¹⁵⁷**Tb** ε decay 1983Be42

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 132, 1 (2016)	4-Dec-2015

Parent: ¹⁵⁷Tb: E=0.0; $J^{\pi}=3/2^+$; $T_{1/2}=71$ y 7; $Q(\varepsilon)=60.04$ 30; $\mathscr{H}\varepsilon$ decay=100.0 ¹⁵⁷Tb produced by ¹⁵⁶Dy(n, γ) and ¹⁵⁷Dy decay, ¹⁵⁶Gd(α ,3n), and spallation of Ta target with chemical and isotope separation. γ - and x-rays measured with NaI, Si(Li), and Ge detectors, and Auger electrons with proportional counters. Experimental methods:

1960Na12: Produced by ¹⁵⁶Dy(n, γ) reaction on enriched (13.8%) sample with isotopic and chemical separation. Deduced T_{1/2} from K x-ray emission rate from sample of known mass.

1962Bh05: Produced by 156 Dy(n, γ) reaction on enriched (13.8%) sample with chemical separation. γ - and X-rays measured with NaI detectors. L/K capture ratio measured.

1963Iw04: Produced by 156 Gd(α ,3n) reaction on enriched (97.01%) sample with chemical separation. After the decay of the 157 Dy activity, the 157 Tb was separated. The X rays were measured to determine the decay rate, and thereby the $T_{1/2}$.

1964Fu03: ¹⁵⁷Tb produced as in 1963Iw04. γ - and X-rays were measured with NaI detectors.

1964Gr14: Produced by spallation of Ta with 660-MeV protons. ce measured in magnetic spectrometer. From relative ¹⁵⁷Dy and 157 Tb decay rates, $T_{1/2}$ was determined.

1967Na08: Produced by 156 Dy(n, γ) reaction on enriched sample with chemistry and isotope separation. K and L X rays measured on NaI detector.

1983Be42: Produced by spallation of Ta target with 600-MeV p followed by isotope separation. $T_{1/2}$ determined from decay rate and known sample mass. X rays measured with Si(Li) and Ge detectors and Auger e- with proportional counter; coincidences measured.

1992Ra18: From measured ratio of L and K x ray intensities, deduce Q_{ε} =60.0 keV and there is no L capture to 54 level.

157Gd Levels

E(level)	J^{π}
0.0	3/2-
54.54 1	5/2-

[†] From ¹⁵⁷Gd Adopted Levels.

 ε radiations

E(decay)†	E(level)	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	Comments
(5.5 3)	54.54	0.11 1	6.92 10	€M+=1.000
				Additional information 1.
				 Iε: From 1983Be42 and based on measurement of I_γ(54)/I_{Kx}=4.16x10⁻⁴ 10. Other: 0.34% 2 (1967Na08) which was given in the last evaluation as 0.28% 2 after recalculation (1983Bu16) with later values of the constants. ε_L/ε_M was measured to be -0.010 3, but interpreted to mean ≤0.006. Value indicates the absence of L capture to this excited state. ε_M is from 1983Be42.
(60.0 3)	0.0	99.89 <i>1</i>	7.02 5	Additional information 2. ε_{L} is from 1983Be42. Others: $\varepsilon_{L}/\varepsilon_{K}$ =2.65 20 (1967Na08), 2.64 (1962Bh05), and 2.18 (1964Fu03). This value includes capture to 0- and 54-keV states, but effectively applies to the ground state.

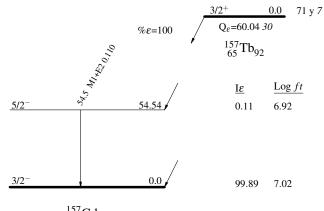
[†] Values computed from Q_{ε} =60.04 30 keV from mass evaluation 2012Wa38. This value is close to 60.1 3 keV from mass evaluation 2003Au03 but smaller than earlier values (especially measurements of 62.9 7 (1983Be42) and 62.2 6 (1985Vo09), and 62.8 7 from earlier mass evaluation 1985Wa02).

[‡] Absolute intensity per 100 decays.

¹⁵⁷**Tb** ε decay 1983Be42 (continued)

 $\gamma(^{157}\text{Gd})$

I γ normalization, I(γ +ce) normalization: γ transition intensity already normalized (1983Be42).


$$\frac{E_{\gamma}}{54.5} = \frac{I_{\gamma}^{\#}}{0.0084 \ 8} = \frac{E_{i}(\text{level})}{54.54} = \frac{J_{i}^{\pi}}{5/2^{-}} = \frac{E_{f}}{0.0} = \frac{J_{f}^{\pi}}{3/2^{-}} = \frac{\text{Mult.}}{\text{M1+E2}} = \frac{\delta^{\ddagger}}{0.19} = \frac{\alpha^{\dagger}}{12.12} = \frac{\alpha^{\dagger}}{\alpha(\text{K})=9.53 \ 14; \ \alpha(\text{L})=2.02 \ 3; \ \alpha(\text{M})=0.452 \ 7}{\alpha(\text{N})=0.000720 \ 10} = \frac{12.12}{I_{\gamma}} = \frac{12.12}{$$

[†] Additional information 3.
[‡] Additional information 4.
[#] Absolute intensity per 100 decays.

 157 Tb ε decay 1983Be42

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $^{157}_{64}\text{Gd}_{93}$