2	6.18 20	16/1.61	2,3,4	1163./1	4'			
514.4 ^{ig} I	1118 3	2409.53	2-,3-,4-	1895.12	4+			
514.4 ¹⁸ 1	11 ¹⁸ 3	2409.67	4+	1895.12	4+			
*517.38 1	108 3					E2	0.01388	$\alpha(K)=0.01121 \ 16; \ \alpha(L)=0.00208 \ 3; \ \alpha(M)=0.000467 \ 7;$
								$u(N+)=0.0001224 \ Io$
52633	189	1163 71	Δ^+	637 641	6+			$a(\mathbf{N})=0.000107075; a(\mathbf{O})=1.479\times10^{-5}21; a(\mathbf{P})=0.29\times10^{-5}9$
533.9.6	135	1975 74	$1^+ 2^+$	1441 74	1-			
538.8 ^g 1	$3.5^8 5$	1818.75	1 ,2	1279.96	4+			
543.87 19	1.6 5	1940.71	3+	1397.14	3-			
^x 556.8 3	3.5 6					(M1)	0.0226	α (K)=0.0191 3; α (L)=0.00270 4; α (M)=0.000591 9; α (N+)=0.0001579 23
								$\alpha(N)=0.0001367\ 20;\ \alpha(O)=2.01\times10^{-5}\ 3;\ \alpha(P)=1.167\times10^{-6}\ 17$
560.1 ^g 2	1.7 <mark>8</mark> 7	1840.11	2+,3,4+	1279.96	4+			
570.0 ⁸ 1	1.5 <mark>8</mark> 7	2388.75	(6 ⁺)	1818.75				
580.23 13	6.0 10	1895.12	4+	1314.73	5+	(E2)		Mult.: (E1,E2) from 1978An11; E1 contradicts spin assignments.
615.9 7	3.5 11	1895.12	4+	1279.96	4 ⁺		0.000 (0.10	
624.4 ⁸ 3	≈78	1710.30	(*)	1085.54	2+	(E2)	0.00869 13	α =0.00869 13; α (K)=0.00713 10; α (L)=0.001219 18; α (M)=0.000272 4; α (N+)=7.16×10 ⁻⁵ 10
								$\alpha(N)=6.24\times10^{-5} 9; \ \alpha(O)=8.76\times10^{-6} 13; \ \alpha(P)=4.05\times10^{-7} 6$
629.2 ^g 2	8.5 <mark>8</mark> 26	946.29	2+	317.101	4+			
630.23 9	14 4	2605.94	1-	1975.74	1+,2+	E1	0.00311 5	α =0.00311 5; α (K)=0.00265 4; α (L)=0.000360 5; α (M)=7.83×10 ⁻⁵ 11; α (N+)=2.08×10 ⁻⁵ 3
								$\alpha(N)=1.80\times10^{-5}$ 3; $\alpha(O)=2.62\times10^{-6}$ 4; $\alpha(P)=1.462\times10^{-7}$ 21
642.63 16	4.5 12	1279.96	4+	637.641	6+	E2	0.00811 12	α =0.00811 <i>12</i> ; α (K)=0.00667 <i>10</i> ; α (L)=0.001128 <i>16</i> ; α (M)=0.000251 <i>4</i> ; α (N+)=6.62×10 ⁻⁵ <i>10</i>
								$\alpha(N) = 5.77 \times 10^{-5} 8$; $\alpha(O) = 8.11 \times 10^{-6} 12$; $\alpha(P) = 3.80 \times 10^{-7} 6$
660.75 7	5.3 9	1940.71	3+	1279.96	4+	E2	0.00759 11	$\alpha = 0.00759 \ 11; \ \alpha(K) = 0.00625 \ 9; \ \alpha(L) = 0.001047 \ 15; \ \alpha(M) = 0.000233 \ 4; \ \alpha(N+) = 6.14 \times 10^{-5} \ 9$
								$\alpha(N) = 5.35 \times 10^{-5} \text{ s} \cdot \alpha(O) = 7.54 \times 10^{-6} \text{ ll} \cdot \alpha(D) = 3.57 \times 10^{-7} \text{ 5}$
^x 668.7 ^e 1	4.2 ^e 6							$u(1) = 3.55 \times 10^{-5}$, $u(0) = 7.57 \times 10^{-11}$, $u(1) = 5.57 \times 10^{-5}$
676.97 4	13.4 24	1314.73	5+	637.641	6+	E2	0.00717 10	α =0.00717 10; α (K)=0.00592 9; α (L)=0.000982 14; α (M)=0.000218 3;
								α (N+)=5.76×10 ⁻⁵ 8
								$\alpha(N)=5.02\times10^{-5}$ 7; $\alpha(O)=7.08\times10^{-6}$ 10; $\alpha(P)=3.38\times10^{-7}$ 5
								E_{γ} : Poor energy fit to scheme; level energies give 677.10 3.

From ENSDF

 $^{158}_{66}\mathrm{Dy}_{92}\text{-}4$

				¹⁵⁸ Ho ε decay (11.3 min+28 min)			-28 min) 19	78An11,1974Al30,1975Ru02 (continued)
							$\gamma(^{158}\text{Dy})$	(continued)
Ε _γ ‡ &	Ι _γ #@&	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. ^a	α^{\dagger}	Comments
707.03 16	5.4 8	2021.90	5+	1314.73	5+	M1+E2	0.009 3	α =0.009 3; α (K)=0.008 3; α (L)=0.0012 3; α (M)=0.00026 7; α (N+)=6.9×10 ⁻⁵ 18
X715 AC 1	2 16 0							$\alpha(N)=6.0\times10^{-5}$ 15; $\alpha(O)=8.6\times10^{-6}$ 24; $\alpha(P)=4.7\times10^{-7}$ 17
x726 1 2	2.4° 9							
720.4 2 727.41 4	69.3 <i>25</i>	1044.562	3+	317.101	4+	E2	0.00608 9	α =0.00608 9; α (K)=0.00503 7; α (L)=0.000815 12; α (M)=0.000181 3; α (N+)=4.78×10 ⁻⁵ 7
								$\alpha(N)=4.16\times10^{-5}$ 6; $\alpha(O)=5.89\times10^{-6}$ 9; $\alpha(P)=2.88\times10^{-7}$ 4
731.42 5	58.1 <i>15</i>	1895.12	4+	1163.71	4+	E2	0.00600 9	α =0.00600 9; α (K)=0.00497 7; α (L)=0.000804 12; α (M)=0.0001784 25; α (N+)=4.71×10 ⁻⁵ 7
5 40 5 4 5	0.0.10	2055 20	4	1014 50	- +	141 50	0.000.2	$\alpha(N) = 4.10 \times 10^{-5} 6; \ \alpha(O) = 5.81 \times 10^{-6} 9; \ \alpha(P) = 2.85 \times 10^{-7} 4$
740.54 7	8.8 12	2055.38	4-	1314.73	5⊤	M1+E2	0.008 3	$\alpha = 0.008 \ 3; \ \alpha(K) = 0.0071 \ 23; \ \alpha(L) = 0.0010 \ 3; \ \alpha(M) = 0.00023 \ 6; \\ \alpha(N+) = 6.1 \times 10^{-5} \ 16 \\ (N-52) \times 10^{-5} \ 14 \ (O) \ 77 \times 10^{-6} \ 24 \ (D) \ 4.2 \times 10^{-7} \ 15 \\ (D) \ 5.2 \times 10^{-5} \ 14 \ (O) \ 77 \times 10^{-6} \ 24 \ (D) \ 4.2 \times 10^{-7} \ 15 \\ (D) \ 5.2 \times 10^{-5} \ 14 \ (D) \ 77 \times 10^{-6} \ 24 \ (D) \ 4.2 \times 10^{-7} \ 15 \\ (D) \ 5.2 \times 10^{-5} \ 14 \ (D) \ 77 \times 10^{-6} \ 24 \ (D) \ 4.2 \times 10^{-7} \ 15 \\ (D) \ 5.2 \times 10^{-5} \ 14 \ (D) \ 77 \times 10^{-6} \ 24 \ (D) \ 4.2 \times 10^{-7} \ 15 \\ (D) \ 5.2 \times 10^{-5} \ 14 \ (D) \ 77 \times 10^{-6} \ 14 \ (D) \ 77 \times 10^{-7} \ 15 \ (D) \ 10^{-7} \ 15 \ (D) \ 10^{-7} \ 15 \ (D) \ 10^{-7} \ 10^{-7} \ 15 \ (D) \ 10^{-7} \ 15 \ (D) \ 10^{-7} \ 10^{-$
766 40 7	6212	1951 04	2^+	1095 54	2^+			$\alpha(N)=5.5\times10^{\circ}$ 14; $\alpha(O)=7.7\times10^{\circ}$ 21; $\alpha(P)=4.2\times10^{\circ}$ 15
768 39 7	10.8.9	1085 54	$\frac{2}{2^{+}}$	317 101	$\frac{2}{4^+}$	(F2)		Mult: (F1 F2) from 1978 Ap11: F1 excluded by spin assignments
700.397	5 0 9 11	2055 28	ے 4+	1270.06	4+	(L2)		I_{γ} : From 1978An11. Other: ≈ 20 (1974Al30) and 23.1 20 (1975Ru02).
776.01.8	3.8° 11 0 7 12	2033.38	4 · 3+	1279.90	4 · 1+	M1	0 00083 14	$\alpha = 0.00083.14$; $\alpha(K) = 0.00834.12$; $\alpha(L) = 0.001164.17$; $\alpha(M) = 0.000254.4$;
//0.91 0	9.7 12	1940.71	3	1105.71	4	1911	0.00983 14	$a = 0.00885 14, a(R) = 0.00854 12, a(L) = 0.001104 17, a(M) = 0.000254 4, a(N+) = 6.80 \times 10^{-5} 10$
702 25 0	2 9 11	0107 (4	4	1014 70	~ +	50	0.00501.7	$\alpha(N) = 5.88 \times 10^{-5}$ 9; $\alpha(O) = 8.65 \times 10^{-6}$ 13; $\alpha(P) = 5.06 \times 10^{-7}$ 7
192.35 9	2.8 11	2107.64	4'	1314.73	2,	E2	0.00501 /	$ \begin{array}{l} \alpha = 0.00501 \ \ \ ; \ \alpha(\mathrm{M}) = 0.00417 \ \ \ ; \ \alpha(\mathrm{L}) = 0.000658 \ \ \ \ \ ; \ \alpha(\mathrm{M}) = 0.0001456 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
								$\alpha(N)=3.35\times10^{-5} 5; \alpha(O)=4.77\times10^{-6} 7; \alpha(P)=2.40\times10^{-7} 4$
			a +		a +			E_{γ} : γ energy is poor fit to scheme; from level energies, γ energy is 792.91 4.
807.13 9	$10.5\ 21$	1851.94	2^+	1044.562	3-			I_{γ} : From 1978An11. Other: 7.5 (1968Ab14) and 6.1 18 (1975Ru02).
*829.0° Z	3.0° /	2152 59	6+	1214 72	5+	E2	0.00443.7	$\alpha = 0.00442.7; \alpha(K) = 0.00260.6; \alpha(L) = 0.000572.8; \alpha(M) = 0.0001267.18;$
838.47 24	12.9 9	2135.38	0	1314.75	3	E2	0.00443 /	$a = 0.00445 \ /, \ a(\mathbf{N}) = 0.00505 \ 0, \ a(\mathbf{L}) = 0.000575 \ 8, \ a(\mathbf{M}) = 0.0001207 \ 18, \ a(\mathbf{N}+) = 3.35 \times 10^{-5} \ 5$
046 54 0	142.20	11(0.71	4+	217 101	4+	50	0.00.122.6	$\alpha(N) = 2.91 \times 10^{-5} 4; \ \alpha(O) = 4.16 \times 10^{-6} 6; \ \alpha(P) = 2.12 \times 10^{-7} 3$
846.54 9	143 20	1163.71	4'	317.101	4'	E2	0.00433 6	$ \begin{array}{l} \alpha = 0.00453 \ 6; \ \alpha(\text{K}) = 0.00362 \ 5; \ \alpha(\text{L}) = 0.000560 \ 8; \ \alpha(\text{M}) = 0.0001238 \ 18; \\ \alpha(\text{N}+) = 3.28 \times 10^{-5} \ 5 \end{array} $
								$\alpha(N)=2.85\times10^{-5} 4; \ \alpha(O)=4.07\times10^{-6} 6; \ \alpha(P)=2.08\times10^{-7} 3$
								I_{γ} : From 1978An11. Other: 220 60 (1974Al30) and 256 44 (1975Ru02). This
					- 1			difference is due to a different division of the total intensity for the 846.6 and 847.3 γ 's.
847.27 11	336 35	946.29	2+	98.901	2+	E2	0.00433 6	α =0.00433 6; α (K)=0.00361 5; α (L)=0.000559 8; α (M)=0.0001235 18; α (N+)=3.27×10 ⁻⁵ 5
								$\alpha(N)=2.84\times10^{-5}$ 4; $\alpha(O)=4.06\times10^{-6}$ 6; $\alpha(P)=2.08\times10^{-7}$ 3
								I_{γ} : From 1978An11. Other: 290 60 (1974Al30) and 262 44 (1975Ru02). This difference is due to a different division of the total intensity for the 846.6 and 847.3 γ' s.

