¹⁵⁷Gd IT decay (18.5 μs) 1967Bo05

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 132, 1 (2016)	4-Dec-2015

Parent: ¹⁵⁷Gd: E=426.538 23; $J^{\pi}=11/2^{-}$; $T_{1/2}=18.5 \ \mu s \ 23$; %IT decay=100.0

Data are all from 1967Bo05, except as noted otherwise. Isomer was produced by 154 Sm(α ,n) reaction on enriched target. γ singles and $\gamma\gamma$ coincidences measured between α beam pulses with NaI and Ge detectors.

¹⁵⁷Gd Levels

Additional information 1.

E(level)	J^{π}	T _{1/2}	Comments
0.0‡	3/2-	stable	
55 [‡]	5/2-		
64 [#]	$5/2^{+}$	0.59 µs 12	T _{1/2} : from 1967Bo05.
115 [#]	$7/2^{+}$		
131 [‡]	$7/2^{-}$		
180 [#]	9/2+		
226 [‡]	9/2-		
425 [@]	11/2-	18.5 μs 23	T _{1/2} : Weighted average of 17 μ s <i>l</i> (1967Bo05) and 22.0 μ s <i>l</i> 5 (1961Kr01). These two values are inconsistent since the reduced- χ^2 =7.7 for this average.

[†] From the measured γ multipolarities, the expected band structure, and the systematics of the Nilsson levels, especially for the $11/2^-$ isomeric state. All assignments agree with those of the ¹⁵⁷Gd Adopted Levels.

[‡] Band(A): 3/2[521] band.

[#] Band(B): 5/2[642] band.

[@] Band(C): 11/2[505] bandhead.

$\gamma(^{157}\text{Gd})$

I γ normalization: calculated to give 100% decays from the isomer.

Eγ	$I_{\gamma}^{\dagger \ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	δ ^{#&}	α [@]	$I_{(\gamma+ce)}^{a}$	Comments
(9 2)	1.8 9	64	5/2+	55 5/2-	El		33 17		α(M)=7 7 α(N)=1.4 14; α(O)=0.15 12; α(P)=0.0030 18 $ I_{\gamma}: From ^{157}Eu β- decay (1980GrZS) one obtains /Iγ(64)= 2.0/28 which gives Iγ(9)=2.0; and from IT decay (1967Bo05) I(γ+ce)(9)/I(γ+ce)(64)=48/52, which gives Iγ(9)=1.6. Average value of 2.0 and 1.6 is used and uncertainty is assigned by evaluator.$
51		115	7/2+	64 5/2+	M1+E2	0.20	14.61	95	α (K)=11.31 7; α (L)=2.62 <i>18</i> ; α (M)=0.59 5; α (N+)=0.167 <i>12</i> I _{γ} : From transition intensity and α , I _{γ} =6.1. I _(γ+ce) : From intensity balance at 115 level.

