¹⁵⁷Tm ε decay **1977Ag01,1983Be17**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 132, 1 (2016)	4-Dec-2015

Parent: ¹⁵⁷Tm: E=0; $J^{\pi}=1/2^+$; $T_{1/2}=3.63 \text{ min } 9$; $Q(\varepsilon)=4650 \ 30$; $\%\varepsilon+\%\beta^+$ decay=100.0

Data and decay scheme are from 1977Ag01 with additions from 1983Be17. Other measurements of γ data are 1974Pu03 and 1077L 02 F at 1×10^{-157} T at 10^{-157} T at 10^{-157} T at 10^{-157} T at 10^{-157} T at 10^{-157

1976La03. For these studies, the 157 Tm was produced by the Er(p,xn) reaction and p spallation of Ta, and chemical or isotope separation has been used.

This decay scheme should be considered tentative, especially in regard to all the spin and parity assignments and $I_{\varepsilon+\beta+}$ values. In this regard, it is interesting to note that the third strongest γ is not placed in the scheme.

Additional information 1.

Experimental methods:

1969Ek01: Measured J of ¹⁵⁷Er by atomic-beam, magnetic-resonance method.

1974Pu03: produced by Er(p,xn) reactions with isotope separation Measured γ decay to determine ¹⁵⁷Tm half-life.

1975LaZU, 1975ZuZY: laboratory report and abstract, see 1976La03.

1976AgZU: lab report; no data; refers to 1974Pu03.

1976AgZX: conference report, see 1976Ag01.

1976La03: produced by spallation of Ta target with 660 MeV p with isotope or chemical separation. Measured γ singles with Ge detectors. ¹⁵⁷Tm half-life determined from decay of x-ray intensity. 13 γ 's reported.

1976PoZV: preprint, see 1976La03.

1977Ag01: produced by Er(p,xn) reaction followed by isotope separation. Measured γ singles and $\gamma\gamma$ coincidences with Ge detectors. ce measured with Si(Li) detector. The γ and ce data were normalized by means of transitions from the decay of the ¹⁵⁷Er and ¹⁵⁷Ho daughters, but the values used are not given.

1979Al33: abstract; reports $T_{1/2}$ of 10-keV level.

1983Be17: produced by Er(p,xn) reaction with $E_p=200$ MeV and followed by isotope separation. ce-ce and ce- γ delayed coincidences used to measure level lifetimes. ce measured in magnetic spectrometer and all γ 's above 500 keV in plastic scintillator. ce measured for γ 's as low as 10 keV.

1984Ek01: measured J of ¹⁵⁷Tm by atomic-beam, magnetic-resonance method.

1991AlZY: abstract; measured $Q(\varepsilon)$ from total absorption γ -ray spectrometer, TAGS, data.

1993Al03: measured $T_{1/2}(Tm)$ and $Q(\varepsilon)$ from total absorption γ -ray spectrometer data.

1994Po26: measured $Q(\varepsilon)$ from $E_{\beta+}$ with Ge detector.

1995Ve05: measured $Q(\varepsilon)$ from $E_{\beta+}$ with Ge detector.

Based on an assumption of no $\varepsilon + \beta +$ feeding of the levels at 0, 10, and 36, a γ -intensity normalization factor of ≈ 0.093 was deduced. Then, the $\varepsilon + \beta +$ feeding intensities were computed from γ transition intensity balances. Since this normalization factor is only an upper limit, the $\varepsilon + \beta +$ feeding, and the associated log *ft* values are given only in the following table and the uncertainties should not be taken seriously:

E(level)	%I(ε + β +)	log	ft %I	(β^+)	av	$\mathbf{E}\boldsymbol{\beta}$
0.00	≡0				1647		
10.30	≡0				1642		
36.17	≡0				1630		
110.38	17 4		5.9 1	10	1596		
206.10	2.7	9	6.7 1	1.6	5 1551		
241.53	14 2		5.9 1	8	1535		
357.90	8.9	11	6.1 1	4.9	1482		
360.60	3.8	7	6.5 1	2.1	. 1480		
367.63	2.5	15	6.6 3	1.4	1477		
381.01	8.2	11	6.1 1	4.5	1471		
455.00	9.2	3	6.0 1	4.8	1437		
559.23	7.1	15	6.1 1	3.6	1389		
608.10	1.4	2	6.8 1	0.7	1367		
685.41	5.8	9	6.1 1	2.7	' 1331		
689.20	3.5	5	6.3 1	1.6	1329		
753.06	10.6	10	5.8 1	4.8	3 1300		
799.68	3.1	5	6.4 1	1.4	1279		

