		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 132, 1 (2016)	4-Dec-2015

Additional information 1.

The scheme is from 2006Ev02 (which is the most detailed write-up of the work published by all references described below, of which most authors are common as well).

2006Ev02, 2006Ri13, 2005Ri16, 2004Ev01: ¹¹⁴Cd(⁴⁸Ca,5n γ), E=215 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$ using Gammasphere composed of 102 HPGe detectors, placed at 35°, 90°, and 145° relative to the beam direction. Cranked shell-model calculations.

All data and conclusions are from 2006Ev02, unless otherwise stated.

¹⁵⁷Er Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0	3/2-	E(level), J^{π} : from Adopted Levels, Gammas dataset for ¹⁵⁷ Er.
0+x ^d	5/2-	Additional information 2. E(level), J^{π} : 2006Ev02 incorrectly assign this state as the g.s. in their discussion in section 3 for bands 5 and 6.
24.8+x 9	7/2-	
181.1+x ^{&} <i>13</i>	$13/2^{+}$	
181.9+x ^d 6	9/2-	
446.8+x ^{&} 12	$17/2^{+}$	
560.0+x ^d 9	$13/2^{-}$	
786.2+x ^f 14	$(15/2^{-})$	
861.1+x ^{&} 12	$21/2^+$	
1073.1+x ^d 11	$17/2^{-}$	
1142.8+x ^c 13	$17/2^{+}$	
$1208.0 + x^{f}$ 12	$19/2^{(-)}$	
1388.1+x ^{&} 12	$25/2^+$	
1487.8+x ^c 13	21/2+	
$1665.8 + x^{a}$ 12	21/2-	
1697.8 + x'' I2	$21/2^{-}$	
$1740.8 + x^{J}$ 12 1000 5 + x^{C} 12	$23/2^{(-)}$	
$1909.3 + x^{\circ} 13$	20/2+	
$2009.9 + x^{++} 12$	29/2 25/2-	
2102.2+x 12 2200.0 + x^{d} 12	25/2	
$2299.9 + x^{-1}$ 13	23/2 27/2(-)	
$2340.3 \pm x^{9}$ 13	27/2	
2387.0+x 13 2424.1+x ^c 13	$\frac{27}{2}$	
2426.7+x 12	25/2-	
2572.4+x ^b 13	$23/2^{(-)}$	
2580.4+x [#] 12	29/2-	
2677.9+x ^a 13	$25/2^{(-)}$	
2712.7+x ^{&} 12	$33/2^+$	
2792.7+x ^d 13	$29/2^{-}$	
2827.7+x ^b 13	$27/2^{(-)}$	
2841.0+x [@] 13	31/2-	
2892.4+x ⁸ 14	$(29/2^{-})$	
$3021.1 + x^{\alpha} I3$	29/2(-)	