S

From ENSDF

			15	¹⁵⁸ Ho ε decay (11.3 min+28 min)			1978An11,1	1974A130,1975Ru02 (continued)
						$\gamma(^{158}]$	Dy) (continued	<u>d)</u>
Ε _γ ‡&	Ι _γ #@&	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	α^{\dagger}	Comments
850.50 4	213 6	1895.12	4+	1044.562	3+	E2	0.00429 6	α =0.00429 6; α (K)=0.00358 5; α (L)=0.000554 8; α (M)=0.0001224 $I8$; α (N+)=3.24×10 ⁻⁵ 5 α (N)=2.82×10 ⁻⁵ 4; α (Q)=4.03×10 ⁻⁶ 6; α (P)=2.06×10 ⁻⁷ 3
854.4 <mark>8</mark> 2 858.20 7	5.0 <mark>8</mark> 9 18.5 8	2382.42 2021.90	4+ 5+	1528.00 1163.71	5- 4 ⁺	E2	0.00421 6	α = 0.00421 6; α (K) = 0.00351 5; α (L) = 0.000542 8; α (M) = 0.0001197 $17: \alpha$ (N+)= 3.17×10 ⁻⁵ 5
^x 875.19 9	8.8 7					E2	0.00403 6	$\alpha(N)=2.76\times10^{-5} 4; \ \alpha(O)=3.94\times10^{-6} 6; \ \alpha(P)=2.02\times10^{-7} 3$ $\alpha=0.00403 6; \ \alpha(K)=0.00337 5; \ \alpha(L)=0.000518 8; \ \alpha(M)=0.0001142$ 16: \ \alpha(N+)=3.02\times10^{-5} 5
890.6 4	6.8 <i>14</i>	1528.00	5-	637.641	6^+		0.00005.0	α (N)=2.63×10 ⁻⁵ 4; α (O)=3.76×10 ⁻⁶ 6; α (P)=1.94×10 ⁻⁷ 3 I _{γ} : From 1978An11. Other: 26.2 (1968Ab14) and 22 5 (1975Ru02).
891.65' 15	26.4° 14	990.49	01	98.901	21	(E2)	0.00387 6	$\alpha = 0.003876; \ \alpha(\text{K}) = 0.003245; \ \alpha(\text{L}) = 0.0004957; \ \alpha(\text{M}) = 0.0001093$ $I6; \ \alpha(\text{N}+) = 2.89 \times 10^{-5} 4$ $\alpha(\text{N}) = 2.51 \times 10^{-5} 4; \ \alpha(\text{O}) = 3.60 \times 10^{-6} 5; \ \alpha(\text{P}) = 1.87 \times 10^{-7} 3$ Mult.: $\alpha_{\text{K}}(\text{exp}) = 0.0048 10 \text{ indicates M1,E2 for the multiplet. E2}$ multipolarity required by decay scheme for this placement.
891.65 ⁱ 15	26.4 ⁱ 14	2055.38	4+	1163.71	4+		0.0056 16	Mult.: $\alpha_{\rm K}$ =0.0048 <i>10</i> for doubly placed γ . E2 is required by $J^{\pi'}$ s for component from 990 level which suggests M1 for this component.
893.8 ^g 2 896.08 6	4.3 ⁸ 9 27.0 10	1840.11 1940.71	2 ⁺ ,3,4 ⁺ 3 ⁺	946.29 1044.562	2+ 3+	E2	0.00383 6	α =0.00383 6; α (K)=0.00321 5; α (L)=0.000490 7; α (M)=0.0001080 16; α (N+)=2.86×10 ⁻⁵ 4
^x 908.75 14	4.4 10					E2	0.00372 6	$ \begin{aligned} &\alpha(\mathrm{N}) = 2.49 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 3.56 \times 10^{-6} \ 5; \ \alpha(\mathrm{P}) = 1.85 \times 10^{-7} \ 3 \\ &\alpha = 0.00372 \ 6; \ \alpha(\mathrm{K}) = 0.00312 \ 5; \ \alpha(\mathrm{L}) = 0.000474 \ 7; \ \alpha(\mathrm{M}) = 0.0001044 \\ &15; \ \alpha(\mathrm{N}+) = 2.77 \times 10^{-5} \ 4 \end{aligned} $
917.7 ⁸ 3	$2.2^{8}_{2.07}$ 6	2436.48	$3^+, 4^+$	1518.42	3 ⁻ ,4 ⁻			$\alpha(N)=2.40\times10^{-5} 4; \ \alpha(O)=3.45\times10^{-6} 5; \ \alpha(P)=1.80\times10^{-7} 3$
933.93 9 944.2 <mark>8</mark> 1	$22.\frac{8}{3}$	2989.28 2107.64	2 4 ⁺	2055.58	4 4 ⁺			Mult.: $\alpha_{\rm K}(\exp)$ gives M1+E2, but J 's require E2.
945.61 4	366 40	1044.562	3+	98.901	2+	(E2)	0.00342 5	α =0.00342 5; α (K)=0.00287 4; α (L)=0.000432 6; α (M)=9.52×10 ⁻⁵ 14; α (N+)=2.52×10 ⁻⁵ 4
946.14 17	177 25	946.29	2+	0.0	0+	(E2)	0.00342 5	$ \begin{aligned} \alpha(\mathrm{N}) &= 2.19 \times 10^{-5} \ 3; \ \alpha(\mathrm{O}) &= 3.15 \times 10^{-6} \ 5; \ \alpha(\mathrm{P}) &= 1.654 \times 10^{-7} \ 24 \\ \alpha &= 0.00342 \ 5; \ \alpha(\mathrm{K}) &= 0.00286 \ 4; \ \alpha(\mathrm{L}) &= 0.000431 \ 6; \ \alpha(\mathrm{M}) &= 9.50 \times 10^{-5} \\ 14; \ \alpha(\mathrm{N}+) &= 2.52 \times 10^{-5} \ 4 \end{aligned} $
948.78 <i>5</i>	345 10	1895.12	4+	946.29	2+	E2	0.00340 5	$\alpha(N)=2.19\times10^{-5}$ 3; $\alpha(O)=3.14\times10^{-6}$ 5; $\alpha(P)=1.652\times10^{-7}$ 24 Mult.: $\alpha_{\rm K}(\exp)$ is consistent with M1,E2, but $J^{\pi\prime}$'s require E2. $\alpha=0.00340$ 5; $\alpha({\rm K})=0.00285$ 4; $\alpha({\rm L})=0.000429$ 6; $\alpha({\rm M})=9.44\times10^{-5}$ $I4$; $\alpha({\rm N}+)=2.50\times10^{-5}$ 4 $\alpha({\rm N})=2.17\times10^{-5}$ 3; $\alpha({\rm O})=3.12\times10^{-6}$ 5; $\alpha({\rm P})=1.643\times10^{-7}$ 23
962.81 7 977.34 7	5.7 7 22.5 11	1279.96 2021.90	4 ⁺ 5 ⁺	317.101 1044.562	4 ⁺ 3 ⁺	(E0+E2) ^b E2	0.00319 5	$\alpha(N) = 2.17 \times 10^{-5} 3; \ \alpha(O) = 5.12 \times 10^{-5} 3; \ \alpha(P) = 1.043 \times 10^{-12} 23$ $\alpha = 0.00319 5; \ \alpha(K) = 0.00268 4; \ \alpha(L) = 0.000401 6; \ \alpha(M) = 8.82 \times 10^{-5} 13; \ \alpha(N+) = 2.34 \times 10^{-5} 4$ $\alpha(N) = 2.03 \times 10^{-5} 3; \ \alpha(O) = 2.92 \times 10^{-6} 4; \ \alpha(P) = 1.546 \times 10^{-7} 22$