¹⁵⁷Er Levels

E(level) [†]	$J^{\pi \ddagger \#}$	T _{1/2} @	Comments
0 10.30 <i>10</i>	3/2-	6.8 ns 4	J^{π} : See ¹⁵⁷ Er Adopted Levels. J^{π} : (1/2 ⁻ ,3/2 ⁻).
36.17 <i>14</i> 110.38 <i>5</i> 155.4? <i>3</i> 206.10 <i>12</i> 241.53 <i>8</i> 357.90 <i>6</i> 360.60 <i>8</i> 367.63 <i>16</i> 381.01 <i>5</i> 400.78 <i>16</i> 455.00 <i>13</i> 559.23 <i>7</i>	$(^{-})$ $(1/2^{-},3/2^{-},5/2^{-})$ $(9/2^{+})$ - $1/2^{-},3/2^{-},5/2^{-}$ + $1/2^{+},3/2^{+},5/2^{+}$ $1/2^{-},3/2^{-},5/2^{-}$	1.3 ns <i>1</i> 130 ps <i>15</i>	J^{π} : (1/2 ⁻ ,3/2 ⁻). J^{π} : (1/2 ⁻ ,3/2 ⁻). E(level): Value assumes that the 155-keV γ populates the ground state rather than the level at 10 or 35 keV. J^{π} : (1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻). J^{π} : (1/2 ⁻ ,3/2 ⁻ ,5/2 ⁺). J^{π} : (1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻). J^{π} : (1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻). J^{π} : (1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻). J^{π} : (3/2 ⁺ ,5/2 ⁺).
608.10? 8 685.41 9 689.20 9 753.06 11 799.68 14	1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺ + -		J ^{π} : (3/2 ⁺ ,5/2 ⁺)Assignment in Adopted Levels is (1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺). J ^{π} : Assignment in Adopted Levels is π =+. J ^{π} : (3/2 ⁺ ,5/2 ⁺).

[†] From least-squares fit to γ energies. The reduced- χ^2 value for this fit is 3.3 which implies, as noted for the γ energies, that the γ energy uncertainties are underestimated. The evaluator has increased the computed uncertainties in the level energies by a factor of 2.0 for the levels where the major discrepancies are, namely, 10, 36, 206, 241, 367, and 799 keV.

[‡] Adopted values. The values based on γ multipolarities from this dataset are shown in comments (many of these J^{π} assignments have not been adopted).

[#] The J^{π} are so poorly determined that the evaluator has not included any band assignments. The bandheads suggested by 1977Ag01: 0 keV, mixture of 3/2[521] and 3/2[532]; 10 keV, mixture of 3/2[532] and 3/2[521]; and 35 keV, 1/2[530]. It is suggested (1977Ag01) that the 205 level is also 3/2⁻ with a mixture of 3/2[521], 3/2[532] and 3/2,1/2[530]. It is conjectured that the 110 level is 5/2⁻ with mixtures of these configurations. Then, it is deduced that the parent is 7/2⁺[404] or 5/2⁺[402], but this conflicts with the measured spin of 1/2.

[@] From 1983Be17 from $ce\gamma(t)$ measurements with magnetic spectrometer.

¹⁵⁷Tm ε decay **1977Ag01,1983Be17** (continued)

 $\gamma(^{157}\text{Er})$

I γ normalization: if one assumes that there is no $\varepsilon + \beta +$ feeding to the levels at 0, 10, and 36, the normalization factor required to give 100% feeding of the ground state is ≈ 0.093 . Any $\varepsilon + \beta +$ feeding of these three levels would reduce this factor correspondingly. Assignment of any of the many unplaced γ 's as feeding the ground state would also reduce this factor.

