¹⁵⁷Pm β⁻ decay 1994WiZZ,1997Gr09,1996Gr20

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 132, 1 (2016)	4-Dec-2015

Parent: ¹⁵⁷Pm: E=0.0; $J^{\pi}=(5/2^{-})$; $T_{1/2}=10.56$ s *10*; $Q(\beta^{-})=4381$ 8; $\%\beta^{-}$ decay=100.0

¹⁵⁷Pm produced by spontaneous fission of ²⁵²Cf (1994WiZZ) and neutron-induced fission of ²³⁵U (1992Sh32), both with isotope separation. γ singles (1994WiZZ,1992Sh32) and $\gamma\gamma$ coincidences (1994WiZZ) measured, and scheme given by 1994WiZZ.

¹⁵⁷Sm Levels

The lowest log *ft* value is 5.6 which suggests (1998Si17) that this is an allowed β - transition; however, in a more complete decay scheme, this value might be increased significantly. Since this β - branch is to a level with $J^{\pi}=(3/2^{-})$, the log *ft* values suggest $J^{\pi}=(1/2,3/2,5/2)^{-}$ for the ground state of ¹⁵⁷Pm, which agrees with the (5/2⁻) assignment based on the analogy with ¹⁵³Pm (1990Ja11).

E(level) [†]	J ^π ‡	E(level) [†]	J ^π ‡	E(level) [†]	E(level) [†]
0.0	$(3/2^{-})$	694.29 [°] 7	(7/2)	1674.0 4	2600 [#]
52.393 <mark>&</mark> 10	$(5/2^{-})$	800 [#]		1694.48 24	2700 [#]
125.747 ^{&} 14	$(7/2^{-})$	850 [#]		1800 [#]	2800 [#]
160.586 ^{<i>a</i>} 12	$(5/2^+)$	1180 [#]		1900 [#]	2900 [#]
216.425 ^{<i>a</i>} 14	$(7/2^+)$	1293.64 9		2000 [#]	3000 [#]
348.636 ^b 15	$(5/2^{-})$	1362.82 15		2100 [#]	3100 [#]
353.80 4		1421.84 ^{<i>d</i>} 4	$(3/2^{-})$	2200 [#]	3200 [#]
426.210 ^b 21	$(7/2^{-})$	1466.39 24		2300 [#]	3300 [#]
571.29 ^c 3	(3/2)	1478.05 ^d 8	$(5/2^{-})$	2400 [#]	
621.39 ^c 4	(5/2)	1580 [#]		2500 [#]	

[†] From least-squares fit to γ energies.

[‡] From 1994WiZZ and based on expected band structure and Nilsson states. For ¹⁵⁹Gd, also with N=95, the review of 1990Ja11 lists the lowest energy Nilsson states as 5/2[521] at 0 keV, 5/2[642] at 67 keV, 5/2[523] at 146 keV, 1/2[521] at 507 keV, 11/2[505] at 682 keV, and 3/2[651]+3/2[402] at 744 keV. Because the supporting data are not available, only the first three J^{π} values were adopted in the Adopted Levels, Gammas dataset.

[#] Pseudo levels, which are artificially introduced levels, the placement and number of which is quite arbitrary and merely indicates that in those energy regions a certain amount of β -feeding is required to fit the measured spectrum.

[@] Band assignment assumes π =+.

[&] Band(A): 3/2[521] band.

^a Band(B): 5/2[642] band.

^b Band(C): 5/2[523] band.

^c Band(D): Possible 3/2[651] band.

^d Band(E): 3/2[532] band.

 β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†‡#}	Log ft	Comments
(1081 8)	3300	0.2	5.5	av Eβ=373.0 <i>33</i>
$(1181 \ 8)$ $(1281 \ 8)$	3200	0.4	5.4 5.5	av $E\beta = 414.0 \ 33$ av $E\beta = 455.6 \ 34$
(1281.8) (1381.8)	3000	0.4	5.6	av $E\beta = 497.7 \ 34$
(1481 8)	2900	0.4	5.7	av E β =540.2 35

Continued on next page (footnotes at end of table)

¹⁵⁷Pm β^- decay 1994WiZZ,1997Gr09,1996Gr20 (continued)

β^{-} radiations (continued)

