Adopted Levels, Gammas

		History			
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	N. Nica	NDS 132, 1 (2016)	4-Dec-2015		

 $Q(\beta^{-})=-10123$ (syst) 427; S(n)=11803 (syst) 334; S(p)=-935 10; Q(α)=6355 6 2017Wa10 $Q(\varepsilon)=9310$ (syst) 247; S(2n)=21808 (syst) 334; S(2p)=1.63×10³ 10; Q(ε p)=6.82×10³ 14 2017Wa10 Additional information 1.

This data set has been prepared, in part, from the evaluation of the proton radioactivity (2002So02) which populates ¹⁵⁶Hf. This nuclide has been produced by ¹⁰²Pd(⁵⁸Ni,p2n) with $E(^{58}Ni) = 270$ MeV in recoil mass separator with PPAC/DSSD detectors at focal plane (1997Ir01) and same reaction and measurements with $E(^{58}Ni) = 290$ MeV (1996Pa01).

Theoretical works related to the nuclear shape and the separation or decay energies are:

2001Go20: $\beta_2 = 0.00$, $\beta_4 = 0.00$, S(p) = -0.5 MeV.

1997Mo25: S(p)=-0.48 MeV, S(2p)=1.76 MeV, $Q(\alpha)=6.20$ MeV, $T_{1/2}(\beta)=0.5664$ s, $T_{1/2}(\alpha)=2.570$ ms.

1995Mo29: $\beta_2 = 0.045$, $\beta_4 = 0.001$, $\beta_6 = 0.000$.

1995Ab38: $\beta_2 = 0.12$, $\beta_4 = 0.01$, S(p)=-0.8 MeV.

1976Li30: S(p) = -0.79 MeV, $Q(\alpha) = 5.97$ MeV.

¹⁵⁷Ta Levels

Cross Reference (XREF) Flags

A 161 Re α decay (14.7 ms)

 $^{157}\mathrm{W}~arepsilon$ decay

В

C $^{102}Pd(^{58}Ni,p2n\gamma)$

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0	1/2+	10.1 ms 4	С	%p=3.4 <i>12</i> ; %α=96.6 <i>12</i> %α: from 100-%p and assuming no significant ε +β+ decay (1997Ir01). For the proton decay to ¹⁵⁶ Hf, E(p)=927 keV 7, %p=3.4 <i>12</i> , <i>J</i> ^π (p)=1/2 ⁺ , T _{1/2} (p)=0.30 s <i>11</i> , and configuration= π (2s _{1/2}) (1997Ir01). 1996Pa01 observe a single proton radioactivity event with E(p)=919 keV <i>17</i> , 11 ms after implantation of ¹⁵⁷ Ta nuclei. T _{1/2} : from α (t) (1997Ir01); other 12.1 ms + <i>31</i> -2 <i>3</i> from p(t) (1997Ir01).
22 [‡] 5	11/2-	4.3 ms <i>1</i>	A C	 %α=100 Additional information 2. J^π: from feeding from 11/2⁻ state in ¹⁶¹Re and α feeding to 11/2⁻ level in ¹⁵³Lu. %α: no proton radioactivity has been observed for this level and it is expected to be much slower than α decay due to the large value of proton angular momentum. Measured %α: 100 23 (1979Ho10) and 95 12 (1996Pa01). T_{1/2}: from α(t) (1996Pa01); other: 5.3 ms 18 (1979Ho10).
864.0 [‡] 3	$15/2^{(-)}$		С	J^{π} : stretched $\Delta J=2 \gamma$ to $11/2^{-}$.
1567.2 [‡] 5 1589? <i>10</i>	19/2 ⁽⁻⁾ (25/2 ⁻)	1.7 ms <i>1</i>	С	J^{π} : stretched $\Delta J=2 \gamma$ to $15/2^{(-)}$. $\% \alpha = 100$
				E(level): it is assumed that an observed α decay feeds the ground state of ¹⁵³ Lu (1996Pa01). J ^{π} : from similarities with other high-spin isomers in ¹⁵⁵ Lu and ¹⁵⁶ Hf with configuration of [π (h _{11/2}) ν (f _{7/2} h _{9/2})] _{25/2-} (1996Pa01). T _{1/2} : from α (t) (1996Pa01).
1717.8 [#] 6	(23/2 ⁻)	≈5 ns	С	J^{π} : level does not follow trend for calculated $23/2^{-}$ states associated with $\pi h_{11/2} \otimes (\nu f_{7/2})^2$ configuration. It is most likely the $23/2^{-}$ member of the $\pi h_{11/2} \otimes \nu f_{7/2} h_{9/2}$ multiplet. T _{1/2} : the interval 1-10 ns is deduced based on the favored E2 multipolarity of the 151 γ and intensity arguments of this and lower gamma rays; ≈ 5 ns is finally adopted (2005Se11).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁵⁷Ta Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
2360.4 [#] 6	(27/2-)	С	J^{π} : assignment based on systematics as angular distribution ratio for 643 transition is ambiguous.
2927.7 [@] 7	$(29/2^+)$	С	J^{π} : assignment based on systematics as angular distribution ratio for 567 transition is ambiguous.
3065.4 [@] 8	$(31/2^+)$	С	J^{π} : assignment based on likely M1 γ to (29/2 ⁺).
3353.9 [@] 8		С	
3678.1 9		С	
3986.9 [@] 9		С	

 † From least-squares fit to Ey's (for levels higher than 22 keV); $\Delta E_{\gamma}{=}0.3$ keV.

[‡] Band(A): $\pi h_{11/2} \otimes (vf_{7/2})^2$. [#] Band(B): $\pi h_{11/2} \otimes vf_{7/2}h_{9/2}$ multiplet. [@] Band(C): $\pi h_{11/2} \otimes [(vf_{7/2})^2 \otimes 3^- + vf_{7/2}i_{13/2}]$.

E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
864.0	$15/2^{(-)}$	842.0	100	22	$11/2^{-}$	Q	Mult.: stretched $\Delta J=2$ based on angular distribution ratio.
1567.2	$19/2^{(-)}$	703.2	100	864.0	$15/2^{(-)}$	Q	Mult.: stretched $\Delta J=2$ based on angular distribution ratio.
1717.8	(23/2 ⁻)	150.6	100	1567.2	19/2 ⁽⁻⁾	Q	Mult.: E2 multipolarity favoured for this transition, based upon single-particle Weiskopff estimates. Assignment further supported by intensity balance arguments.
2360.4	$(27/2^{-})$	642.6	100	1717.8	$(23/2^{-})$		
2927.7	$(29/2^+)$	567.3	100	2360.4	$(27/2^{-})$		
3065.4	$(31/2^+)$	137.7	100	2927.7	$(29/2^+)$	(D)	Mult.: likely to be M1 from angular distribution ratio.
3353.9		288.5	100	3065.4	$(31/2^+)$		
3678.1		324.2	100	3353.9			
3986.9		633.0	100	3353.9			

 $\gamma(^{157}\text{Ta})$

 † From angular distribution measurements ($^{102}\text{Pd}(^{58}\text{Ni},p2n\gamma),$ 2005Se11).

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

Adopted Levels, Gammas

 $^{157}_{73}{
m Ta}_{84}$