The $\gamma\gamma$ coincidences in the decay scheme drawing are from 1977Ag01.

ω

$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\dagger b}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [#]	α^{a}	$I_{(\gamma+ce)}^{b}$	Comments
10.3@		10.30	-	0	3/2-			400 ^{&}	Mult.: In discussion of lifetime, 1983Be17 assume this is an M1 transition.
25.5 [@]		36.17	(^)	10.30	-			35 &	Mult.: In discussion of lifetime, 1983Be17 assume this is an M1 transition.
35.8 [@]	<0.3	36.17	(~)	0	3/2-			14 ^{&}	Mult.: From the limit on I_{γ} (1977Ag01) and the $I_{\gamma+ce}$ value, which is a lower limit, the evaluator deduces $\alpha > 60$. Since $\alpha(E1)=0.9$, $\alpha(M1)=9.6$, and $\alpha(E2)=267$, one could assign mult=E2(+M1). In discussion of lifetime, 1983Be17 assume this is an M1 transition. A mixture with 75% M1 would satisfy both cases
74.5 [@]	155	110.38	(1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)	36.17	(¯)			1 &	
100.05 5	25.0 20	110.38	(1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)	10.30	_	M1	2.84		α (K)=2.38 4; α (L)=0.358 5; α (M)=0.0793 12 α (N)=0.0185 3; α (O)=0.00267 4; α (P)=0.0001471
110.35 10	88 10	110.38	(1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)	0	3/2-	M1	2.15		$\alpha(K)=1.80 \ 3; \ \alpha(L)=0.270 \ 4; \ \alpha(M)=0.0598 \ 9 \ \alpha(N)=0.01395 \ 20; \ \alpha(O)=0.00202 \ 3; \ \alpha(P)=0.0001110 \ 16$
116.3 <i>I</i> 131.20 <i>I5</i>	9.0 <i>10</i> 40 <i>8</i>	357.90 241.53	+ 1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻	241.53 110.38	$1/2^{-},3/2^{-},5/2^{-}$ $(1/2^{-},3/2^{-},5/2^{-})$	M1(+E2)	1.20 12		α (K)=0.8 3; α (L)=0.29 13; α (M)=0.07 4 α (N)=0.016 8: α (O)=0.0020 8: α (P)=4.5×10 ⁻⁵ 23
139.35 <i>10</i> <i>x</i> 141.40 <i>15</i>	2.3 <i>3</i> 0.9 <i>2</i>	381.01	1/2+,3/2+,5/2+	241.53	1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻				
154.35 <i>10</i> 155.4 <i>3</i>	3.2 <i>5</i> 1.2 <i>4</i>	360.60 155.4?	- (9/2 ⁺)	206.10 0	- 3/2 ⁻	E3	5.47 10		α (K)=1.148 <i>18</i> ; α (L)=3.28 <i>6</i> ; α (M)=0.829 <i>15</i> α (N)=0.189 <i>4</i> ; α (O)=0.0221 <i>4</i> ; α (P)=6.81×10 ⁻⁵ <i>11</i>
^x 156.90 5 159 ^c	3.2 <i>5</i> 0.8	400.78		241.53	1/23/25/2-				E _{w.Ly} : From 1977Ag01 decay scheme, data are not
169.80 5	18.5 20	206.10	-	36.17	(⁻)	M1,E2	0.54 10		in table. $\alpha(K)=0.40\ 14;\ \alpha(L)=0.11\ 3;\ \alpha(M)=0.025\ 8$ $\alpha(N)=0.0058\ 17;\ \alpha(O)=0.00075\ 16;$ $\alpha(P)=2\ 2\times10^{-5}\ 11$
175.40 15	30 5	381.01	1/2+,3/2+,5/2+	206.10	-	E1	0.0733		$\alpha(K) = 0.0615 \ 9; \ \alpha(L) = 0.00922 \ 13; \ \alpha(M) = 0.00204$