 $^{157}_{64}\text{Gd}_{93}\text{-}2$

					¹⁵⁷ Gd IT decay (18.5 μs) 1967Bo05 (conti					nued)
	γ ⁽¹⁵⁷ Gd) (continued)									
Eγ	$I_{\gamma}^{\dagger \ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ #&	α@	$I_{(\gamma+ce)}^{a}$	Comments
55		55	5/2-	0.0	3/2-	M1+E2	0.19	11.80	103	ce(K)/(γ +ce)=0.726 7; ce(L)/(γ +ce)=0.153 3; ce(M)/(γ +ce)=0.0342 7 ce(N)/(γ +ce)=0.00778 15; ce(O)/(γ +ce)=0.001138 22; ce(P)/(γ +ce)=5.48×10 ⁻⁵ 11 α (K)=9.29 13; α (L)=1.96 3; α (M)=0.438 7 α (N)=0.0995 14; α (O)=0.01457 21; α (P)=0.000701 10 I γ : From transition intensity and α , I γ =8.0.
64	28 4	64	5/2+	0.0	3/2-	E1		0.958		I _(γ+ce) : Value deduced by evaluator to give 100% feeding of ground state. $\alpha(K)=0.793 \ I2; \ \alpha(L)=0.1297 \ I9;$ $\alpha(M)=0.0282 \ 4$ $\alpha(N)=0.00632 \ 9; \ \alpha(O)=0.000902 \ I3;$ $\alpha(P)=4.17\times10^{-5} \ 6$ L : From measured total
										$I_{\gamma}(64)+I_{\gamma}(65)=42 \ (1967Bo05) minus$ $I_{\gamma}(65)=11 $ deduced from intensity balance at 180 level, one obtains $I_{\gamma}=31$, but intensity balance at 64 level supports lower value of 1967Bo05. Uncertainty assigned by evaluator and depends, in part, on the lack of knowledge as to the mixing ratio of the 65 at
65	11 3	180	9/2+	115	7/2+	M1+E2		10 3	95	ce(K)/(γ +ce)=0.40 13; ce(L)/(γ +ce)=0.39 22; ce(M)/(γ +ce)=0.09 8 ce(N)/(γ +ce)=0.021 18; ce(O)/(γ +ce)=0.0027 23; ce(P)/(γ +ce)=2.7×10 ⁻⁵ 15 α (K)=4.4 15; α (L)=4 4; α (M)=1.0 9 α (N)=0.23 19; α (O)=0.030 24; α (P)=0.00030 15 I _{γ} : Value is average of I _{γ} =14 given by 1967Bo05 based on intensity balance at 180 level and assumption that γ is M1 and the I _{γ} =8 deduced if γ is E2. I(γ +ce): Value deduced by evaluator from intensity balance at 180 level; since 116 α is weak and must be F2
76	12 2	131	7/2-	55	5/2-	M1+E2	0.18	4.52		value is reliable. $\alpha(K)=3.70 \ 6; \ \alpha(L)=0.643 \ 9;$ $\alpha(M)=0.1421 \ 20$ $\alpha(N)=0.0325 \ 5; \ \alpha(O)=0.00488 \ 7;$
95	15 2	226	9/2-	131	7/2-	[M1+E2]		2.7 4		α (P)=0.000275 <i>4</i> α (K)=1.6 <i>4</i> ; α (L)=0.8 <i>6</i> ; α (M)=0.19 <i>13</i> α (N)=0.04 <i>3</i> ; α (O)=0.006 <i>4</i> ;
116	2 1	180	9/2+	64	5/2+	[E2]		1.467		$\begin{aligned} &\alpha(P) = 0.00011 \ 4 \\ &\alpha(K) = 0.775 \ 11; \ \alpha(L) = 0.534 \ 8; \\ &\alpha(M) = 0.1255 \ 18 \\ &\alpha(N) = 0.0280 \ 4; \ \alpha(O) = 0.00371 \ 6; \\ &\alpha(P) = 3.93 \times 10^{-5} \ 6 \\ &I_{\gamma}: \ I_{\gamma}(116)/I_{\gamma}(65) = 0.14 \ (1967Bo05). \end{aligned}$

Continued on next page (footnotes at end of table)

¹⁵⁷Gd IT decay (18.5 μs) 1967Bo05 (continued)

$\gamma(^{157}\text{Gd})$ (continued)

Eγ	$I_{\gamma}^{\dagger \ddagger a}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult.#	α [@]	Comments
131	1.0 5	131	7/2-	0.0	3/2-	E2	0.951	$\alpha(K)=0.548 \ 8; \ \alpha(L)=0.312 \ 5; \ \alpha(M)=0.0730 \ 11$
171	11 2	226	9/2-	55	5/2-	[E2]	0.377	$\alpha(N) = 0.01555 25; \ \alpha(O) = 0.00217 5; \ \alpha(P) = 2.55 \times 10^{-5} 4$ $\alpha(K) = 0.2484 4; \ \alpha(L) = 0.0995 14; \ \alpha(M) = 0.0231 4$
199	48 2	425	11/2-	226	9/2-	[M1+E2]	0.26 4	$\alpha(N)=0.00518 \ 8; \ \alpha(O)=0.000702 \ 10; \ \alpha(P)=1.375\times10^{-5} \ 20$ $\alpha(K)=0.20 \ 5; \ \alpha(L)=0.044 \ 10; \ \alpha(M)=0.0100 \ 24$
245	97 5	425	11/2-	180	9/2+	[E1]	0.0267	$ \begin{aligned} &\alpha(\text{N}) = 0.0023 \ 5; \ \alpha(\text{O}) = 0.00033 \ 6; \ \alpha(\text{P}) = 1.4 \times 10^{-5} \ 5 \\ &\alpha(\text{K}) = 0.0227 \ 4; \ \alpha(\text{L}) = 0.00317 \ 5; \ \alpha(\text{M}) = 0.000685 \ 10 \\ &\alpha(\text{N}) = 0.0001563 \ 22; \ \alpha(\text{O}) = 2.36 \times 10^{-5} \ 4; \ \alpha(\text{P}) = 1.416 \times 10^{-6} \\ &20 \end{aligned} $

[†] Uncertainties are not given directly in 1967Bo05, but deduced by evaluator from uncertainties given (1967Bo05) in transition

intensities.

Intensities. [‡] I(K x ray)=273 60. [#] From ¹⁵⁷Gd Adopted γ data. [@] Additional information 2. [&] If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^{*a*} For absolute intensity per 100 decays, multiply by 0.625 23.