From ENSDF

			15	⁸ Ho ε decay	n+28 min)	1978An11,1974Al30,1975Ru02 (continued)				
						$\gamma(^{158}\Gamma$	Dy) (continued	1)		
Ε _γ ‡&	Ι _γ #@&	E _i (level)	\mathbf{J}_i^π	E_f	J_f^{π}	Mult. ^a	α^{\dagger}	$I_{(\gamma+ce)}$	Comments	
986.56 21	11.1 10	1085.54	2+	98.901	2+	(E0+E2) ^b				
989.94 11	10.9 7	2153.58	6+	1163.71	4+	b				
991.0 ^j 2	<3	990.49	0^{+}	0.0	0^{+}	E0		0.13	Mult.: $\alpha_{\rm K}(\exp) > 0.042$.	
994.47 6	86.3 22	1940.71	3+	946.29	2+	E2	0.00308 5		$\alpha = 0.00308 \ 5; \ \alpha(\text{K}) = 0.00259 \ 4; \ \alpha(\text{L}) = 0.000385 \ 6; \\ \alpha(\text{M}) = 8.47 \times 10^{-5} \ 12; \ \alpha(\text{N}+) = 2.25 \times 10^{-5} \ 4 \\ \alpha(\text{N}) = 1.95 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 2.81 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 1.492 \times 10^{-7} \\ 21$	
997.58 11	59.1 <i>17</i>	1314.73	5+	317.101	4+	E2	0.00306 5		$\alpha = 0.00306 \ 5; \ \alpha(\text{K}) = 0.00257 \ 4; \ \alpha(\text{L}) = 0.000382 \ 6; \ \alpha(\text{M}) = 8.41 \times 10^{-5} \ 12; \ \alpha(\text{N}+) = 2.23 \times 10^{-5} \ 4$	
									$\alpha(N)=1.94\times10^{-5}$ 3; $\alpha(O)=2.79\times10^{-6}$ 4; $\alpha(P)=1.483\times10^{-7}$	
1010.76 <i>11</i>	13.2 <i>13</i>	2055.38	4+	1044.562	3+	(E2)	0.00298 5		$\begin{aligned} &\alpha = 0.00298 \ 5; \ \alpha(\text{K}) = 0.00250 \ 4; \ \alpha(\text{L}) = 0.000371 \ 6; \\ &\alpha(\text{M}) = 8.16 \times 10^{-5} \ 12; \ \alpha(\text{N}+) = 2.17 \times 10^{-5} \ 3 \\ &\alpha(\text{N}) = 1.88 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 2.71 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 1.444 \times 10^{-7} \end{aligned}$	
									21	
									Mult.: $\alpha_{\rm K}(\exp)$ is consistent with E1 or E2, but $J^{n'}$ s require E2.	
1012.6 ¹ 4	4.3 ¹ 4	2409.53	2-,3-,4	- 1397.14	3-					
$1012.6^{l} 4$	$4.3^{l} 4$	2409.67	4+	1397.14	3-					
1024.78 21	5.7 12	1675.76	7+	637.641	6+					
1043.8 8	4.6 7	3582.30	2+	2538.52	3+,4+	M1	0.00479 7		α =0.00479 7; α (K)=0.00407 6; α (L)=0.000562 8; α (M)=0.0001226 18; α (N+)=3.28×10 ⁻⁵ 5	
1047 34 7	1579	2211.06	(5^{+})	1163 71	4^{+}				$\alpha(N)=2.84\times10^{-4}$; $\alpha(O)=4.18\times10^{-6}$; $\alpha(P)=2.45\times10^{-4}$	
1063.06 9	25.0 17	2107.64	(3) 4 ⁺	1044.562	3+	(E2)	0.00268 4		α =0.00268 4; α (K)=0.00226 4; α (L)=0.000332 5; α (M)=7.29×10 ⁻⁵ 11; α (N+)=1.94×10 ⁻⁵ 3	
									$\alpha(N)=1.680\times10^{-5} 24; \ \alpha(O)=2.42\times10^{-6} 4;$	
									Mult.: $\alpha_{\rm K}(\rm exp)$ is consistent with E1 or E2, but $J^{\pi'}$ s	
			. +		a .t				require E2.	
1064.70 15	53.8 20	1163.71	4+	98.901	2+	E2	0.00267 4		$\alpha = 0.00267 \ 4; \ \alpha(\mathbf{K}) = 0.00225 \ 4; \ \alpha(\mathbf{L}) = 0.000331 \ 5; \\ \alpha(\mathbf{M}) = 7.26 \times 10^{-5} \ 11; \ \alpha(\mathbf{N}+) = 1.93 \times 10^{-5} \ 3 \\ \alpha(\mathbf{M}) = 1.025 \ \alpha(\mathbf{M}) = 1.025 \$	
									$\alpha(N) = 1.6/4 \times 10^{-5} 24; \ \alpha(O) = 2.42 \times 10^{-5} 4; \ \alpha(D) = 1.200 \times 10^{-7} 10^{-7}$	
1080.10 7	10.4 9	1397.14	3-	317.101	4+				Mult.: (E2) adopted by 1978An11 contradicts spin assignments.	
1085.53 7	10.6 9	1085.54	2+	0.0	0+	E2	0.00257 4		$\alpha = 0.00257 \ 4; \ \alpha(K) = 0.00217 \ 3; \ \alpha(L) = 0.000317 \ 5; \alpha(M) = 6.96 \times 10^{-5} \ 10; \ \alpha(N+) = 1.85 \times 10^{-5} \ 3 \alpha(N) = 1.603 \times 10^{-5} \ 23; \ \alpha(O) = 2.32 \times 10^{-6} \ 4; \alpha(P) = 1.251 \times 10^{-7} \ 18$	

			1	⁵⁸ Ho ε decay	/ (11.3 mir	n+28 min)	1978An11,1	974A130,1975Ru02 (continued)
						$\gamma(15)$	⁵⁸ Dy) (continued	<u>d)</u>
Ε _γ ‡&	Ι _γ #@&	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. ^a	a^{\dagger}	Comments
1094.99 11	5.1 10	2409.67	4+	1314.73	5+	E2	0.00253 4	$ \begin{array}{c} \alpha = 0.00253 \ 4; \ \alpha(\text{K}) = 0.00213 \ 3; \ \alpha(\text{L}) = 0.000311 \ 5; \ \alpha(\text{M}) = 6.82 \times 10^{-5} \\ 10; \ \alpha(\text{N}+) = 1.81 \times 10^{-5} \ 3 \\ \alpha(\text{N}) = 1.573 \times 10^{-5} \ 22; \ \alpha(\text{O}) = 2.27 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 1.230 \times 10^{-7} \ 18 \end{array} $
1109.187	7.0 <i>11</i> 1.9 ^e .5	2055.38	4+	946.29	2+	b		$u(1) = 1.575 \times 10^{-2.2}, u(0) = 2.27 \times 10^{-7}, u(1) = 1.250 \times 10^{-10}$
1124.55 19	3.2 9	2672.29	4+	1547.28	6+	(E2)	0.00239 4	
x1129.2 ^f 4 1138.0 ^g 3 x1141.9 ^f 5 x1143.1 ^e 1 x1159.5 ^g 2	$3^{f} 1$ 2.4 ^g 7 4 ^f 1 5.6 ^e 7 6.0 ^g 13	3547.75	(3 ⁻)	2409.67	4+			E_{γ} : the 1138 γ feeds the 2409.54 level and/or the 2409.67 level.
1161.39 <i>14</i>	31.1 14	2107.64	4+	946.29	2+	E2	0.00225 4	$\begin{aligned} &\alpha = 0.00225 \ 4; \ \alpha(\text{K}) = 0.00189 \ 3; \ \alpha(\text{L}) = 0.000274 \ 4; \ \alpha(\text{M}) = 6.00 \times 10^{-5} \\ &9; \ \alpha(\text{N}+) = 1.81 \times 10^{-5} \ 3 \\ &\alpha(\text{N}) = 1.383 \times 10^{-5} \ 20; \ \alpha(\text{O}) = 2.00 \times 10^{-6} \ 3; \ \alpha(\text{P}) = 1.094 \times 10^{-7} \ 16; \\ &\alpha(\text{IPF}) = 2.17 \times 10^{-6} \ 4 \end{aligned}$
1166.5 ^g 2 1169.21 <i>18</i>	4.0 ^g 7 7.7 8	2538.52 1486.32	3 ⁺ ,4 ⁺ 6 ⁺	1371.70 317.101	(1,2,3) ⁻ 4 ⁺	E2	0.00222 4	α =0.00222 4; α (K)=0.00187 3; α (L)=0.000270 4; α (M)=5.91×10 ⁻⁵ 9; α (N+)=1.84×10 ⁻⁵ 3 α (N)=1.363×10 ⁻⁵ 19; α (O)=1.97×10 ⁻⁶ 3; α (P)=1.080×10 ⁻⁷ 16;
1181.0 <i>3</i>	18.0 <i>16</i>	1279.96	4+	98.901	2+	E2	0.00217 3	$\alpha(\text{IPF})=2.67\times10^{-6} 4$ $\alpha=0.00217 \ 3; \ \alpha(\text{K})=0.00183 \ 3; \ \alpha(\text{L})=0.000264 \ 4; \ \alpha(\text{M})=5.79\times10^{-5} $ $9; \ \alpha(\text{N}+)=1.89\times10^{-5} \ 3$ $\alpha(\text{N})=1.334\times10^{-5} \ 19; \ \alpha(\text{O})=1.93\times10^{-6} \ 3; \ \alpha(\text{P})=1.059\times10^{-7} \ 15; $ $\alpha(\text{IPF})=3.55\times10^{-6} \ 6$
1196.40 <i>9</i> 1201.32 <i>13</i>	7.5 <i>12</i> 13.3 <i>13</i>	1513.52 1518.42	2 ⁺ ,3,4 ⁺ 3 ⁻ ,4 ⁻	317.101 317.101	4+ 4+	E1	0.000917 13	$\alpha = 0.000917 \ 13; \ \alpha(K) = 0.000765 \ 11; \ \alpha(L) = 0.0001007 \ 15; \alpha(M) = 2.18 \times 10^{-5} \ 3; \ \alpha(N+) = 2.99 \times 10^{-5} \alpha(N) = 5.04 \times 10^{-6} \ 7; \ \alpha(O) = 7.38 \times 10^{-7} \ 11; \ \alpha(P) = 4.28 \times 10^{-8} \ 6; \alpha(DE) = 2.41 \times 10^{-5} \ 4.51 \times$
1210.87 7	22.7 10	1528.00	5-	317.101	4+	E1	0.000909 13	$\alpha(\text{IF})=2.41\times10^{-4} \\ \alpha=0.000909 \ 13; \ \alpha(\text{K})=0.000754 \ 11; \ \alpha(\text{L})=9.93\times10^{-5} \ 14; \\ \alpha(\text{M})=2.15\times10^{-5} \ 3; \ \alpha(\text{N}+)=3.37\times10^{-5} \ 5 \\ \alpha(\text{N})=4.97\times10^{-6} \ 7; \ \alpha(\text{O})=7.27\times10^{-7} \ 11; \ \alpha(\text{P})=4.22\times10^{-8} \ 6; \\ \alpha(\text{IPF})=2.80\times10^{-5} \ 4 \\ \end{array}$
*1222.95 <i>14</i> 1230.11 <i>7</i>	52 11.0 <i>13</i>	1547.28	6+	317.101	4+	E2	0.00201 3	α =0.00201 3; α (K)=0.001692 24; α (L)=0.000242 4; α (M)=5.30×10 ⁻⁵ 8; α (N+)=2.30×10 ⁻⁵ 4