 $^{157}_{68}\mathrm{Er}_{89}$ -3

$\frac{157}{\text{Tm}} \varepsilon \text{ decay} \qquad 1977 \text{Ag01,} 1983 \text{Be17} \text{ (continued)}$											
γ ⁽¹⁵⁷ Er) (continued)											
$E_{\gamma}^{\dagger \ddagger}$	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$	Mult. [#]	α^{a}	Comments			
196.00 5	29 5	206.10	-	10.30	-	M1(+E2)	0.35 8	$\frac{3}{\alpha(N)=0.000469\ 7;\ \alpha(O)=6.46\times10^{-5}\ 10;\ \alpha(P)=3.00\times10^{-6}\ 5}{\alpha(K)=0.26\ 10;\ \alpha(L)=0.064\ 11;\ \alpha(M)=0.015\ 3}$ $\alpha(N)=0.0034\ 7;\ \alpha(O)=0.00045\ 6;\ \alpha(P)=1.5\times10^{-5}\ 7$			
201.30 <i>5</i>	1.1 3	559.23		357.90	+						
222.5 7 231.10 5	1.3 4 10.0 20	241.53	1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻	10.30	-	M1(+E2)	0.21 6	$\alpha(K)=0.17\ 6;\ \alpha(L)=0.036\ 3;\ \alpha(M)=0.0083\ 9$ $\alpha(N)=0.00191\ 18;\ \alpha(O)=0.000256\ 6;\ \alpha(P)=1.0\times10^{-5}\ 5$			
234.2 <i>2</i> 241.55 <i>5</i>	5.4 <i>10</i> 68 7	689.20 241.53	+ 1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻	455.00 0	1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻ 3/2 ⁻	M1	0.240	$\alpha(K)=0.201 \ 3; \ \alpha(L)=0.0298 \ 5; \ \alpha(M)=0.00660 \ 10$			
247.50 5	30 4	357.90	+	110.38	(1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)	E1	0.0300	$\alpha(N)=0.001538\ 22;\ \alpha(O)=0.000223\ 4;\ \alpha(P)=1.233\times10^{-5}\ 18$ $\alpha(K)=0.0253\ 4;\ \alpha(L)=0.00370\ 6;\ \alpha(M)=0.000816\ 12$ $\alpha(N)=0\ 000188\ 2;\ \alpha(O)=2\ 63\times10^{-5}\ 4;\ \alpha(P)=1\ 282\times10^{-6}\ 18$			
250.20 5	12.5 20	608.10?		357.90	+	M1,E2	0.17 5	$\alpha(N)=0.001685; \alpha(O)=2.05\times10^{-4}, \alpha(P)=1.282\times10^{-7} R^{-6}$ $\alpha(K)=0.135; \alpha(L)=0.02778; \alpha(M)=0.00634$ $\alpha(N)=0.001467; \alpha(O)=0.0001976; \alpha(P)=8E=64$			
257.50 ^c 20	3.5 10	367.63	-	110.38	(1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)	M1,E2	0.16 5	$\alpha(N)=0.00140^{-7}, \alpha(O)=0.000197^{-7}, \alpha(I)=3.12-0.4^{-7}$ $\alpha(K)=0.12^{-5}; \alpha(L)=0.0251^{-4}; \alpha(M)=0.00575^{-2.3}$ $\alpha(N)=0.00133^{-4}; \alpha(O)=0.000180^{-8}; \alpha(P)=7^{-7} E=6^{-4}$			