¹⁵⁷Er Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
3024.8+x ^c 13	$33/2^{+}$	6829.9+x ^c 14	$53/2^{+}$
3093.9+x [#] 12	33/2-	7024.2+x ^d 20	$(53/2^{-})$
3122.1+x ^e 13	$31/2^{(-)}$	7157.6+x [@] 13	55/2-
3246.3+x ^b 13	$31/2^{(-)}$	7175.1+x ^a 16	$53/2^{(-)}$
3274.5+x <i>13</i>	$(31/2^{-})$	7471.7+x ^e 18	$(55/2^{-})$
3336.9+x ^d 14	$(33/2^{-})$	7479.3+x [#] 13	$57/2^{-}$
3377.4+x [@] 13	35/2-	7522.5+x ^{&} 14	$57/2^{+}$
$3422.7 + x^{g}$ 16	$(33/2^{-})$	7799.7+x ^c 15	$57/2^{+}$
3477.8+x ^{&} 13	37/2+	7947.5+x [@] 13	59/2-
$3507.4 + x^{a}_{\mu} 13$	$33/2^{(-)}$	$8080.7 + x^{a} 17$	$57/2^{(-)}$
3668.0+x [#] 13	$37/2^{-}$	8271.1+x [#] 13	61/2-
36/9.2+x ^e 13	$35/2^{(-)}$	8289.0+x ^e 19	$(59/2^{-})$
3703.5+x ^c 13	37/2+	8437.5+x ^{cc} 14	61/2+
3792.1+x ⁰ 13	$35/2^{(-)}$	8724.2+x ^c 16	61/2+
3949.8+x ^{<i>u</i>} 16	$(37/2^{-})$	8786.1+x [@] 13	63/2-
4006.5+x [@] 13	39/2-	$9145.8 + x^{#} 14$	65/2-
$4041.0 + x^{g} 17$	$(37/2^{-})$	$9394.4 + x^{\infty} 14$	$65/2^+$
$4099.7 + x^{\alpha} 14$	31/2	$9648.7 + x^{\circ} I /$	65/21
4280.9+x ^{cc} 13	$41/2^{-1}$	9654.1+x [#] 14	67/2
$4312.0 + x^{e} I3$	39/2	10098.4 + x'' 14	69/2
$4318.9 + x^{"}$ 13	41/2	$10227.8 + x^{\circ} 14$	69/21
$4431.5 + x^{\circ} 14$	39/2	10548.8 + x = 14	71/2
$4441.0 + x^{c}$ 13	41/2*	$10825.2 + x^{n}$ 15	71/2*
4626.0+x ^u 17	$(41/2^{-})$	11038.4 + x'' 15	73/2-
4721.9+x <i>13</i>	43/2	$11080.6 + x^{3} 15$	73/2-
$4/44.7 + x^8 I8$	$(41/2^{-})$	11306.8 + x = 15	73/2+
$4/79.1+x^{e}$ 14 5017 3+x ^e 15	$41/2^{(-)}$	$11339.4 \pm X 10$ $11426.7 \pm Y 15$	13/2
$50465 \pm x^{\#}$ 13	45/2-	$11420.7 \pm x 15$ 11461.6 \pm x 16	
$5090.8 \pm x^{\&} 13$	$45/2^+$	$11401.0 + x^{-0}$ 15	75/2-
$5149.4 + x^{b} 14$	43/2 $43/2^{(-)}$	$11717 2 + x^{h} 16$	$(75/2^+)$
5191 $6 \pm x^{c}$ 14	$45/2^+$	$11717.2 + x^{\#} 15$	(13/2)) 77/2 ⁻
$53772 + x^{d}18$	$(45/2^{-})$	$11896.8 + x^{i}$ 16	75/2+
$5519.6 \pm x^{\#} 13$	(13/2)	$12166.1 + x^{\&} 15$	77/2+
$5526.6 + x^a$ 15	$45/2^{(-)}$	$12206.2 + x^{j}$ 16	77/2-
$5798.0 + x^{e}$ 16	$47/2^{(-)}$	12331.6+x 16	,,,2
5846.8+x [#] 13	$49/2^{-}$	12339.5+x 16	
5897.3+x ^{&} 13	$49/2^{+}$	12467.7+x <i>16</i>	
5927.8+x ^b 15	$47/2^{(-)}$	12473.6+x [@] 15	79/2-
5973.9+x ^c 13	49/2+	12866.3+x 16	79/2-
6179.9+x ^d 19	$(49/2^{-})$	12934.9+x ⁱ 17	$(79/2^+)$
6328.9+x ^a 15	$49/2^{(-)}$	13059.0+x ^{&} 16	$81/2^{+}$
6348.5+x [@] 13	$51/2^{-}$	13119.3+x [#] 15	81/2-
6643.9+x ^e 17	$51/2^{(-)}$	13353.5+x 17	
6676.0+x [#] 13	53/2-	13397.0+x [@] 15	83/2-
6689.2+x ^{&} 13	$53/2^{+}$	13439.0+x ^j 17	$81/2^{-}$
6756.4+x ^b 16	$51/2^{(-)}$	13915.3+x <i>17</i>	

¹⁵⁷Er Levels (continued)

E(level) [†]	J ^{π‡}	Comments
$14039.6 + x^{\#} 17$	85/2-	
14047.0+x [@] 16	87/2-	Interpreted by 2004Ev01 as terminating state with configuration= $\pi(h_{11/2}^4)_{16+} \otimes \nu[(i_{13/2}^2) (h_{9/2} \text{ and/or } f_{7/2})^5]_{55/2-}$.
14293.6+x ^{&} 16	$85/2^{+}$	
14511.8+x 17	85/2+	
14853.5+x [#] 18	89/2-	Interpreted by 2004Ev01 as terminating state with configuration= $\pi(h_{11/2}^4)_{16+} \otimes \nu[(i_{13/2}^2) (h_{9/2} \text{ and/or } f_{7/2})^5]_{57/2-}$.
15064.2+x ^{&} 16	$89/2^{+}$	
15311.0+x 17	89/2-	
15486.5+x 17	89/2-	
15585.4+x 17	$89/2^{-}$	
15628.6+x 17	91/2-	
15761.8+x 17		
15818.1+x ^{&} 17	93/2+	Interpreted by 2004Ev01 as terminating state with configuration= $\pi(h_{11/2}^4)_{16+} \otimes \nu[(i_{13/2}^3) (h_{9/2} \text{ and/or } f_{7/2})^4]_{61/2+}$.
15827.2+x 17		
15961.9+x 17	$91/2^{-}$	
16122.1+x 17	91/2-	
16185.8+x 17	91/2-	
16274.1+x 19		
16348.2+x 19		
16394.0+x 17		
16409.8+x 19	93/2-	
16455.7+x 17		
16559.9+x 19	93/2-	
16956.1+x 19	93/2-	
17231.3+x 18		
17298.3+x 18	95/2+	
17453.8+x 18		
17513.3+x <i>18</i>		
17519.1+x <i>18</i>		
17555.2+x 18		
17654.4+x 20		
17943.5+x 18		
19056.9+x 20		
19502.8+x 19		

[†] From least-squares fit to $E\gamma's$.