 ∞

From ENSDF

 $^{158}_{66}\mathrm{Dy}_{92}\text{--}8$

 $^{158}_{66}\mathrm{Dy}_{92}\text{-}8$

						$\gamma(^{158}]$	Dy) (continued)	
E_{γ} [‡] &	Ι _γ #@&	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^a	$lpha^\dagger$	Comments
1234.09 22	6.5 10	2605.94	1-	1371.70	(1,2,3)-	E2	0.00200 3	$\begin{aligned} \alpha(\text{N}) &= 1.223 \times 10^{-5} \ I8; \ \alpha(\text{O}) &= 1.774 \times 10^{-6} \ 25; \ \alpha(\text{P}) &= 9.78 \times 10^{-8} \ I4; \\ \alpha(\text{IPF}) &= 8.85 \times 10^{-6} \ I3 \\ \alpha &= 0.00200 \ 3; \ \alpha(\text{K}) &= 0.001681 \ 24; \ \alpha(\text{L}) &= 0.000240 \ 4; \\ \alpha(\text{M}) &= 5.27 \times 10^{-5} \ 8; \ \alpha(\text{N}+) &= 2.34 \times 10^{-5} \ 4 \\ \alpha(\text{N}) &= 1.214 \times 10^{-5} \ I7; \ \alpha(\text{O}) &= 1.762 \times 10^{-6} \ 25; \ \alpha(\text{P}) &= 9.72 \times 10^{-8} \ I4; \\ \alpha(\text{IPF}) &= 9.38 \times 10^{-6} \ I4 \end{aligned}$
1238.3 <mark>8</mark> 3	1.6 <mark>8</mark> 9	2518.65	4+	1279.96	4+	b		u(III)-2.56×10 17
1245.94^{i} 13	$3.3^{i}8$	2409.53	234-	1163.71	4+	с		
1245.94 ^{<i>i</i>} 13	3.3 ⁱ 8	2409.67	4 ⁺	1163.71	4+	с		
x1269.7 ^e 1	4.2 <i>12</i>	2103101				M1	0.00306 5	$ \begin{array}{l} \alpha = 0.00306 \; 5; \; \alpha(\mathrm{K}) = 0.00259 \; 4; \; \alpha(\mathrm{L}) = 0.000356 \; 5; \; \alpha(\mathrm{M}) = 7.75 \times 10^{-5} \\ 11; \; \alpha(\mathrm{N}+) = 3.61 \times 10^{-5} \; 5 \\ \alpha(\mathrm{N}) = 1.79 \times 10^{-5} \; 3; \; \alpha(\mathrm{O}) = 2.64 \times 10^{-6} \; 4; \; \alpha(\mathrm{P}) = 1.557 \times 10^{-7} \; 22; \\ \alpha(\mathrm{IPF}) = 1.534 \times 10^{-5} \; 22 \end{array} $
1209.7 I	$261^{i}12$	1371 70	$(1, 2, 3)^{-}$	98 901	2+	с		
1272.79^{i} 6	$26.1^{i}12$	2436 48	(1,2,3) $3^+ 4^+$	1163 71	$\frac{2}{4^{+}}$	с		
$\begin{array}{c} 1272.79^{i} \ 6 \\ x1272.79^{i} \ 6 \\ x1279.6 \ 5 \\ x1284.1^{g} \ 2 \\ x1293.7^{f} \ 7 \end{array}$	$26.1^{i} 12 4.5 11 3.4^{g} 11 5^{f} 3$	2644.50	(⁺)	1371.70	(1,2,3)-	С		
1298.23 5	33.6 17	1397.14	3-	98.901	2+	E1	0.000847 12	$ \begin{array}{l} \alpha = 0.000847 \ 12; \ \alpha(\mathrm{K}) = 0.000667 \ 10; \ \alpha(\mathrm{L}) = 8.76 \times 10^{-5} \ 13; \\ \alpha(\mathrm{M}) = 1.90 \times 10^{-5} \ 3; \ \alpha(\mathrm{N} +) = 7.39 \times 10^{-5} \ 11 \\ \alpha(\mathrm{N}) = 4.38 \times 10^{-6} \ 7; \ \alpha(\mathrm{O}) = 6.42 \times 10^{-7} \ 9; \ \alpha(\mathrm{P}) = 3.73 \times 10^{-8} \ 6; \\ \alpha(\mathrm{IPF}) = 6.89 \times 10^{-5} \ 10 \end{array} $
1301.3 ^g 2	5.6 ^g 20	1618.50	3-,4-,5-	317.101	4+	E1	0.000846 12	$\alpha = 0.000846 \ 12; \ \alpha(K) = 0.000664 \ 10; \ \alpha(L) = 8.72 \times 10^{-5} \ 13; \alpha(M) = 1.89 \times 10^{-5} \ 3; \ \alpha(N+) = 7.55 \times 10^{-5} \ 11 \alpha(N) = 4.36 \times 10^{-6} \ 7; \ \alpha(O) = 6.39 \times 10^{-7} \ 9; \ \alpha(P) = 3.72 \times 10^{-8} \ 6; \alpha(IPF) = 7.05 \times 10^{-5} \ 10$
1317.4 ⁸ 2 ^x 1324.3 ^g 5 ^x 1332.2 ^g 3	2.7 ⁸ 13 1.4 ⁸ 7 2.7 ⁸ 12	1634.50		317.101	4+			
1337.75 8	7.7 8	2382.42	4+	1044.562	3+	E2	0.001725 25	$ \begin{array}{l} \alpha = 0.001725 \ 25; \ \alpha(\mathrm{K}) = 0.001438 \ 21; \ \alpha(\mathrm{L}) = 0.000203 \ 3; \\ \alpha(\mathrm{M}) = 4.44 \times 10^{-5} \ 7; \ \alpha(\mathrm{N}+) = 3.89 \times 10^{-5} \ 6 \\ \alpha(\mathrm{N}) = 1.025 \times 10^{-5} \ 15; \ \alpha(\mathrm{O}) = 1.491 \times 10^{-6} \ 21; \ \alpha(\mathrm{P}) = 8.31 \times 10^{-8} \ 12; \\ \alpha(\mathrm{IPF}) = 2.71 \times 10^{-5} \ 4 \end{array} $
1342.81 6	9.0 10	1441.74	1-	98.901	2+	E1	0.000828 12	$\alpha = 0.000828 \ I2; \ \alpha(K) = 0.000629 \ 9; \ \alpha(L) = 8.25 \times 10^{-5} \ I2; \alpha(M) = 1.79 \times 10^{-5} \ 3; \ \alpha(N+) = 9.88 \times 10^{-5} \ I4 \alpha(N) = 4.12 \times 10^{-6} \ 6; \ \alpha(O) = 6.05 \times 10^{-7} \ 9; \ \alpha(P) = 3.52 \times 10^{-8} \ 5; \alpha(PE) = 9.40 \times 10^{-5} \ I4$
^x 1362.0 ^f 8	5 ^f 2							

