¹⁶¹Ta α decay 1986Ru05,1992Ha10,2012Th13

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 132,1 (2016)	4-Dec-2015

Parent: ¹⁶¹Ta: E=95 38; $J^{\pi} = (11/2^{-})$; $T_{1/2} = 3.08$ s 11; $Q(\alpha) = 5209$ 39; % α decay=7 3

¹⁶¹Ta-E: from 2012Th13 based on measured metastable state energy in ¹⁷³Au, $\Delta E(^{173}Au)=214$ 23 (1999Po09), from which they deduced the metastable state energy in ¹⁶⁵Re, $\Delta E(^{165}Re)=58$ 37; of which they deduced the metastable state energy in ¹⁶¹Ta, $\Delta E(^{165}Re)=95$ 38 (literature Q(α) values for the g.s.-to-g.s. and metastable-to-metastable α -decays listed on Fig. 1 of 2012Th13 were also used in these calculations).

¹⁶¹Ta-J^{π},T_{1/2}: from 2011Re14 evaluation.

¹⁶¹Ta-Q(α): 2012Th13 measured E α =5142 5 from ¹⁶¹Ta that yielded T_{1/2}=4.5 s *11* consistent with the 11/2⁻ metastable state in ¹⁶¹Ta (T_{1/2} of ¹⁶¹Ta g.s. is not known) decaying to the metastable state of ¹⁵⁷Lu. Weighted average of experimental values listed in the α radiations table below is 5147 2, whence one gets Q(α , ^{161m}Ta->^{157m}Lu)=5278 2. Consequently one gets the Q(β ⁻)value of g.s.-to-g.s. α decay (Δ E denotes the metastable state energy): Q(α , ¹⁶¹Ta->¹⁵⁷Lu)= Δ E(¹⁵⁷Lu)+Q(α , ^{161m}Ta->^{157m}Lu)- Δ E(¹⁶¹Ta)=26 7 + 5278 2 - 95 38=5209 39. Other value: 5330 29 (2012Wa38).

¹⁶¹Ta-% α decay: measured by 2012Th13 for ^{161m}Ta->^{157m}Lu α decay. A theoretical value that was reported before (1984Al36) from theoretical α and $\varepsilon+\beta+$ half-lives is 5%. 1983Al09 and 1984Al36 suggest that ¹⁶¹Ta may also emit protons which would decrease this value.

Experimental methods:

1979Ho10: produced by ¹⁰⁷Ag(⁵⁸Ni,2p2n) on enriched (99.5%) target with E(⁵⁸Ni)=263, 275 MeV. Reaction products separated in velocity selector and implanted in position-sensitive detector.

1983Al09, 1984Al36: From β end-point energy and E(α) value, they deduce proton binding energy.

1986Ru05: produced by 130 Ba(35 Cl,4n) with E(35 Cl)=200 MeV and 133 Cs(36 Ar,8n) with E(36 Ar)=235 MeV. After He-jet transport, α 's measured with Si detector.

1992Ha10: produced by ${}^{40}Ca({}^{127}I,x)$ with $E({}^{127}I)=711$ MeV.

2005Sc22: used ¹¹²Sn(⁵⁸Ni,p), E(⁵⁸Ni)=266 MeV reaction to produce ^{169,169m}Ir and studied α -decay products ^{165,165m}Re, ¹⁶¹Ta, ¹⁵⁷Lu. Recoils separated with He-filled magnetic separator (RITU) were transported to focal plane where they traversed isobutane-filled multiwire proportional chamber before implating into double-sided Si strip detectors (GREAT spectrometer); used array of 43 escape-suppressed Ge detectors for prompt γ -ray detection (JUROGAM). Measured E γ , I γ , $\gamma\gamma$ -coin, (recoil) γ -coin.

2012Th13: used ${}^{92}Mo({}^{84}Sr,X) E({}^{84}Sr)=392$, 400 MeV to produce g.s. and metastable ${}^{173}Au$ and their separate g.s.-to-g.s. and metastable-to-metastable α -decay chains to g.s. and metastable 161 Ta respectively. Same setup as that from 2005Sc22 was used, with extra 28 Si PIN diode detectors and four clover-type Ge detectors and one planar Ge detector, allowing recording energy loss and time-of-flight information. Measured E γ , I γ , $\alpha\gamma$ -, $\gamma\gamma$ -coin; deduced prompt γ and mass excesses and compared with 2012Wa38 evaluation.

A particularly of ¹⁷⁷Tl, ¹⁷³Au, ¹⁶⁹Ir, ¹⁶⁵Re, ¹⁶¹Ta, and ¹⁵⁷Lu nuclei is that all ground states have $J^{\pi}=1/2^+$ (based on $\pi s_{1/2}$ orbital) and all metastable states have $J^{\pi}=1/2^-$ (based on $\pi h_{11/2}$ orbital); consequently all ground states form an α -decay chain connecting the $1/2^+$ spins, which is different from the α -decay chain of all metastable states connecting $11/2^-$ spins.

¹⁵⁷Lu Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0	$(1/2^+, 3/2^+)^\dagger$	6.8 [†] s 18	no α -decay to ¹⁵⁷ Lu g.s. was found.
26 [†] 7	$(11/2^{-})^{\dagger}$	4.79 [†] s <i>12</i>	associated by 2012Th13 as daughter level of the α -decay branch.

[†] From Adopted Levels, Gammas dataset.

			¹⁶¹ Ta α decay 1986Ru05,1992Ha10,2012Th13 (continued)
			α radiations
Eα	E(level)	$\mathrm{I}\alpha^{\dagger}$	Comments
5147 2	26	100	 Eα: weighted average of experimental values 5142 5 (2012Th13), 5151 4 (2005Sc22), 5140 7 (1996Pa01), 5149 5 (1992Ha10), 5148 5 (1979Ho10). HF: 1.6 8 (2012Th13).

 † For absolute intensity per 100 decays, multiply by 0.07 3.