[‡] Shown in the table are the exact J^{π} assignments of 2006Ev02 which are based on their angular correlation information, on systematics of similar structures in other nuclei, as well as the J^{π} assignments of 1995Ga13 (and some other previous measurements) with modifications from 2002Br52 as shown in the (HI,xn γ) dataset. Most of these previous assignments are confirmed by 2006Ev02 and extended to higher spins added in this dataset. However because no measurements were done to determine the electric or magnetic character of the γ -ray transitions, and the lowest 0+x level of this level scheme is only tentatively assigned to $J^{\pi}=5/2^{-}$, all the assignments are actually tentative (see the Adopted Levels, Gammas dataset for the finally adopted values of this level scheme).

[#] Band(A): $v5/2[523] \otimes vi_{13/2}^2$, $\alpha = +1/2$.

[@] Band(a): $v5/2[523] \otimes vi_{13/2}^2$, $\alpha = -1/2$.

& Band(B): v3/2[651] to $v3/2[651] \otimes vi_{13/2}^2$, $\alpha = +1/2$.

^a Band(C): ν3/2[651]⊗π([7/2[523]⊗7/2[404]), K=7, α+1/2. Strongly-coupled band.

^b Band(c): $\nu 3/2[651] \otimes \pi (7/2[523] \otimes 7/2[404])$, K=7, $\alpha = -1/2$. Strongly-coupled band.

¹⁵⁷Er Levels (continued)

^{*c*} Band(D): $\nu 3/2[651] \otimes \gamma$ vibration.

^d Band(E): v3/2[521] to $v3/2[521] \otimes v_{13/2}^2$, $\alpha = +1/2$. The signature $\alpha = -1/2$ in table III of 2006Ev02 seems a misprint.

- ^e Band(e): $v3/2[521] \otimes v_{13/2}^2$, $\alpha = -1/2$. The signature $\alpha = +1/2$ in table III of 2006Ev02 seems a misprint.
- ^{*f*} Band(F): v3/2[521], $\alpha = -1/2$. Possible signature partner of v3/2[521]. The signature $\alpha = +1/2$ in table III of 2006Ev02 seems a misprint.
- ^g Band(G): Band based on (29/2⁻), $\alpha = +1/2$. Four members in this band.
- ^h Band(H): Band based on $71/2^+$, $\alpha = -1/2$. Only two members in this band.
- ^{*i*} Band(I): Band based on 75/2⁺, $\alpha = -1/2$. Only two members in this band.

^j Band(J): Band based on 73/2⁻, $\alpha = +1/2$. Only three members in this band.