From ENSDF

			¹⁵⁸ H	lo ε decay (1	1.3 m	in+28 m	in) 1978An1	1,1974Al30,1975Ru02 (continued)
						<u> </u>	(¹⁵⁸ Dy) (contin	ued)
Ε _γ ‡ &	Ι _γ #@&	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	α^{\dagger}	Comments
1364.87 12	12.0 11	2409.53	2-,3-,4-	1044.562	3+	E1	0.000821 12	$ \begin{array}{l} \alpha = 0.000821 \ 12; \ \alpha(\mathrm{K}) = 0.000611 \ 9; \ \alpha(\mathrm{L}) = 8.01 \times 10^{-5} \ 12; \\ \alpha(\mathrm{M}) = 1.736 \times 10^{-5} \ 25; \ \alpha(\mathrm{N}+) = 0.0001125 \\ \alpha(\mathrm{N}) = 4.01 \times 10^{-6} \ 6; \ \alpha(\mathrm{O}) = 5.87 \times 10^{-7} \ 9; \ \alpha(\mathrm{P}) = 3.43 \times 10^{-8} \ 5; \\ \alpha(\mathrm{IPF}) = 0.0001078 \ 16 \end{array} $
x1368.5 ^e 1	11.2 ^e 12	0529 50	2+ 4+	1162 71	4+			
^{1374.90} 24 ^x 1386.5 ^g 2	$\approx 1^{g}$	2538.52	3',4'	1103.71	4'	(M1)	0.00248 4	$ \begin{array}{l} \alpha = 0.00248 \ 4; \ \alpha(\mathrm{K}) = 0.00207 \ 3; \ \alpha(\mathrm{L}) = 0.000284 \ 4; \ \alpha(\mathrm{M}) = 6.19 \times 10^{-5} \ 9; \\ \alpha(\mathrm{N}+) = 6.19 \times 10^{-5} \ 9 \\ \alpha(\mathrm{N}) = 1.432 \times 10^{-5} \ 20; \ \alpha(\mathrm{O}) = 2.11 \times 10^{-6} \ 3; \ \alpha(\mathrm{P}) = 1.245 \times 10^{-7} \ 18; \\ \alpha(\mathrm{IPF}) = 4.53 \times 10^{-5} \ 7 \end{array} $
1392.42 ⁱ 16	3.4 ⁱ 10	2436.48	$3^{+},4^{+}$	1043.81	8+	d		
1392.42 ⁱ 16	3.4 ⁱ 10	2672.29	4+	1279.96	4+	d		
1402.22 9	5.4 12	1501.13		98.901	2^{+}			Mult.: (E1,E2) from 1978An11.
1414.62 7	18.0 <i>18</i>	1513.52	2+,3,4+	98.901	2+	(E2)	0.001570 22	$\begin{aligned} &\alpha = 0.001570 \ 22; \ \alpha(\text{K}) = 0.001292 \ 18; \ \alpha(\text{L}) = 0.000181 \ 3; \ \alpha(\text{M}) = 3.96 \times 10^{-5} \\ &6; \ \alpha(\text{N}+) = 5.72 \times 10^{-5} \ 8 \\ &\alpha(\text{N}) = 9.14 \times 10^{-6} \ 13; \ \alpha(\text{O}) = 1.330 \times 10^{-6} \ 19; \ \alpha(\text{P}) = 7.47 \times 10^{-8} \ 11; \\ &\alpha(\text{IPF}) = 4.67 \times 10^{-5} \ 7 \end{aligned}$
1417.72 7	8.6 10	2055.38	4+	637.641	6+			
1432.6 4	4.8 8	2518.65	4+	1085.54	2^{+}	b		
1436.06 10	5.8 8	2382.42	4+	946.29	2+	-		
1441.73 6	10.6 10	1441.74	1-	0.0	0+	El	0.000809 12	$\alpha = 0.000809 \ 12; \ \alpha(\text{K}) = 0.000557 \ 8; \ \alpha(\text{L}) = 7.28 \times 10^{-5} \ 11; \alpha(\text{M}) = 1.577 \times 10^{-5} \ 22; \ \alpha(\text{N}+) = 0.0001638 \alpha(\text{N}) = 3.64 \times 10^{-6} \ 5; \ \alpha(\text{O}) = 5.34 \times 10^{-7} \ 8; \ \alpha(\text{P}) = 3.12 \times 10^{-8} \ 5; \alpha(\text{IPF}) = 0.0001596 \ 23$
1452.8 <mark>8</mark> 5	1.3 <mark>8</mark> 8	2538.52	3+,4+	1085.54	2+			
1463.39 <i>4</i>	33.6 9	2409.67	4+	946.29	2+	(E2)	0.001489 21	$\alpha = 0.001489 \ 21; \ \alpha(K) = 0.001212 \ 17; \ \alpha(L) = 0.0001692 \ 24; \alpha(M) = 3.69 \times 10^{-5} \ 6; \ \alpha(N+) = 7.11 \times 10^{-5} \alpha(N) = 8.53 \times 10^{-6} \ 12; \ \alpha(O) = 1.243 \times 10^{-6} \ 18; \ \alpha(P) = 7.00 \times 10^{-8} \ 10; \alpha(IPF) = 6.13 \times 10^{-5} \ 9 Mult.: \ \alpha_{K}(exp) \ gives \ M1 + E2, \ but \ J^{\pi'}s \ require \ E2.$
1489.8 <mark>8</mark> <i>3</i>	1.9 <mark>8</mark> 10	2436.48	3+,4+	946.29	2^{+}	b		
1494.1 ⁸ 4	1.6 <mark>8</mark> 10	2538.52	3+,4+	1044.562	3+			
1501.5 4	5.5 9	1818.75	$(2)^{+}$	317.101	4 ⁺ 2+	(F2)		Mult (E1 E2) from 1078 (n11) E1 contradicts spin assignments
x1521.6 3	10.0 <i>12</i> 22. <i>3</i>	1007.98	(2)	98.901	2	(E2) E2	0.001406 20	$\alpha = 0.001406 \ 20; \ \alpha(\text{K}) = 0.001126 \ 16; \ \alpha(\text{L}) = 0.0001565 \ 22; \alpha(\text{M}) = 3.42 \times 10^{-5} \ 5; \ \alpha(\text{N}+) = 8.95 \times 10^{-5} \alpha(\text{N}) = 7.88 \times 10^{-6} \ 11; \ \alpha(\text{O}) = 1.150 \times 10^{-6} \ 17; \ \alpha(\text{P}) = 6.51 \times 10^{-8} \ 10; \alpha(\text{IPF}) = 8.04 \times 10^{-5} \ 12$
1523.48 5	5.58 22	1840.11	2+,3,4+	317.101	4+	M1	0.00105.2	$a=0.00105$ 2, $a(W)=0.001566$ 22, $a(U)=0.000214$ 2, $a(W)=4.65 \times 10^{-5}$ 7
~1504. <i>3</i> ⁸ <i>2</i>	3.18 9					M11	0.00195 3	$\alpha = 0.00195 \ 3; \ \alpha(M) = 0.001506 \ 22; \ \alpha(L) = 0.000214 \ 3; \ \alpha(M) = 4.65 \times 10^{-5} \ 7; \ \alpha(N+) = 0.0001246 \ 18$

From ENSDF

Т

			¹⁵⁸ F	Ho ε decay	(11.3	min+28 n	nin) 1978An	11,1974Al30,1975Ru02 (continued)
							$\gamma(^{158}\text{Dy})$ (conti	nued)
Ε _γ ‡ &	Ι _γ #@&	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^{π}	Mult. ^a	$lpha^{\dagger}$	Comments
1572.40 20 1578.10 5	5.3 <i>12</i> 83. 5	1671.61 1895.12	2 ⁺ ,3,4 ⁺ 4 ⁺	98.901 317.101	2+ 4+	E2	0.001338 19	$\begin{aligned} &\alpha(\mathrm{N})=1.076\times10^{-5}\ 15;\ \alpha(\mathrm{O})=1.586\times10^{-6}\ 23;\ \alpha(\mathrm{P})=9.38\times10^{-8}\ 14;\\ &\alpha(\mathrm{IPF})=0.0001122\ 16 \end{aligned}$ $\alpha=0.001338\ 19;\ \alpha(\mathrm{K})=0.001052\ 15;\ \alpha(\mathrm{L})=0.0001455\ 21;\\ &\alpha(\mathrm{M})=3.17\times10^{-5}\ 5;\ \alpha(\mathrm{N}+)=0.000109 \\ &\alpha(\mathrm{N})=7.33\times10^{-6}\ 11;\ \alpha(\mathrm{O})=1.070\times10^{-6}\ 15;\ \alpha(\mathrm{P})=6.08\times10^{-8}\ 9;\\ &\alpha(\mathrm{IPF})=0.0001006\ 14 \end{aligned}$
1592.5 8 1603.81 20	9.78 13 1.7 7 5.7 9	2538.52 1920.39	3 ⁺ ,4 ⁺ 3 ⁺ ,4 ⁺ ,5 ⁺	946.29 317.101	2+ 4+	M1	0.00187 <i>3</i>	$ \begin{array}{l} \alpha = 0.00187 \ 3; \ \alpha(\mathrm{K}) = 0.001478 \ 21; \ \alpha(\mathrm{L}) = 0.000201 \ 3; \ \alpha(\mathrm{M}) = 4.39 \times 10^{-5} \\ 7; \ \alpha(\mathrm{N}+) = 0.0001416 \ 20 \\ \alpha(\mathrm{N}) = 1.015 \times 10^{-5} \ 15; \ \alpha(\mathrm{O}) = 1.496 \times 10^{-6} \ 21; \ \alpha(\mathrm{P}) = 8.85 \times 10^{-8} \ 13; \\ \alpha(\mathrm{IPF}) = 0.0001298 \ 19 \end{array} $
1608.3 ^g 3 1611.53 <i>19</i> 1623.78 8	2.8 ^g 9 5.0 9 62. 3	1607.98 1710.30 1940.71	(2) ⁺ (⁺) 3 ⁺	0.0 98.901 317.101	0+ 2+ 4+	b E2	0.001291 18	$ \begin{array}{l} \alpha = 0.001291 \ 18; \ \alpha(\mathrm{K}) = 0.000997 \ 14; \ \alpha(\mathrm{L}) = 0.0001376 \ 20; \\ \alpha(\mathrm{M}) = 3.00 \times 10^{-5} \ 5; \ \alpha(\mathrm{N}+) = 0.000126 \\ \alpha(\mathrm{N}) = 6.93 \times 10^{-6} \ 10; \ \alpha(\mathrm{O}) = 1.012 \times 10^{-6} \ 15; \ \alpha(\mathrm{P}) = 5.76 \times 10^{-8} \ 8; \\ \alpha(\mathrm{IPF}) = 0.0001181 \ 17 \end{array} $
^x 1637.2 ^e 3 ^x 1645.4 ^g 4 ^x 1678.04 19	2.6 ^e 9 1.6 ^g 9 11.4 9					E2	0.001243 18	α =0.001243 <i>18</i> ; α (K)=0.000938 <i>14</i> ; α (L)=0.0001290 <i>18</i> ; α (M)=2.81×10 ⁻⁵ <i>4</i> ; α (N+)=0.000147 α (N)=6.49×10 ⁻⁶ <i>9</i> ; α (O)=9.49×10 ⁻⁷ <i>14</i> ; α (P)=5.42×10 ⁻⁸ <i>8</i> ; α (IPF)=0.0001401 <i>20</i>
x1681.4 ^g 2 1687.1 ^g 4	5.7 <mark>8</mark> 11 1.3 <mark>8</mark> 7	3582.30	2+	1895.12	4+			
^x 1690.5 ⁸ 2 1698.12 <i>13</i> 1708.9 ^g 3 1711.4 3 ^x 1715.6 ^e 2 ^x 1717.8 ^f 5	$\begin{array}{c} 3.5^{8} & 8 \\ 8.2 & 16 \\ 2.9^{8} & 8 \\ 3.5 & 8 \\ 2.3^{e} & 6 \\ 3^{f} & 1 \end{array}$	2644.50 2989.28 3530.16	(⁺) 2 ⁺ 4 ⁺	946.29 1279.96 1818.75	2+ 4+			
x1719.2 ^e 3 1738.50 20	1.8 ^e 5 14.4 <i>19</i>	2055.38	4+	317.101	4+	M1	0.001635 23	$ \begin{array}{l} \alpha = 0.001635 \ 23; \ \alpha(\mathrm{K}) = 0.001227 \ 18; \ \alpha(\mathrm{L}) = 0.0001667 \ 24; \\ \alpha(\mathrm{M}) = 3.63 \times 10^{-5} \ 5; \ \alpha(\mathrm{N}+) = 0.000205 \\ \alpha(\mathrm{N}) = 8.40 \times 10^{-6} \ 12; \ \alpha(\mathrm{O}) = 1.238 \times 10^{-6} \ 18; \ \alpha(\mathrm{P}) = 7.33 \times 10^{-8} \ 11; \\ \alpha(\mathrm{IPF}) = 0.000196 \ 3 \end{array} $
^x 1742.0 ^J 2 1751.1 ^g 5 1753.47 12	11 ^J 2 2.9 ^g 16 6.1 16	2388.75 1851.94	(6 ⁺) 2 ⁺	637.641 98.901		M1	0.001615 23	α =0.001615 23; α (K)=0.001203 17; α (L)=0.0001634 23;