270.60 5	7.5 15	381.01	1/2+,3/2+,5/2+	110.38	(1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)	E1	0.0240	$\alpha(K) = 0.0202 \ 3; \ \alpha(L) = 0.00293 \ 5; \ \alpha(M) = 0.000647 \ 9$ $\alpha(K) = 0.0001496 \ 21; \ \alpha(O) = 2.10 \times 10^{-5} \ 3; \ \alpha(P) = 1.034 \times 10^{-6} \ 15$			
290.40 <i>15</i> 304.2 <i>2</i> 308.0 <i>2</i>	4.7 <i>10</i> 7.2 <i>20</i> 20 <i>4</i>	400.78 685.41 689.20	1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺	110.38 381.01 381.01	$(1/2^-, 3/2^-, 5/2^-)$ $1/2^+, 3/2^+, 5/2^+$ $1/2^+, 3/2^+, 5/2^+$	E2,M1	0.09 3	α (K)=0.08 3; α (L)=0.0142 12; α (M)=0.00322 19 α (N)=0.00074 5; α (O)=0.000102 13; α (P)=4.4×10 ⁻⁶ 20			
317.75 10	6.0 10	559.23	+	241.53	1/2-,3/2-,5/2-						
331.75 <i>10</i>	9.0 <i>10</i>	367.63	-	36.17	(¯)	M1	0.1019	$\alpha(K)=0.0858 \ 12; \ \alpha(L)=0.01257 \ 18; \ \alpha(M)=0.00278 \ 4$			
347.65 <i>10</i> *348 40 <i>15</i>	25 5 90 15	357.90	+	10.30	-			$\alpha(N)=0.000649 \ I0; \ \alpha(O)=9.41\times10^{\circ} \ I4; \ \alpha(P)=5.23\times10^{\circ} \ 8$			
357.00 15	72 10	367.63	-	10.30	-						
357.8 2	46 9	357.90	+	0	3/2-						
360.65 15	40 7	360.60	-	0	3/2-	M1,E2	0.061 21	α (K)=0.050 20; α (L)=0.0087 14; α (M)=0.0020 3 α (N)=0.00046 7; α (O)=6.4×10 ⁻⁵ 12; α (P)=2.9×10 ⁻⁶ 13			
367.4 2	45 6	367.63	-	0	3/2-	M1,E2	0.058 20	$\alpha(K)=0.047 \ 19; \ \alpha(L)=0.0083 \ 13; \ \alpha(M)=0.0019 \ 3$ $\alpha(N)=0.00043 \ 7; \ \alpha(O)=6.0\times10^{-5} \ 12; \ \alpha(P)=2.8\times10^{-6} \ 13$			
370.7 1	54 8	381.01	1/2+,3/2+,5/2+	10.30	-	E1	0.01110	$\alpha(K) = 0.00939 \ 14; \ \alpha(L) = 0.001337 \ 19; \ \alpha(M) = 0.000295 \ 5 \ \alpha(N) = 6.82 \times 10^{-5} \ 10; \ \alpha(Q) = 9.64 \times 10^{-6} \ 14; \ \alpha(P) = 4.93 \times 10^{-7} \ 7$			
381.0 <i>I</i>	20.0 20	381.01	1/2+,3/2+,5/2+	0	3/2-	E1	0.01040	$\alpha(K) = 0.00880 \ I3; \ \alpha(L) = 0.001251 \ I8; \ \alpha(M) = 0.000276 \ 4$ $\alpha(K) = 0.001251 \ I8; \ \alpha(M) = 0.000276 \ 4$			
385.5 1	95 10	753.06	+	367.63	-	E1	0.01012	$\alpha(K) = 6.00856 \ 12; \ \alpha(L) = 0.001217 \ 17; \ \alpha(M) = 0.000268 \ 4$ $\alpha(K) = 6.20 \times 10^{-5} \ 0; \ \alpha(D) = 8.78 \times 10^{-6} \ 12; \ \alpha(D) = 4.51 \times 10^{-7} \ 7$			
x387.30 15	20 3					M1,E2		$a_{(1)}=0.20\times10^{-3}, a_{(0)}=0.70\times10^{-13}, a_{(1)}=4.51\times10^{-7}$			

