⁹Be(²³⁸U,Fγ) 2018Bh07

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh	ENSDF	04-Jun-2021			

Includes γ -ray study from ²⁵²Cf SF decay.

2018Bh07: data from the two experiments have been combined.

- 1. ${}^{9}\text{Be}({}^{238}\text{U},\text{F}\gamma),\text{E}=6.2 \text{ MeV/nucleon, measured E}\gamma, I\gamma, Z- and A- gated <math>\gamma\gamma$ -coincidences with isotopically identified fission fragments using VAMOS++ and EXOGAM array at GANIL facility. Deduced high-spin levels, J^{π} , alignment plots, and configurations.
- 2. ²⁵²Cf SF decay: measured $E\gamma$ and $\gamma\gamma$ -coin using Gammasphere array of 101 Compton-suppressed Ge detectors at LBNL facility. Deduced high-spin levels.

¹⁵⁷Pm Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0#	(5/2-)	254.0 [@] 3	$(11/2^{-})$	683.0 [#] 4	(17/2 ⁻)	1263.0 [@] 5	(23/2 ⁻)
66.0 [@] 2	$(7/2^{-})$	379.0 [#] 3	$(13/2^{-})$	855.0 [@] 4	$(19/2^{-})$	1515.0 [#] 6	$(25/2^{-})$
151.0 [#] 3	$(9/2^{-})$	518.0 [@] 4	$(15/2^{-})$	1062.0 [#] 5	$(21/2^{-})$	1739.0 [@] 7	$(27/2^{-})$

 † From least-squares fit to Ey data.

^{\ddagger} As given in 2018Bh07, based on (5/2⁻) assignment for the g.s.

Band(A): $\pi 5/2[532], \alpha = +1/2$.

[@] Band(a): $\pi 5/2[532], \alpha = -1/2$.

$\gamma(^{157}\text{Pm})$

Eγ [†]	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
66.0 2	21	66.0	$(7/2^{-})$	0.0	$(5/2^{-})$	
85.0 2	52	151.0	$(9/2^{-})$	66.0	$(7/2^{-})$	
103.0 2	61	254.0	$(11/2^{-})$	151.0	$(9/2^{-})$	
125.0 2	91	379.0	$(13/2^{-})$	254.0	$(11/2^{-})$	
139.0 2	62	518.0	$(15/2^{-})$	379.0	$(13/2^{-})$	
151		151.0	$(9/2^{-})$	0.0	$(5/2^{-})$	Weak γ ray.
165.0 2	10 1	683.0	$(17/2^{-})$	518.0	$(15/2^{-})$	
172.0 2	61	855.0	$(19/2^{-})$	683.0	$(17/2^{-})$	
188.0 2	21	254.0	$(11/2^{-})$	66.0	$(7/2^{-})$	
201.0 2	4 1	1263.0	$(23/2^{-})$	1062.0	$(21/2^{-})$	
207.0 2	4 1	1062.0	$(21/2^{-})$	855.0	$(19/2^{-})$	
228.0 2	21	379.0	$(13/2^{-})$	151.0	$(9/2^{-})$	
252.0 5	21	1515.0	$(25/2^{-})$	1263.0	$(23/2^{-})$	
264.0 5	72	518.0	$(15/2^{-})$	254.0	$(11/2^{-})$	
304.0 5	61	683.0	$(17/2^{-})$	379.0	$(13/2^{-})$	
337.0 5	61	855.0	$(19/2^{-})$	518.0	$(15/2^{-})$	
x350.0 5						
379.0 5	21	1062.0	$(21/2^{-})$	683.0	$(17/2^{-})$	
408.0 5	31	1263.0	$(23/2^{-})$	855.0	$(19/2^{-})$	
453.0 5	42	1515.0	$(25/2^{-})$	1062.0	$(21/2^{-})$	
476.0 5	74	1739.0	$(27/2^{-})$	1263.0	$(23/2^{-})$	

[†] 2018Bh07 stated typical uncertainty of 0.2 keV for E γ around 200 keV, 0.5 keV around E γ =500 keV, and 1 keV around E γ =1 MeV. Based on the above statement, evaluator assigns 0.2 keV for E γ <250 keV, and 0.5 keV for E γ >250 keV.

[‡] 2018Bh07 mention that the uncertainties are from fitting procedure.

 $x \gamma$ ray not placed in level scheme.

¹⁵⁷₆₁Pm₉₆

⁹Be(²³⁸U,Fγ) 2018Bh07

¹⁵⁷₆₁Pm₉₆