E(decay)	E(level)	Ιβ ^{-†‡#}	Log ft	Comments
(1581 8)	2800	2.6	5.0	av $E\beta = 583.1 \ 35$
(1681 8)	2700	0.6	5.8	av $E\beta = 626.4 \ 35$
(1781 8)	2600	0.9	5.7	av $E\beta = 670.1 \ 35$
(1881 8)	2500	1.0	5.7	av $E\beta = 714.0 \ 36$
(1981 8)	2400	1.4	5.7	av E β =758.2 36
(2081 8)	2300	0.9	6.0	av $E\beta = 802.6 \ 36$
(2181 8)	2200	0.9	6.0	av E β =847.2 36
(2281 8)	2100	1.0	6.1	av $E\beta = 892.0 \ 36$
(2381 8)	2000	0.9	6.2	av E β =937.0 36
(2481 8)	1900	1.0	6.2	av $E\beta = 982.1 \ 37$
(2581 8)	1800	1.1	6.3	av $E\beta = 1027.3 \ 37$
(2687 8)	1694.48	1.9	6.1	av $E\beta = 1075.2 \ 37$
(2707 8)	1674.0	1.5	6.2	av $E\beta = 1084.5 \ 37$
(2801 8)	1580	1.7	6.2	av $E\beta = 1127.3 \ 37$
(2903 8)	1478.05	1.6	6.3	av $E\beta = 1173.8 \ 37$
(2959 8)	1421.84	11.0	5.5	av $E\beta = 1199.5 \ 37$
(3018 8)	1362.82	1.4	6.4	av $E\beta = 1226.4 \ 37$
(3087 8)	1293.64	2.3	6.3	av $E\beta = 1258.1 \ 37$
(3201 8)	1180	2.0	6.4	av $E\beta = 1310.2 \ 37$
(3531 8)	850	0.9	6.9	av $E\beta = 1461.9 \ 37$
(3581 8)	800	0.8	7.0	av E β =1484.9 37
(3687 8)	694.29	0.9	7.0	av E β =1533.7 <i>3</i> 7
(3760 8)	621.39	0.8	7.1	av E β =1567.3 37
(3810 8)	571.29	0.5	7.3	av E β =1590.4 37
(3955 8)	426.210	3.5	6.5	av E β =1657.4 37
(4032 8)	348.636	12.5	6.0	av E β =1693.3 37
(4165 8)	216.425	4.5	6.5	av E β =1754.4 37
(4220 8)	160.586	6.8	6.4	av E β =1780.2 37
(4255 8)	125.747	6	6.4	av E β =1796.4 37
(4329 8)	52.393	≈12	≈6.2	av E β =1830.3 37
				LOGFT,IB From $I_{\beta-}(0+52+125)=27.3\%$ 22 (1996Gr20) and $I_{\beta-}(125)=6\%$ 3, a reasonable $I_{\beta-}(0)/I_{\beta-}(52)$ ratio gives $I_{\beta-}(0) \approx 8\%$ with log $ft \approx 6.3$ and $I_{\beta-}(52) \approx 12\%$ with log $ft \approx 6.2$.
(4381 8)	0.0	≈ 8	≈6.3	av E β =1854.6 37
				LOGFT,IB From $I_{\beta-}(0+52+125)=27.3\%$ 22 (1996Gr20) and $I_{\beta-}(125)=6\%$ 3, a reasonable $I_{\beta-}(0)/I_{\beta-}(52)$ ratio gives $I_{\beta-}(0) \approx 8\%$ with log $ft \approx 6.3$ and $I_{\beta-}(52) \approx 12\%$ with log $ft \approx 6.2$.

[†] The β - intensity distribution, as a function of the excitation energy, has been reported (1997Gr09) from total absorption γ spectra (TAGS), independent of the placements of γ -rays in the scheme. These results are shown, in part, as pseudolevels with no depopulating γ rays; these levels have a total β - feeding of 20%. Since γ 's from these levels will populate the lower lying levels, the I_{β -} computed from intensity balances for known γ rays will not be accurate, especially for the values of a few percent or less. The energies of the pseudolevels (1997Gr09) are chosen, often equally spaced, to represent the levels in an energy range, and do not represent actual levels. Where the pseudolevels are equally spaced, this range is half of the distance to the adjacent levels; and where a pseudolevel is between discrete levels, the range is between these levels. log *ft*'s are not given for the pseudolevels since they may represent the feeding of several actual levels.

[‡] The I β - values to the levels which are depopulated by γ 's, are from a combination of the TAGS results and the intensity

balances. Due to the incompleteness of the γ -ray portion of the decay scheme, no uncertainties of given for $I_{\beta-}$ or the log ft's. [#] Absolute intensity per 100 decays.