4

$^{157}_{68}\mathrm{Er}_{89}$ -4

From ENSDF

 $^{157}_{68}\mathrm{Er}_{89}$ -4

¹⁵⁷ Tm ε decay 1977Ag01,1983Be17 (continued)										
γ ⁽¹⁵⁷ Er) (continued)										
$E_{\gamma}^{\dagger \ddagger}$	$I_{\gamma}^{\dagger b}$	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{a}	Comments		
x406.40 15 x412.05 10 x421.8 3 x433.0 2 438.95 10 443.7 3 447.70 10	4.5 10 1.2 3 0.8 3 2.4 4 5.3 10 3.5 10 4 1	799.68 685.41 689.20	- 1/2+,3/2+,5/2+ +	360.60 241.53 241.53	- 1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻ 1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻			E_{γ} : The authors' uncertainty of 0.01 keV is assumed to be a misprint and is given here as 0.10 keV		
449.05 20	14 <i>3</i>	559.23		110.38	(1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)	M1,E2	0.034 <i>13</i>	$\alpha(K)=0.028 \ II; \ \alpha(L)=0.0046 \ I0; \ \alpha(M)=0.00104 \ 2I \ \alpha(N)=0.00024 \ 5; \ \alpha(O)=3.4\times10^{-5} \ 9; \ \alpha(P)=1.6\times10^{-6} \ 7 \ Mult.: This multipolarity and that for the 549-keV \gamma are not both consistent with the final state J^{\pi} values.$		
455.00 15	100 <i>3</i>	455.00	1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻	0	3/2-	M1	0.0445	$\alpha(K)=0.0375\ 6;\ \alpha(L)=0.00544\ 8;\ \alpha(M)=0.001203\ 17$ $\alpha(N)=0.000281\ 4;\ \alpha(O)=4.07\times10^{-5}\ 6;\ \alpha(P)=2.27\times10^{-6}\ 4$		
x474.35 20 479.70 35 x484.65 20 x488.45 20 x496.50 25	14 3 2.0 5 27 4 1.2 4 10 3	685.41	1/2+,3/2+,5/2+	206.10	-	E2 E1				
x525.00 15 x535.35 15 549.1 3	43 6 36 6 55 15	559.23		10.30	_	M1 M1,E2 E1	0.00455	$\alpha(K)=0.00386\ 6;\ \alpha(L)=0.000538\ 8;\ \alpha(M)=0.0001182\ 17$ $\alpha(N)=2\ 74\times10^{-5}\ 4;\ \alpha(O)=3\ 91\times10^{-6}\ 6;\ \alpha(P)=2\ 08\times10^{-7}\ 3$		
x555.6 3 557.85 10	34 <i>10</i> 5.7 <i>10</i>	799.68	-	241.53	1/2-,3/2-,5/2-	M1,E2 M1,E2	0.019 7	$\alpha(K)=0.016 \ 7; \ \alpha(L)=0.0025 \ 7; \ \alpha(M)=0.00057 \ 14$ $\alpha(N)=0.00013 \ 4; \ \alpha(O)=1.9\times10^{-5} \ 6; \ \alpha(P)=1.0\times10^{-6} \ 4$		
x570.10 15 x573.1 1 575.05 10	2.6 8 10.0 <i>10</i> 26 7	685.41	1/2+,3/2+,5/2+	110.38	(1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)	E1	0.00412	α (K)=0.00350 5; α (L)=0.000486 7; α (M)=0.0001067 15 α (N)=2.48×10 ⁻⁵ 4; α (O)=3.54×10 ⁻⁶ 5; α (P)=1.89×10 ⁻⁷ 3		
x580.95 25 x587.60 15 593.8 1 x595.9 1 x617.6 10 x622.90 15	10 3 1.0 4 1.2 4 4.8 10 1.0 5 2.4 10	799.68	-	206.10	-					
x630.2 2 x639.0 1 642.50 25 x655.0 3 x682.2 3	1.8 8 7.0 15 4.7 10 2.0 10 3.5 7	753.06	+	110.38	(1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)					
685.5 2 689.4 2	24 6 11 3	685.41 799.68	$\frac{1}{2^{+}}, \frac{3}{2^{+}}, \frac{5}{2^{+}}$	0 110.38	3/2 ⁻ (1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)					

From ENSDF

 $^{157}_{68}\mathrm{Er}_{89}$ -5

 $^{157}_{68}{
m Er}_{89}$ -5

$\gamma(^{157}\text{Er})$ (continued)