From ENSDF

			158	Ho ε decay	(11.3	3 min+28 r	nin) 1978An	11,1974Al30,1975Ru02 (continued)
$\gamma(^{158}\text{Dy})$ (continued)								
Ε _γ ‡&	Ι _γ #@&	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^{π}	Mult. ^a	α^{\dagger}	Comments
					_			$\alpha(M)=3.56\times10^{-5}$ 5; $\alpha(N+)=0.000213$
								α (N)=8.23×10 ⁻⁶ <i>12</i> ; α (O)=1.214×10 ⁻⁶ <i>17</i> ; α (P)=7.19×10 ⁻⁸ <i>10</i> ; α (IPF)=0.000203 <i>3</i>
								E_{γ} : γ energy is a poor fit to scheme; from level energies, γ energy is 1753.03 6.
1772.3 ⁸ 5 ×1784 15 8	1.8 ⁸ 9 15977	2409.67	4+	637.641	6+			
1790.62 5	234 9	2107.64	4+	317.101	4+	M1	0.001568 22	α =0.001568 22; α (K)=0.001146 16; α (L)=0.0001556 22; α (M)=3.39×10 ⁻⁵ 5; α (N+)=0.000232
								$\alpha(N)=7.84\times10^{-6}$ 11; $\alpha(O)=1.156\times10^{-6}$ 17; $\alpha(P)=6.85\times10^{-8}$ 10; $\alpha(IPF)=0.000223$ 4
1796.2 ⁸ 2	8.3 <mark>8</mark> 11	1895.12	4+	98.901	2^{+}			
^x 1828.0 ^f 9	<1.6 ^J	10.40 51	24	00.001	2+			
1841.95 <i>19</i>	4.5 10 5 1 <mark>6</mark> 7	1940.71	3 ⁺ 2 ⁺	98.901	2 ⁺			Leavie not reported by $1078 \text{ Am} 11$ L -7.5 from $1068 \text{ Am} 14$ and < 2.5 by
1631.94 19	3.1 /	1631.94	2	0.0	0			r_{γ} : γ is not reported by 1978AII11, r_{γ} =7.5 from 1908A014, and < 2.5 by 1974A130.
^x 1856.9 3	8.8 11					M1+E2	0.00131 19	α =0.00131 <i>19</i> ; α (K)=0.00092 <i>14</i> ; α (L)=0.000124 <i>19</i> ; α (M)=2.7×10 ⁻⁵ <i>4</i> ; α (N+)=0.000245 <i>21</i>
								$\alpha(N)=6.3\times10^{-6} \ 10; \ \alpha(O)=9.2\times10^{-7} \ 15; \ \alpha(P)=5.4\times10^{-8} \ 9; \ \alpha(PF)=0.000238 \ 20$
^x 1867.4 ^g 4	1.4 <mark>8</mark> 8							
1876.67 17	16.8 9	1975.74	$1^+, 2^+$	98.901	2+	M1	0.001476 21	$\alpha = 0.001476 \ 21; \ \alpha(K) = 0.001029 \ 15; \ \alpha(L) = 0.0001396 \ 20;$
								$\alpha(M) = 3.04 \times 10^{-3} 5; \alpha(N+) = 0.000277$
								$\alpha(N) = 7.05 \times 10^{\circ} 10; \ \alpha(O) = 1.037 \times 10^{\circ} 15; \ \alpha(P) = 6.14 \times 10^{\circ} 9; \ \alpha(PF) = 0.000268 4$
1880.77 23	6.9 8	2518.65	4+	637.641	6+			u(III)=0.000200 7
^x 1886.19 <i>13</i>	3.9 8					M1	0.001467 21	α =0.001467 21; α (K)=0.001017 15; α (L)=0.0001379 20;
								$\alpha(M)=3.00\times10^{-5} 5; \alpha(N+)=0.000282$
								$\alpha(N)=6.95\times10^{-6} \ 10; \ \alpha(O)=1.024\times10^{-6} \ 15; \ \alpha(P)=6.07\times10^{-6} \ 9;$
1894.00 20	3.8 8	2211.06	(5^{+})	317.101	4+			$\alpha(1\Gamma\Gamma) = 0.0002744$
^x 1899.5 ⁸ 3	1.7 <mark>8</mark> 8		(-)		-			
1913.23 <i>21</i>	2.0 8	3547.75	(3-)	1634.50		b		
^x 1918.35 21	4.8 8							
x1937.79 24	2.5 8							
~1949.2 3 1956 57 10	3.2 10	2055 38	<u>/</u> +	08 001	2+			Mult : Assigned M1 but $I^{\pi/s}$ require E2
x1960.57 19	389	2033.38	4	96.901	2			winn. Assigned wit, but J s require E2.
1976.01 17	2.3 7	1975.74	$1^+, 2^+$	0.0	0^{+}			
^x 1996.7 ⁸ 5	1.6 ⁸ 7		,		-			
1998.6 ⁸ 5	1.5 <mark>8</mark> 7	2989.28	2+	990.49	0^{+}			
2008.91 18	17.6 14	2107.64	4+	98.901	2^{+}			Mult.: M1 adopted by 1978An11 contradictes spin assignments.

From ENSDF

 $^{158}_{66}\mathrm{Dy}_{92}$ -12

Т

			1:	⁵⁸ Ho ε decay	(11.3 mi	in+28 min) 1978An11,1974Al30,1975Ru02 (continued)				
γ ⁽¹⁵⁸ Dy) (continued)										
Ε _γ ‡&	Ι _γ #@&	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. ^a	α^{\dagger}	Comments		
2019.2 <i>4</i> 2029.73 22	2.4 8 9.9 <i>10</i>	3547.75 3547.75	(3 ⁻) (3 ⁻)	1528.00 1518.42	5 ⁻ 3 ⁻ ,4 ⁻	M1+E2	0.00122 15	α =0.00122 <i>15</i> ; α (K)=0.00076 <i>10</i> ; α (L)=0.000103 <i>14</i> ; α (M)=2.2×10 ⁻⁵ <i>3</i> ; α (N+)=0.00033 <i>3</i> α (N)=5.2×10 ⁻⁶ <i>7</i> ; α (O)=7.6×10 ⁻⁷ <i>11</i> ; α (P)=4.5×10 ⁻⁸ <i>7</i> ; α (IPF)=0.00033 <i>3</i>		
2034.85 25 2065.37 19	4.4 9 32.3 <i>1</i> 9	2672.29 2382.42	4+ 4+	637.641 317.101	6+ 4+	M1+E2	0.00121 14	$\alpha = 0.00121 \ 14; \ \alpha(K) = 0.00073 \ 10; \ \alpha(L) = 9.9 \times 10^{-5} \ 13; \ \alpha(M) = 2.2 \times 10^{-5} \ 3; \ \alpha(M) = 5.0 \times 10^{-6} \ 7; \ \alpha(O) = 7.3 \times 10^{-7} \ 10; \ \alpha(P) = 4.3 \times 10^{-8} \ 7; \ \alpha(PE) = 0.00034 \ 3$		
2071.6 <i>3</i> x2076.00 <i>15</i>	5.4 9 8.3 10	2388.75	(6 ⁺)	317.101	4+	M1	0.001339 <i>19</i>	$\alpha(\text{II} 1) = 0.00034 \text{ 5}$ $\alpha = 0.001339 \ 19; \ \alpha(\text{K}) = 0.000818 \ 12; \ \alpha(\text{L}) = 0.0001106 \ 16;$ $\alpha(\text{M}) = 2.41 \times 10^{-5} \ 4; \ \alpha(\text{N}+) = 0.000386$ $\alpha(\text{N}) = 5.57 \times 10^{-6} \ 8; \ \alpha(\text{O}) = 8.21 \times 10^{-7} \ 12; \ \alpha(\text{P}) = 4.87 \times 10^{-8} \ 7;$ $\alpha(\text{IPF}) = 0.000380 \ 6$		
2092.4 ⁱ 3	13.9 ⁱ 18	2409.53	2-,3-,4	- 317.101	4+	С				
2092.4 ^{<i>i</i>} 3 x2095.0 3	13.9 ⁱ 18 7.2 15	2409.67	4+	317.101	4+	<i>c</i> M1+E2	0.00120 14	α =0.00120 <i>14</i> ; α (K)=0.00071 <i>9</i> ; α (L)=9.6×10 ⁻⁵ <i>13</i> ; α (M)=2.1×10 ⁻⁵ <i>3</i> ; α (N+)=0.00037 <i>4</i> α (N)=4.8×10 ⁻⁶ <i>7</i> ; α (O)=7.1×10 ⁻⁷ <i>10</i> ; α (P)=4.2×10 ⁻⁸ <i>6</i> ; α (IPE)=0.00036 <i>3</i>		
2105.83 <i>19</i> 2119.50 <i>16</i>	2.8 7 23.4 <i>14</i>	3547.75 2436.48	(3 ⁻) 3 ⁺ ,4 ⁺	1441.74 317.101	1 ⁻ 4 ⁺	M1	0.001319 <i>19</i>	$\alpha(\mathbf{n} + \mathbf{r}) = 0.0000000000000000000000000000000000$		
x2147.2 3	2.2 8					E2	0.001054 <i>15</i>	$\alpha(\text{II} 1) = 0.000404 \ 0$ $\alpha = 0.001054 \ 15; \ \alpha(\text{K}) = 0.000598 \ 9; \ \alpha(\text{L}) = 8.04 \times 10^{-5} \ 12; \alpha(\text{M}) = 1.748 \times 10^{-5} \ 25; \ \alpha(\text{N}+) = 0.000359 \alpha(\text{N}) = 4.04 \times 10^{-6} \ 6; \ \alpha(\text{O}) = 5.93 \times 10^{-7} \ 9; \ \alpha(\text{P}) = 3.45 \times 10^{-8} \ 5; \alpha(\text{IPF}) = 0.000354 \ 5$		
$x^{2170.75} 23$ $x^{2188.4^{e}} 4$	6.3 <i>11</i> 3.4 ^e 6									
2201.95 19	47.7 23	2518.65	4+	317.101	4+	M1	0.001290 18	$ \begin{array}{l} \alpha = 0.001290 \ 18; \ \alpha(\mathrm{K}) = 0.000716 \ 10; \ \alpha(\mathrm{L}) = 9.66 \times 10^{-5} \ 14; \\ \alpha(\mathrm{M}) = 2.10 \times 10^{-5} \ 3; \ \alpha(\mathrm{N}+) = 0.000456 \ 7 \\ \alpha(\mathrm{N}) = 4.86 \times 10^{-6} \ 7; \ \alpha(\mathrm{O}) = 7.18 \times 10^{-7} \ 10; \ \alpha(\mathrm{P}) = 4.26 \times 10^{-8} \ 6; \\ \alpha(\mathrm{IPF}) = 0.000450 \ 7 \end{array} $		
2221.65 19	45.4 26	2538.52	3+,4+	317.101	4+	M1	0.001284 18	$\alpha = 0.001284 \ 18; \ \alpha(K) = 0.000702 \ 10; \ \alpha(L) = 9.47 \times 10^{-5} \ 14; \alpha(M) = 2.06 \times 10^{-5} \ 3; \ \alpha(N+) = 0.000467 \ 7 \alpha(N) = 4.77 \times 10^{-6} \ 7; \ \alpha(O) = 7.03 \times 10^{-7} \ 10; \ \alpha(P) = 4.18 \times 10^{-8} \ 6; \alpha(IPF) = 0.000462 \ 7$		
$x^{2236.08} 5$	1.5^{8} 10	2202 42	4+	00 001	2 +					
2282.0° J	0.80 0	2382.42	4	98.901	2.					