¹⁵⁷Pm $β^-$ decay 1994WiZZ,1997Gr09,1996Gr20 (continued)

$\gamma(^{157}\text{Sm})$

 $I\gamma$ normalization: estimated to give approximate agreement of the $I_{\beta-}$ values and γ intensities for levels at 348, 426, and 1421 keV.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger \&}$	E_i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\alpha^{@}$	Comments
52.395 11	4.98 9	52.393	(5/2-)	0.0	(3/2 ⁻)	(M1,E2)	20 9	$\alpha(K)=7 3; \alpha(L)=10 9; \alpha(M)=2.3 21$ $\alpha(N)=0.5 5; \alpha(O)=0.06 6;$ $\alpha(P)=0.00041 19$
55.837 17	0.88 4	216.425	(7/2 ⁺)	160.586	(5/2+)	(M1,E2)	15 7	$\alpha(K) = 5.8 \ 19; \ \alpha(L) = 7 \ 7; \ \alpha(M) = 1.7 \ 15 \\ \alpha(N) = 0.4 \ 4; \ \alpha(O) = 0.05 \ 4; \\ \alpha(P) = 0.00034 \ 16$
72.50 9		426.210	$(7/2^{-})$	353.80				
73.361 11	4.15 11	125.747	(7/2-)	52.393	(5/2 ⁻)	(M1,E2)	5.8 17	$\begin{array}{l} \alpha(\text{K}) = 3.0 \ 5; \ \alpha(\text{L}) = 2.1 \ 17; \ \alpha(\text{M}) = 0.5 \ 4 \\ \alpha(\text{N}) = 0.11 \ 9; \ \alpha(\text{O}) = 0.014 \ 10; \\ \alpha(\text{P}) = 0.00017 \ 6 \end{array}$
90.77 10	0.27 9	216.425	(7/2 ⁺)	125.747	(7/2 ⁻)	(E1)	0.358	$\begin{array}{l} \alpha(\mathrm{K}) = 0.301 \ 5; \ \alpha(\mathrm{L}) = 0.0448 \ 7; \\ \alpha(\mathrm{M}) = 0.00960 \ 14 \\ \alpha(\mathrm{N}) = 0.00214 \ 3; \ \alpha(\mathrm{O}) = 0.000300 \ 5; \end{array}$
								$\alpha(P)=1.440\times10^{-5}\ 21$
108.191 9	7.65 17	160.586	(5/2+)	52.393	(5/2 ⁻)	(E1)	0.223	$\alpha(K)=0.188 \ 3; \ \alpha(L)=0.0273 \ 4; \ \alpha(M)=0.00585 \ 9 \ \alpha(N)=0.00185 \ 3; \ \alpha(Q)=0.000185 \ 3;$
								$\alpha(\mathbf{N}) = 0.001303 \ 19, \ \alpha(\mathbf{O}) = 0.000183 \ 3, \ \alpha(\mathbf{D}) = 0.20 \times 10^{-6} \ 13$
125.73 4	1.26 14	125.747	$(7/2^{-})$	0.0	$(3/2^{-})$	(E2)	1.032	$\alpha(K) = 0.617 \ 9; \ \alpha(L) = 0.322 \ 5;$
								$\alpha(M) = 0.0741 \ II$
								$\alpha(\mathbf{N})=0.01628\ 23;\ \alpha(\mathbf{O})=0.00208\ 3;$ $\alpha(\mathbf{D})=2.75\times10^{-5}\ 4$