$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\dagger b}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	τ f	$E_{\gamma}^{\dagger \ddagger}$	$I_{\gamma}^{\dagger b}$	E _i (level
^x 702.8 4	2.2 6		_			^x 1035.5 4	8.0 15	
x714.0 4	3.0 8					x1042.6 6	2.7 8	
^x 718.1 3	1.5 5					^x 1053.7 5	5.5 20	
^x 732.9 5	1.6 6					^x 1060.4 5	5.0 15	
^x 735.6 3	1.5 5					^x 1064.8 5	5.5 25	
742.6 2	13 <i>3</i>	753.06	+	10.30 -		^x 1076.3 4	4.5 15	
^x 748.7 3	13 <i>3</i>					^x 1082.2 4	6.3 20	
^x 754.8 3	7.6 2					^x 1088.2 5	5.0 15	
764.3 2	10 3	799.68	-	36.17 (-	.)	x1096.2 5	5.5 15	
^x 771.8 3	3.7 10				Í	^x 1098.4 6	5.0 15	
^x 787.6 3	14 3					^x 1107.0 5	1.4 10	
^x 790.3 3	8.0 10					^x 1111.0 10	2.8 10	
^x 800.3 3	11 3					^x 1117.4 5	8.0 20	
^x 811.2 3	3.3 7					^x 1150.8 5	3.7 13	
^x 816.5 4	4.0 8					^x 1218.8 4	5.8 15	
^x 819.7 5	1.0 5					^x 1221.5 4	8.5 20	
^x 822.5 5	3.5 7					^x 1243.1 6	6.0 20	
^x 827.6 5	2.7 10					^x 1249.2 8	2.5 15	
^x 864.5 6	2.5 5					^x 1256.0 5	4.6 15	
^x 867.4 5	5.5 10					^x 1262.4 5	15 4	
^x 876.1 5	1.8 10					^x 1287.0 5	4.6 10	
x892.0 4	4.0 10					^x 1295.6 6	2.5 10	
^x 902.6 5	2.5 7					^x 1304.9 5	6.1 15	
^x 923.4 <i>3</i>	14 3					^x 1336.1 6	5.0 20	
^x 945.5 8	8.7 20					^x 1342.4 5	6.3 20	
^x 956.4 3	10 3					^x 1350.2 6	3.4 20	
^x 972.8 4	5.7 10					x1370.3 10	4.5 25	
^x 977.7 3	5.5 15					^x 1416.4 6	5.5 25	
^x 1007.8 5	3.3 10					^x 1433.4 6	6.5 25	
^x 1013.0 4	4.6 10					^x 1438.5 6	5.0 15	
^x 1019.0 4	4.8 10					^x 1453.2 5	4.0 10	
^x 1025.6 3	2.5 10					^x 1461.1 5	8 <i>3</i>	
^x 1032.5 4	5.8 10					^x 1579.0 6	2.3 13	

[†] From 1977Ag01, unless noted as from 1983Be17. Others: 1974Pu03 (8 γ 's reported) and 1976La03 (14 γ 's).

[‡] The authors (1977Ag01) do not report the values and the uncertainties in a consistent form, so the evaluator has had to add trailing zeros to many values. This often adds an error of ≈ 0.05 keV.

[#] Assigned originally by author (1977Ag01) from $\alpha_{\rm K}(\rm exp)$ values which are based on I_{γ} and $I_{\rm ce}$ data normalized to give the theoretical $\alpha_{\rm K}$ value for an E1 transition of 326.6 keV in ¹⁵⁷Tb. Some assignments of the authors have been made more explicit by the evaluator.

[@] Reported in ce spectrum (1983Be17) only.

6

157 Tm ε decay 1977Ag01,1983Be17 (continued)

 $\gamma(^{157}\text{Er})$ (continued)

- & Values assigned by evaluator to cause intensity balances for the levels at 10 and 35 keV with no ε feeding. The ratio $I_{\gamma+ce}(25)/I_{\gamma+ce}(36)$ was determined to approximate the BM1W values of 1983Be17. Any ε feeding would increase these $I_{\gamma+ce}$ values, and at the same time reduce the normalization factor for the I_{γ} values.

 \neg

- ^a Additional information 2.
 ^b For absolute intensity per 100 decays, multiply by 0.093.
- ^c Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

8

 $^{157}_{68}\mathrm{Er}_{89}$

8-₂₈13⁷²¹