From ENSDF

			158	Ho ε decay	(11.3	5 min+28 m	nin) 1978An 1	11,1974Al30,1975Ru02 (continued)
							$\gamma(^{158}\text{Dy})$ (contin	nued)
Ε _γ ‡ &	Ι _γ #@&	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. ^a	α^{\dagger}	Comments
^x 2289.9 4	2.9 8					(M1)	0.001269 18	$\begin{aligned} &\alpha = 0.001269 \ 18; \ \alpha(\text{K}) = 0.000656 \ 10; \ \alpha(\text{L}) = 8.84 \times 10^{-5} \ 13; \\ &\alpha(\text{M}) = 1.92 \times 10^{-5} \ 3; \ \alpha(\text{N}+) = 0.000506 \ 7 \\ &\alpha(\text{N}) = 4.45 \times 10^{-6} \ 7; \ \alpha(\text{O}) = 6.56 \times 10^{-7} \ 10; \ \alpha(\text{P}) = 3.90 \times 10^{-8} \ 6; \end{aligned}$
^x 2303.2 ^g 2	3.5 ^g 8					(E1)	0.001079 <i>16</i>	$\alpha(\text{IPF})=0.000500\ 7$ $\alpha=0.001079\ 16;\ \alpha(\text{K})=0.000259\ 4;\ \alpha(\text{L})=3.35\times10^{-5}\ 5;\ \alpha(\text{M})=7.24\times10^{-6}$ $11;\ \alpha(\text{N}+)=0.000778\ 11$ $\alpha(\text{N})=1.673\times10^{-6}\ 24;\ \alpha(\text{O})=2.46\times10^{-7}\ 4;\ \alpha(\text{P})=1.458\times10^{-8}\ 21;$ $\alpha(\text{IPF})=0.000776\ 11$
2310.73 ⁱ 24	10.1 ⁱ 9	2409.53	234-	98,901	2^{+}	С		
$2310.73^{i} 24$	10.1^{i} 9	2409.67	2 ,3 ,1 4 ⁺	98 901	$\frac{2}{2^{+}}$	с		
2338.5 4	2.4 8	2436.48	3+,4+	98.901	2+ 2+	(E2)	0.001045 15	$\alpha = 0.001045 \ 15; \ \alpha(K) = 0.000513 \ 8; \ \alpha(L) = 6.86 \times 10^{-5} \ 10; \\ \alpha(M) = 1.490 \times 10^{-5} \ 21; \ \alpha(N+) = 0.000449 \\ \alpha(N) = 3.44 \times 10^{-6} \ 5; \ \alpha(O) = 5.06 \times 10^{-7} \ 7; \ \alpha(P) = 2.96 \times 10^{-8} \ 5; \\ \alpha(IPF) = 0.000445 \ 7$
2355.6 4 2367.7 ^g 8 ^x 2372.2 4 ^x 2393.8 ^e 3	1.9 8 1.0 ^g 7 3.8 7 3.9 ^e 5	2672.29 3530.16	4+ 4+	317.101 1163.71	4+ 4+	b		
^x 2395.88 <i>18</i>	6.4 <i>13</i>					(E2)	0.001047 15	$ \begin{array}{l} \alpha = 0.001047 \ 15; \ \alpha(\text{K}) = 0.000491 \ 7; \ \alpha(\text{L}) = 6.56 \times 10^{-5} \ 10; \\ \alpha(\text{M}) = 1.424 \times 10^{-5} \ 20; \ \alpha(\text{N}+) = 0.000476 \\ \alpha(\text{N}) = 3.29 \times 10^{-6} \ 5; \ \alpha(\text{O}) = 4.83 \times 10^{-7} \ 7; \ \alpha(\text{P}) = 2.83 \times 10^{-8} \ 4; \\ \alpha(\text{IPF}) = 0.000473 \ 7 \end{array} $
^x 2410.7 5	1.9 8							
2418.5 ⁸ 3	2.18 7	3582.30	2^+	1163.71	4^+			
2439.2° 5 x2444.6 5	$0.8^{\circ} 0$ 3 3 10	2538.52	3',4'	98.901	2.	(E1E2)		
x2465.2.4	257					$(\mathbf{E}^{1},\mathbf{E}^{2})$		
2486.19 <i>24</i>	2.8 6	3530.16	4+	1044.562	3+	M1	0.001250 18	$ \begin{array}{l} \alpha = 0.001250 \ 18; \ \alpha(\mathrm{K}) = 0.000546 \ 8; \ \alpha(\mathrm{L}) = 7.34 \times 10^{-5} \ 11; \\ \alpha(\mathrm{M}) = 1.596 \times 10^{-5} \ 23; \ \alpha(\mathrm{N}+) = 0.000615 \\ \alpha(\mathrm{N}) = 3.69 \times 10^{-6} \ 6; \ \alpha(\mathrm{O}) = 5.45 \times 10^{-7} \ 8; \ \alpha(\mathrm{P}) = 3.24 \times 10^{-8} \ 5; \\ \alpha(\mathrm{IPF}) = 0.000611 \ 9 \end{array} $
×2492.62 27	3.17	2605.04	1-	08 001	2^+	(E1 E2)		
x2514.25 25	7.6 8	2005.94	1	90.901	2	(E1, E2) (E1, E2)		
^x 2525.72 18	4.1 6					M1	0.001250 18	$ \begin{array}{l} \alpha = 0.001250 \ 18; \ \alpha(\mathrm{K}) = 0.000527 \ 8; \ \alpha(\mathrm{L}) = 7.08 \times 10^{-5} \ 10; \\ \alpha(\mathrm{M}) = 1.540 \times 10^{-5} \ 22; \ \alpha(\mathrm{N}+) = 0.000637 \\ \alpha(\mathrm{N}) = 3.56 \times 10^{-6} \ 5; \ \alpha(\mathrm{O}) = 5.26 \times 10^{-7} \ 8; \ \alpha(\mathrm{P}) = 3.13 \times 10^{-8} \ 5; \\ \alpha(\mathrm{IPF}) = 0.000633 \ 9 \end{array} $
2545.90 <i>23</i>	33.2 16	2644.50	(*)	98.901	2+	(E2)	0.001058 15	$ \begin{array}{l} \alpha = 0.001058 \ 15; \ \alpha(\text{K}) = 0.000441 \ 7; \ \alpha(\text{L}) = 5.86 \times 10^{-5} \ 9; \ \alpha(\text{M}) = 1.273 \times 10^{-5} \\ 18; \ \alpha(\text{N}+) = 0.000546 \ 8 \\ \alpha(\text{N}) = 2.94 \times 10^{-6} \ 5; \ \alpha(\text{O}) = 4.33 \times 10^{-7} \ 6; \ \alpha(\text{P}) = 2.54 \times 10^{-8} \ 4; \\ \alpha(\text{IPF}) = 0.000543 \ 8 \end{array} $

 $^{158}_{66}\mathrm{Dy}_{92}$ -14

Т

From ENSDF

				¹⁵⁸ Ho ε d	ecay	(11.3 min-	+28 min) 197	78An11,1974Al30,1975Ru02 (continued)
γ ⁽¹⁵⁸ Dy) (continued)								
Ε _γ ‡&	Ι _γ #@&	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	α^{\dagger}	Comments
x2560.6 4 2573.6 3 x2584.38 4 x2593.68 4	$2.0 \ 8$ $2.0 \ 6$ $1.1^{g} \ 7$ $1 \ 6^{g} \ 6$	2672.29	4+	98.901	2+			
2605.85 23	70 3	2605.94	1-	0.0	0+	E1	0.001214 17	$ \begin{array}{l} \alpha = 0.001214 \ 17; \ \alpha(\text{K}) = 0.000215 \ 3; \ \alpha(\text{L}) = 2.76 \times 10^{-5} \ 4; \ \alpha(\text{M}) = 5.97 \times 10^{-6} \ 9; \\ \alpha(\text{N}+) = 0.000966 \ 14 \\ \alpha(\text{N}) = 1.379 \times 10^{-6} \ 20; \ \alpha(\text{O}) = 2.03 \times 10^{-7} \ 3; \ \alpha(\text{P}) = 1.205 \times 10^{-8} \ 17; \\ \alpha(\text{IPF}) = 0.000964 \ 14 \\ \text{E}_{\gamma}: \ 2605.82 \ 1 \ (2013\text{KaZW}). \\ \text{L}_{\gamma}: \ 68.4 \ 11 \ (2013\text{KaZW}). \end{array} $
x2621.6 ^h 4 x2628.25 ^h 14 x2634.5 ^h 4 x2636.9 ^h 4 x2641.23 ^h 25	$\begin{array}{c} 0.35^{h} \ 11\\ 0.81^{h} \ 6\\ 0.27^{h} \ 11\\ 0.51^{h} \ 10\\ 0.36^{h} \ 11 \end{array}$							
^x 2645.9 <i>4</i> ^x 2659.1 <i>3</i>	1.3 5 5.5 7							E_{γ} : 2646.00 <i>12</i> (2013KaZW). I_{γ} : 1.55 <i>10</i> (2013KaZW). E_{γ} : 2658.93 <i>3</i> (2013KaZW).
2672.3 3 ${}^{x}2672.64^{h}$ 9 ${}^{x}2693.0^{f}$ 9	3.2 6 3.57 ^h 9 2 ^f 1	2989.28	2+	317.101	4+			I_{γ} : 5.17 13 (2013KaZ w).
x2744.2 6	1.2 <i>5</i>							E_{γ} : 2743.35 7 (2013KaZW). I_{γ} : 1.16 6 (2013KaZW).
^x 2751.15 ^{<i>tt</i>} 20 ^x 2756.4 9	0.38 ⁿ 5 2.9 8							E _γ : 2757.82 <i>4</i> (2013KaZW). I _γ : 2.33 <i>11</i> (2013KaZW).
^x 2788.4 ^h 3 ^x 2792.07 ^h 25 ^x 2795.3 ^h 5	0.32^{h} 7 0.54^{h} 7 0.32^{h} 7							
^x 2804 ^f 1	1.1 ^{<i>f</i>} 7							E _γ : 2802.43 22 (2013KaZW). I _γ : 1.08 <i>16</i> (2013KaZW).
$x_{2812.10}^{h} 21$ $x_{2814}^{f} 1$ $x_{2820.6}^{h} 3$ $x_{2822.20}^{h} 22$	$\begin{array}{c} 0.35^{h} \ 6\\ 1.5^{f} \ 11\\ 0.16^{h} \ 7\\ 0.64^{h} \ 7\end{array}$							
x2825.50 ⁻²² x2827.6 3 x2842.8 ^g 4	$1.2^{g} 4$							E_{γ} : 2827.90 5 (2013KaZW). I_{γ} : 2.15 9 (2013KaZW). E_{γ} : 2842.37 14 (2013KaZW). I_{γ} : 0.99 9 (2013KaZW).