132.22 3	5.59 23	348.636	$(5/2^{-})$	216.425	$(7/2^+)$	(E1)	0.1290	$\alpha(K) = 0.1092 \ 16; \ \alpha(L) = 0.01559 \ 22;$
								α(M)=0.00333 5
								α (N)=0.000745 <i>11</i> ; α (O)=0.0001067 <i>15</i> ; α (P)=5.50×10 ⁻⁶ 8
137.39 4	100	353.80	(5/0+)	216.425	$(7/2^+)$	(F1)	0.07(1	$(T_{2}) = 0.0(A(0) - (T_{2}) = 0.00000 + 12)$
160.61 3	100.	160.586	(5/2.)	0.0	(3/2)	(E1)	0.0761	$\alpha(\mathbf{K}) = 0.0646 \ 9; \ \alpha(\mathbf{L}) = 0.00908 \ 13; \ \alpha(\mathbf{M}) = 0.00194 \ 3$
								$\alpha(\mathbf{N})=0.000435\ 0;\ \alpha(\mathbf{O})=0.27\times10^{-6}\ 9;$ $\alpha(\mathbf{P})=3.33\times10^{-6}\ 5$
164.036 12	11.7 4	216.425	$(7/2^+)$	52.393	$(5/2^{-})$	(E1)	0.0719	$\alpha(K) = 0.0610 \ 9; \ \alpha(L) = 0.00857 \ 12;$
			,			. ,		$\alpha(M) = 0.00183 \ 3$
								α (N)=0.000410 6; α (O)=5.92×10 ⁻⁵ 9;
100.052.16	20 7 12	249 (2)	(5/2-)	160 506	(5/0+)	(E1)	0.0400	$\alpha(P)=3.16\times10^{-6} 5$
188.052 10	38.7 12	348.030	(5/2)	100.380	$(5/2^{+})$	(EI)	0.0498	$\alpha(\mathbf{K})=0.0423$ 6; $\alpha(\mathbf{L})=0.00389$ 9; $\alpha(\mathbf{M})=0.001259$ 18
								$\alpha(N)=0.000282 4; \alpha(O)=4.09\times10^{-5} 6;$
								$\alpha(P)=2.22\times10^{-6} 4$
209.79 <i>3</i>	4.22 19	426.210	(7/2 ⁻)	216.425	(7/2+)	(E1)	0.0372	α (K)=0.0317 5; α (L)=0.00438 7; α (M)=0.000935 13
								$\alpha(N)=0.000210 \ 3; \ \alpha(O)=3.05\times10^{-5} \ 5;$
222.98.5	2 15 16	348 636	$(5/2^{-})$	125 747	$(7/2^{-})$	(M1 F2)	0 162 18	$\alpha(\mathbf{F}) = 1.084 \times 10^{-6} 24$ $\alpha(\mathbf{K}) = 0.130 23; \alpha(\mathbf{L}) = 0.025 5;$
222.90 5	2.13 10	510.050	(3/2)	120.717	(72)	(1111,112)	0.102 10	$\alpha(M) = 0.0056 \ 11$
								α (N)=0.00126 23; α (O)=0.000177 22;
265 610 24	7.04.21	406 010	(7/0-)	160 506	(5/0+)	(E1)	0.0201	$\alpha(P)=7.6\times10^{-6} 22$
203.019 24	1.04 21	426.210	(7/2)	100.586	(5/2')	(E1)	0.0201	$\alpha(\mathbf{K})=0.01/11\ 24;\ \alpha(\mathbf{L})=0.00234\ 4;\ \alpha(\mathbf{M})=0.000499\ 7$
								α (N)=0.0001122 <i>16</i> ; α (O)=1.643×10 ⁻⁵
								23; $\alpha(P)=9.31\times10^{-7}$ 13

