Туре	Author	History Citation	Literature Cutoff Date		
Full Evaluation	N. Nica	NDS 132, 1 (2016)	4-Dec-2015		

 $Q(\beta^{-})=2781$ 6; S(n)=5388 10; S(p)=9803 6; $Q(\alpha)=-1772$ 5 2017Wa10 S(2n)=12629 10; S(2p)=18972 6 2017Wa10 Additional information 1.

¹⁵⁷Sm Levels

Band assignments from 157 Pm β - decay datasets are not adopted here because the supporting data are not available.

Cross Reference (XREF) Flags

 157 Pm β^- decay 252 Cf SF decay A В

E(level) ^{†‡}	$J^{\pi \#}$	T _{1/2}	XREF	Comments
0.0	(3/2-)	8.03 min 7	AB	<i>%β</i> ⁻ =100
				J^{π} : Assigned as the 3/2[521] state in analogy to the isotone ¹⁵⁹ Gd (1990Ja11). T _{1/2} : Weighted average of 480 s 60 (1973Da05, or 8.0 min 10), 480 s 30 (1973Ka23, or 8.0 min 5), 402 s 24 (1986Ma12), and 483 s 2 (1988GrZY,1990An31) is 482 s 4 or 8.03 m 7. Others: 0.5 m 1 (1960Wi10) and 83 s 2 (1972Mo28) which are both probably misassigned nuclides, 8.11 min 13 (1980Ba51) which was replaced by 1990An31 value.
52.393 10	(5/2 ⁻)		AB	J^{π} : From assumed rotational band structure in ¹⁵⁷ Pm β - decay dataset (1994WiZZ).
125.747 14			Α	J^{π} : (7/2 ⁻).
160.586 12			Α	J^{π} : (5/2 ⁺).
216.426 [@] 14	(7/2 ⁺)		AB	J ^{π} : Adopted by 1994WiZZ (¹⁵⁷ Pm β^- decay dataset) and maintained by 2010Hw03 (²⁵² Cf SF decay dataset) based on expected band structure and Nilsson states.
348.637 15			Α	J^{π} : (5/2 ⁻).
353.80 4			Α	
426.209 21			Α	J^{π} : (7/2 ⁻).
490.0 [@] 3			В	
571.29 <i>3</i>			Α	J^{π} : (3/2).
621.39 4			Α	J^{π} : (5/2).
694.28 7			Α	J^{π} : (7/2).
838.6 [@] 5			В	
1260.7 [@] 6			В	
1293.64 9			Α	
1362.82 15			Α	
1421.84 4			Α	J^{π} : (3/2 ⁻).
1466.39 24			Α	
1478.05 8			Α	J^{π} : (5/2 ⁻).
1674.0 <i>4</i>			Α	
1694.48 24			Α	
1753.9 [@] 6			В	
2314.6 [@] 7			В	

Adopted Levels, Gammas (continued)

¹⁵⁷Sm Levels (continued)

[†] From least-squares fit to γ energies. [‡] The pseudolevels included in the ¹⁵⁷Pm β - decay are not included here.

[#] Most of the J^{π} values (listed here in comments) assigned in the ¹⁵⁷Pm β - decay dataset (1994WiZZ, based on expected band structure and Nilsson states) have not been adopted because the supporting data are not available.

[@] Band(A): γ cascade based on (7/2⁺).