$^{158}_{66}\mathrm{Dy}_{92}$ -15

Т

From ENSDF

				¹³⁸ Ηο ε	decay	(11.3 min+28 min) 1978An11,1974AI30,1975Ru02 (continued)	
γ ⁽¹⁵⁸ Dy) (continued)							
Ε _γ ‡&	$I_{\gamma}^{\#@\&}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments	
^x 2845.1 ^h 3 ^x 2850.5 4	0.43 ^h 7 1.5 7					E_{γ} : 2850.83 6 (2013KaZW).	
^x 2854.9 ^h 4 ^x 2862.4 ^h 3 ^x 2874.5 4	0.35 ^h 7 0.36 ^h 4 2.1 4					E_{γ} : 2873.57 5 (2013KaZW).	
^x 2877.43 ^h 11 ^x 2884.4 ^g 3	0.89 ^h 6 1.3 ^g 4					I_{γ} : 2.17 8 (2013KaZW). E_{γ} : 2884.42 5 (2013KaZW).	
2892.6 ^g 6	0.6 ^g 4	3530.16	4+	637.641	6+	I_{γ} : 1.60 6 (2013KaZW). E_{γ} : 2892.02 22 (2013KaZW). I_{γ} : 0.38 9 (2013KaZW).	
$x_{2893.4}^{h} 3$ $x_{2897.0}^{h} 3$ $x_{2906.08}^{h} 19$	0.55^{h} 11 0.25^{h} 8 0.62^{h} 9						
x2908.6 3 x2922.6 4	2.3 6 1.4 <i>4</i>					E_{γ} : 2908.85 6 (2013KaZW). I_{γ} : 2.31 8 (2013KaZW). E_{γ} : 2922.06 <i>16</i> (2013KaZW).	
^x 2924.4 ^h 3	0.67 ^h 13					I_{γ} : 1.60 6 (2013KaZW).	
^x 2927.5 ^h 4 ^x 2929.6 ^g 4	0.43 ^h 11 1.4 ^g 4					E_{γ} : 2930.05 <i>12</i> (2013KaZW).	
^x 2934.67 20	3.6 4					I_{γ} : 2.06 <i>I</i> 5 (2013KaZW). E_{γ} : 2934.80 <i>3</i> (2013KaZW). I : 4.44 II (2013KaZW)	
^x 2939.5 ^g 5	0.9 ^g 4					E_{γ} : 2939.69 6 (2013KaZW). I_{γ} : 1.41 6 (2013KaZW).	
$x^{2947.78}h$ 9	$0.77^{h} 5$						
x2965.9 ^h 3	0.19^{-4} 0.18^{h} 4						
$x^{2979.7}h_{4}$	0.16 ^h 3						
$x^{2993.44^{n}}$ 16	$0.60^{n} 5$						
x3019.1 ^g 5	$1.0^8 4$					E_{γ} : 3019.21 7 (2013KaZW). I_{γ} : 1.06 6 (2013KaZW).	
x3026.8 ^h 3	0.19^{h}_{h} 4						
x3038.0 ^h 3 x3040.0 ^g 6	0.28 ^h 11 0.4 ^g 3					E _γ : 3040.32 <i>19</i> (2013KaZW). I _γ : 0.56 <i>9</i> (2013KaZW).	

Т

			¹⁵⁸ Ho ε decay (11.3 min+28 min)	1978An11,1974Al30,1975Ru02 (continued)
			$\gamma(^{158})$	Dy) (continued)
Ε _γ ‡&	Ι _γ #@&	E _i (level)		Comments
$x_{3045,0}^{h}$ 4	0.28^{h} 5			
$x_{3048.7}^{h}$ 3	0.27^{h} 5			
^x 3055.0 ^h 3	$0.16^{h} 5$			
$x_{3078.3}^{h} 4$	0.40 ^h 8			
^x 3081.6 ^h 3	0.27 ^h 7			
^x 3085.80 ^h 18	0.53 ^h 5			
x3091.70 ^h 24	0.35 ^h 45			
x3103.1 ^g 6	0.4 ^g 3		E _γ : 3102.46 <i>10</i> (2013KaZW). I _γ : 0.86 5 (2013KaZW).	
^x 3107.3 ^h 3	0.29 ^h 4			
^x 3126.9 ^g 6	0.4 ⁸ 3		E _γ : 3126.89 <i>11</i> (2013KaZW). I _γ : 0.74 <i>5</i> (2013KaZW).	
x3140.6 ^h 3	$0.19^{h} 4$			
*3166.38 7	0.58 3		E_{γ} : 3166.35 <i>14</i> (2013KaZW). I_{γ} : 0.44 <i>4</i> (2013KaZW).	
^x 3178.4 ^h 3	0.18 ⁿ 3			
x3184.2 ⁿ 3	0.21^{n} 3			
x3194.6 ⁿ 3	0.15^{n} 3			
x3197.75 ⁿ 18	$0.26^{n} 5$			
x3202.82 ⁿ 21	$0.21^{n} 4$			
$x_{3205.11}^{n}$ 25	$0.19^{n} 4$			
$x_{3237.4}^{x_{3237.4}^{h}}$ 6	0.20^{n} 7			
$x_{2252} = x_{2052} + x_{2052} $	$0.15^{n} 3$			
$x_{2250,1h}$	0.24^{10} 3			
$x_{2262} = \frac{1}{2} \frac{1}{4} \frac{1}{4}$	$0.11^{+}5$ $0.21^{h}4$			
$x_{3268,1}^{h}$	0.21 4 0.15h 3			
$x_{3313} 6^{h} 3$	0.15^{h} 3			
$x_{33277} h_{3}$	0.15^{h} 3			
$x_{3350.7}^{h}$ 5	0.12^{h} 3			
$x_{3359.4}^{h}$ 3	0.19^{h} 3			
x3408.7 ^h 3	0.22^{h} 4			
x3416.6 ^h 3	0.18 ^h 3			
^x 3430.2 ^h 10	0.13 ^h 8			
^x 3514.59 ^h 20	0.16 ^h 3			
^x 3529.45 ^h 21	0.13 ^h 2			

From ENSDF

					γ ⁽¹⁵⁸ Dy) (continued)
E _γ ‡&	Ι _γ #@&	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Comments
^x 3534.9 ^h 5	0.10 ^h 3				
^x 3537.44 ^h 25	0.21 ^h 3				
^x 3541.7 ^h 4	0.06 ^h 2				
^x 3552.03 ^h 19	0.14 ^h 2				
3582.8 ^g 7	0.5 ^g 2	3582.30	2+	0.0 0+	E_{γ} : 3581.77 8 (2013KaZW). I_{γ} : 0.57 3 (2013KaZW).
^x 3593.3 ^h 4	0.11 ^h 3				
x3596.4 ^h 4	0.12 ^h 4				
x3598.96 ^h 25	0.34 ^h 6				
^x 3613.67 ^h 13	0.27 ^h 2				E_{γ} : 3615.8 <i>10</i> (1978An11). I_{γ} : \approx 0.2 (1978An11).
^x 3639.9 ^h 3	0.13 ^h 2				
x3650.83 ^h 11	0.33 ^h 3				E_{γ} : 3651.1 <i>10</i> (1978An11). I_{γ} : ≈0.2 (1978An11).
^x 3685.61 ^h 23	0.12 ^h 2				
^x 3697.57 ^h 24	0.12 ^h 1				
x3709.3 ^h 5	0.08 ^h 3				
^x 3719.40 ^h 21	0.13 ^h 2				
x3738.57 ^h 24	0.12 ^h 2				
^x 3764.1 ^h 5	≈0.04 ^{<i>h</i>}				
^x 3780.2 ^h 4	≈0.07 ^h				
^x 3790.3 ^h 5	$\approx 0.04^{h}$				
^x 3840.0 ^h 4	$\approx 0.03^{h}$				
x3850.3 ^h 5	$\approx 0.04^{h}$				
$^{38/3.08}10$	$\approx 0.2^{8}$				
$^{-3884.4}$	$\approx 0.02^{n}$				
$x_{2044} < \frac{h}{h} = 4$	$\approx 0.02^{\circ}$				
$x_{4005,1h}$	$\approx 0.05^{n}$				
4003.1 4	~0.02				

[†] Additional information 1.

[‡] Weighted average of values from 1974A130, 1975Ru02, and 1978An11 with the larger of the internal and external uncertainties used. This process may underestimate the uncertainties since 1975Ru02 and 1978An11 have a common author so these values may not be independent; this possibility is supported by the fact that a number of the energies are exactly the same in these two references. Other: 1968Ab14.

γ ⁽¹⁵⁸Dy) (continued)</sup>

- [#] Relative I_{γ}. For I_(γ +ce) as per 200 decays of the two parents multiply by 0.067.
- [@] From 1978An11, unless noted otherwise. Other values that differ significantly are noted.
- & 2013KaZW give a large set of gamma rays with E γ >2600 keV (only three of them placed in the level scheme and 105 unplaced) with unrealistically precise intensities (for a very brief secondary reference with virtually no justification of their results) reason for which they were not included in the average with the other values.

^{*a*} From ¹⁵⁸Dy Adopted Gammas, but they are as reported by 1978An11 from $\alpha_{\rm K}(\exp)$ values based on I_{γ} of 1978An11 and ce data of 1974Al30 and normalized to $\alpha_{\rm K}(218.20)=0.125$ as expected for an E2 γ .

- ^b $\alpha_{\rm K}(\exp)$, including the uncertainty, exceeds the M1 value; mult=E0 + E2 is assigned when $\Delta J=0$, but there could also be an M1 component.
- ^{*c*} Mult=E1,E2 for multiplet.
- ^d Mult=E2 for multiplet.
- ^e From 1975Ru02 only.
- ^f From 1974Al30 only.
- ^g From 1978An11 only.
- ^h From 2013KaZW only (exceptions are noted in table comments).
- ^{*i*} Multiply placed with undivided intensity.
- j Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

Intensities: relative I_{γ} . For $I_{(\gamma+ce)}$ as per 200 decays of the two parents multiply by 0.067. multiply by 0.067.

¹⁵⁸₆₆Dy₉₂

Decay Scheme (continued)

 $Lege \label{eq:legendensities: relative I_{\gamma}. \ For \ I_{(\gamma+ce)} \ as \ per \ 200 \ decays \ of \ the \ two \ parents \ multiply \ by \ 0.067. multiply \ by \ 0.067.$

¹⁵⁸₆₆Dy₉₂

Decay Scheme (continued)

¹⁵⁸₆₆Dy₉₂