Continued on next page (footnotes at end of table)

 $^{157}_{62}$ Sm₉₅-4

157 Pm β^- decay	1994WiZZ,1997Gr09,1996Gr20 (continued)
-----------------------------	--

$\gamma(^{157}\text{Sm})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger \&}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α [@]	Comments
296.242 25	7.43 21	348.636	(5/2 ⁻)	52.393	(5/2 ⁻)	(M1,E2)	0.071 13	$\alpha(K)=0.058 \ 13; \ \alpha(L)=0.01001 \ 22; \\ \alpha(M)=0.00219 \ 9 \\ \alpha(N)=0.000492 \ 15; \ \alpha(O)=7.06\times10^{-5} \ 17; \\ \alpha(P)=3 \ 5\times10^{-6} \ 11$
300.47 12	1.59 <i>19</i>	426.210	(7/2 ⁻)	125.747	(7/2-)	(M1,E2)	0.068 13	$\begin{array}{l} \alpha(\mathbf{K}) = 0.5 \times 10 & 11 \\ \alpha(\mathbf{K}) = 0.056 & 13; & \alpha(\mathbf{L}) = 0.00957 & 17; \\ \alpha(\mathbf{M}) = 0.00209 & 7 \\ \alpha(\mathbf{N}) = 0.000470 & 12; & \alpha(\mathbf{O}) = 6.76 \times 10^{-5} & 19; \\ \alpha(\mathbf{M}) = 2 & 2 \times 10^{-6} & 10 \end{array}$
348.56 4	6.77 24	348.636	(5/2-)	0.0	(3/2-)	(M1,E2)	0.045 10	$\alpha(\mathbf{r}) = 3.3 \times 10^{-10} \text{ for } \mathbf{r}$ $\alpha(\mathbf{K}) = 0.037 \ 9; \ \alpha(\mathbf{L}) = 0.0061 \ 4; \\ \alpha(\mathbf{M}) = 0.00132 \ 6 \\ \alpha(\mathbf{N}) = 0.000297 \ 15; \ \alpha(\mathbf{O}) = 4.3 \times 10^{-5} \ 4; \\ \alpha(\mathbf{P}) = 2 \ 2 \times 10^{-6} \ 7$
426.06 11	2.02 21	426.210	(7/2 ⁻)	0.0	(3/2 ⁻)	(E2)	0.0199	$\alpha(K) = 0.01611 \ 23; \ \alpha(L) = 0.00295 \ 5; \alpha(M) = 0.000649 \ 10 \alpha(N) = 0.0001453 \ 21; \ \alpha(O) = 2.06 \times 10^{-5} \ 3; \alpha(P) = 9.12 \times 10^{-7} \ 13$
495.66 7	4.5 3	621.39	(5/2)	125.747	$(7/2^{-})$			
518.86 4	9.0 <i>3</i>	571.29	(3/2)	52.393	$(5/2^{-})$			
568.72 ^{<i>a</i>} 10	<4.4 ^{<i>a</i>}	621.39	(5/2)	52.393	$(5/2^{-})$			
568.72 ^{<i>u</i>} 10	<4.4 ^{<i>a</i>}	694.29	(7/2)	125.747	$(7/2^{-})$			
5/1.27 4	15.4 4	571.29	(3/2)	0.0	$(3/2^{-})$			
621.55 /	5.4 3	621.39	(5/2)	0.0	(3/2)			
041.81 <i>11</i>	3.0 11	694.29	(1/2)	52.393	(5/2)			
122.35 10	1 1 2	1293.04	$(2/2^{-})$	5/1.29	(3/2)			
792 90 9	1.4 5	1421.04	(5/2)	604.29	(1/2)			
785.80 8 800 50 8	633	1476.03	(3/2)	621.29	(1/2) (5/2)			
850.50.5	1365	1421.84	$(3/2^{-})$	571.29	(3/2)			
856 72 15	283	1478.05	$(5/2^{-})$	621 39	(5/2)			
906.49 17	2.5 3	1478.05	$(5/2^{-})$	571.29	(3/2)			
1052.3 4	1.2 3	1674.0	(-)-)	621.39	(5/2)			
1067.5 4		1421.84	$(3/2^{-})$	353.80	(-1)			
1073.24 10	6.2 4	1421.84	$(3/2^{-})$	348.636	$(5/2^{-})$			
1117.75 24		1466.39		348.636	$(5/2^{-})$			
1132.8 <i>3</i>		1293.64		160.586	$(5/2^+)$			
1146.4 <i>3</i>		1362.82		216.425	$(7/2^+)$			
1202.22 16	3.6 4	1362.82		160.586	$(5/2^+)$			
1241.36 18	3.2 4	1293.64		52.393	$(5/2^{-})$			
1261.43 17	3.8 4	1421.84	$(3/2^{-})$	160.586	$(5/2^+)$			
1295.45 19	3.4 4	1421.84	$(3/2^{-})$	125.747	$(7/2^{-})$			
1317.59 25	2.2 3	1478.05	$(5/2^{-})$	160.586	$(5/2^+)$			
1369.73 15	5.7 6	1421.84	$(3/2^{-})$	52.393	$(5/2^{-})$			
1421.94 22	2.7 3	1421.84	$(3/2^{-})$	0.0	$(3/2^{-})$			
14//.8 4	1.4 3	14/8.05	(5/2)	0.0	(3/2)			
1555./ 5	1.8 3	1674.0		100.586	$(5/2^{-})$			
1622.0 <i>J</i> 1694 8 <i>4</i>	1.0.5	1074.0		32.393 0.0	(3/2) (3/2)			
10/4.0 4	1.7 5	1077.70		0.0	(J_{\perp})			

[†] From 1994WiZZ. Other: 1992Sh32 report 30 γ 's with energy uncertainties of 0.1 to 0.3 keV and intensities which differ from those given here by as much as a factor of 2. [‡] $I_{K\alpha} = 78$ 4 and $I_{K\beta} = 19.5$ 12 (1992Sh32). [#] From 1994WiZZ and based on information not available to evaluator.

 157 Pm β^- decay 1994WiZZ,1997Gr09,1996Gr20 (continued)

 $\gamma(^{157}\text{Sm})$ (continued)

[@] Additional information 1.
[&] For absolute intensity per 100 decays, multiply by 0.25.
^a Multiply placed with undivided intensity.

6

 $^{157}_{62}\mathrm{Sm}_{95}\text{-}6$

¹⁵⁷₆₂Sm₉₅