$\gamma(^{157}\text{Sm})$

See ¹⁵⁷Pm β - decay for γ -multipolarity assignments; these (listed in comments) have not been adopted here because the supporting data are not available.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Comments
52.393	$(5/2^{-})$	52.395 11	100	0.0	$(3/2^{-})$	Mult.: (M1.E2).
125.747	(-1)	73.361 11	100 3	52.393	$(5/2^{-})$	Mult.: (M1,E2).
		125.73 4	30 <i>3</i>	0.0	$(3/2^{-})$	Mult.: (E2).
160.586		108.191 9	7.6 2	52.393	$(5/2^{-})$	Mult.: (E1).
		160.61 <i>3</i>	100	0.0	$(3/2^{-})$	Mult.: (E1).
216.426	$(7/2^+)$	55.837 17	7.5 3	160.586		Mult.: (M1,E2).
		90.77 10	2.3 8	125.747		Mult.: (E1).
		164.036 12	100 3	52.393	$(5/2^{-})$	Mult.: (E1).
348.637		132.22 3	14.4 6	216.426	$(7/2^+)$	Mult.: (E1).
		188.052 16	100 3	160.586		Mult.: (E1).
		222.98 5	5.6 4	125.747		Mult.: (M1,E2).
		296.242 25	19.2 5	52.393	$(5/2^{-})$	Mult.: (M1,E2).
		348.56 4	17.5 6	0.0	$(3/2^{-})$	Mult.: (M1,E2).
353.80		137.39 4	100	216.426	$(7/2^+)$	
426.209		72.50 9		353.80		
		209.79 <i>3</i>	60 <i>3</i>	216.426	$(7/2^+)$	Mult.: (E1).
		265.619 24	100 3	160.586		Mult.: (E1).
		300.47 12	23 <i>3</i>	125.747		Mult.: (M1,E2).
		426.06 11	29 <i>3</i>	0.0	$(3/2^{-})$	Mult.: (E2).
490.0		273.6 [‡] 3	100	216.426	$(7/2^+)$	
571.29		518.86 4	58 2	52.393	$(5/2^{-})$	
		571.27 4	100 3	0.0	$(3/2^{-})$	
621.39		495.66 7	83 6	125.747		
		568.72 [#] 10	<82 [#]	52.393	$(5/2^{-})$	
		621.55 7	100 6	0.0	$(3/2^{-})$	
60/ 28		568 72 [#] 10	<150#	125 747	(-1)	
094.20		641 81 11	100 11	52 393	$(5/2^{-})$	
838.6		$348.6^{\ddagger}.3$	100 11	490.0	(5/2)	
1260.7		422 1 3	100	838.6		
1200.7		422.11 5	100	571.20		
1293.04		1132.8.3		160 586		
		1241 36 18	100	52 303	$(5/2^{-})$	
1362.82		1146 4 3	100	216 426	(3/2) $(7/2^+)$	
1302.02		1202 22 16	100	160 586	(1/2)	
1421.84		727 85 23	10.3.22	60/ 28		
		800 50 8	16.3.22	621 30		
		850.50.5	100 1	571.20		
		1067 5 4	100 4	353.80		
		1073 24 10	46.3	3/8 627		
		1261 43 17	28.3	160 586		
		1201.75 17	20 5	100.500		

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{157}\text{Sm})$ (continued)

E _i (level)	${\rm E_{\gamma}}^{\dagger}$	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E_i (level) J_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_{f}^{π}
1421.84	1295.45 <i>19</i> 1369.73 <i>15</i> 1421 94 22	25 <i>3</i> 42 <i>4</i> 19 8 22	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1478.05 1674.0	1477.8 <i>4</i> 1052.4 <i>4</i> 1622 0 5	23 5 100 25 83 25	0.0 621.39 52.393	$(3/2^{-})$ $(5/2^{-})$
1466.39 1478.05	1117.75 <i>24</i> 783.80 <i>8</i>	100 100 7	348.637 694.28	1694.48	1533.7 <i>3</i> 1694.8 <i>4</i>	100 <i>17</i> 78 <i>17</i>	160.586 0.0	$(3/2^{-})$
	856.72 15	46 5	621.39	1753.9	493.2 [‡] <i>3</i>	100	1260.7	
	906.49 <i>17</i> 1317.59 <i>25</i>	41 5 36 5	571.29 160.586	2314.6	560.7 [‡] 3	100	1753.9	

[†] From ¹⁵⁷Pm β⁻ decay, except where noted.
[‡] From ²⁵²Cf SF decay.
[#] Multiply placed with undivided intensity.

Level Scheme

Intensities: Relative photon branching from each level

¹⁵⁷₆₂Sm₉₅

4

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{157}_{62}{\rm Sm}_{95}$

¹⁵⁷₆₂Sm₉₅