$\gamma(^{157}\mathrm{Er})$

E _γ ‡	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
105.3 6	<1	2677.9+x	$25/2^{(-)}$	2572.4+x	$23/2^{(-)}$		
149.6 6	<1	2827.7+x	$27/2^{(-)}$	2677.9+x	$25/2^{(-)}$	M1+E2	$R(ang)=0.81$ 19. $A_2=-0.30$ 2.
157.1 6	1.70 17	181.9 + x	$9/2^{-}$	24.8+x	$7/2^{-}$	M1+E2	R(ang)=0.71 11.
181.9 6	<1	181.9+x	9/2-	0+x	5/2-		
193.3 [@] 6	<1	2580.4+x	$\frac{1}{29/2^{-}}$	2387.0+x	$\frac{1}{27/2^{-}}$	M1+E2	$R(ang)=0.95 9, A_2=-0.25 2.$
193.3 [@] 6	<1	3021.1+x	$29/2^{(-)}$	2827.7+x	$27/2^{(-)}$	M1+E2	$R(ang)=0.95$ 2, $A_2=-0.18$ 2.
225.2 6	<1	3246.3+x	$31/2^{(-)}$	3021.1+x	$29/2^{(-)}$	M1+E2	$R(ang)=0.84$ 9, $A_2=-0.18$ 5.
231.4 6	2.30 23	2580.4+x	$29/2^{-}$	2348.5+x	$27/2^{(-)}$	M1+E2	$R(ang)=0.71 I$, $A_2=-0.30 2$.
233.2 6	<1	3507.4+x	$33/2^{(-)}$	3274.5+x	$(31/2^{-})$		
252.4 6	2.30 23	3093.9+x	$33/2^{-}$	2841.0+x	31/2-	M1+E2	$R(ang)=0.79$ 2, $A_2=-0.16$ 2.
255.0 6	<1	2827.7+x	$27/2^{(-)}$	2572.4+x	$23/2^{(-)}$		
260 1	<1	2841.0+x	$31/2^{-}$	2580.4+x	$29/2^{-}$		
261.0 6	<1	3507.4+x	$33/2^{(-)}$	3246.3+x	$31/2^{(-)}$	M1+E2	$R(ang)=0.895, A_2=-0.044.$
265.7 3	100	446.8+x	$17/2^+$	181.1+x	$13/2^{+}$	E2	$R(ang)=1.20 I, A_2=+0.18 I.$
277.6 6	<1	13397.0+x	83/2-	13119.3+x	$81/2^{-}$	M1+E2	$R(ang)=0.77\ 2,\ A_2=-0.36\ 4.$
281.4 6	<1	4721.9+x	$43/2^{-}$	4441.0+x	$41/2^{+}$	E1	R(ang)=0.69 14.
283.5 6	<1	3377.4+x	$35/2^{-}$	3093.9+x	33/2-	M1+E2	R(ang)=0.88 21.
284.8 6	<1	3792.1+x	$35/2^{(-)}$	3507.4+x	$33/2^{(-)}$	M1+E2	$R(ang)=0.92 4, A_2=-0.01 4.$
290.0 6	1.50 15	3668.0+x	$37/2^{-}$	3377.4+x	35/2-	M1+E2	$R(ang)=0.89 \ 3, \ A_2=-0.08 \ 3.$
303.2 6	<1	4006.5+x	39/2-	3703.5+x	$37/2^+$		
307.5 6	<1	4099.7+x	$37/2^{(-)}$	3792.1+x	$35/2^{(-)}$	M1+E2	$R(ang)=0.88 4, A_2=-0.04 4.$
312.6 6	1.40 14	4318.9+x	$41/2^{-}$	4006.5+x	39/2-	M1+E2	$R(ang)=0.89$ 5, $A_2=-0.12$ 5.
315.4 6	<1	11802.9+x	$77/2^{-}$	11488.0+x	$75/2^{-}$	M1+E2	R(ang)=0.85 7.
321.8 6	<1	7479.3+x	57/2-	7157.6+x	55/2-		
323.1 6	<1	8271.1+x	$61/2^{-}$	7947.5+x	59/2-		
325.2 6	<1	5046.5+x	$45/2^{-}$	4721.9+x	$43/2^{-}$		
327.2 6	<1	6676.0+x	$53/2^{-}$	6348.5+x	$51/2^{-}$		
327.7 6	<1	5846.8+x	49/2-	5519.6+x	47/2-		
331.6 6	<1	4431.5+x	$39/2^{(-)}$	4099.7+x	$37/2^{(-)}$	M1+E2	$R(ang)=0.94 4, A_2=-0.13 4.$
338.4 6	<1	4006.5+x	39/2-	3668.0+x	37/2-	M1+E2	$R(ang)=0.92 9, A_2=-0.19 1.$
343.2 6	<1	3021.1+x	$29/2^{(-)}$	2677.9+x	$25/2^{(-)}$		
344.8 6	<1	1487.8+x	$21/2^{+}$	1142.8+x	$17/2^{+}$		
347.5 6	<1	4779.1+x	$41/2^{(-)}$	4431.5+x	$39/2^{(-)}$	M1+E2	$R(ang)=0.90 5, A_2=-0.05 5.$
352.8 6	<1	3377.4+x	35/2-	3024.8+x	33/2+	E1	$R(ang)=0.76 4, A_2=-0.03 6.$
362.2 6	5.1 5	2102.2+x	$25/2^{-}$	1740.8+x	$23/2^{(-)}$	M1+E2	$R(ang)=0.73 \ I, A_2=-0.31 \ 2.$
366.3 6	<1	2792.7+x	29/2-	2426.7+x	$25/2^{-}$		
370.1 6	<1	5149.4+x	$43/2^{(-)}$	4779.1+x	$41/2^{(-)}$	M1+E2	$R(ang)=0.80 \ 8, \ A_2=-0.09 \ 7.$
377.3 6	<1	5526.6+x	$45/2^{(-)}$	5149.4+x	$43/2^{(-)}$	M1+E2	R(ang)=0.78 7, A ₂ =-0.06 6.
378.1 6	2.9 3	560.0+x	$13/2^{-}$	181.9+x	9/2-		
381.6 6	<1	3093.9+x	$33/2^{-}$	2712.7+x	$33/2^{+}$		

114 Cd(48 Ca,5n γ) 2006Ev02,2004Ev01 (continued) $\gamma(^{157}\text{Er})$ (continued) $I_{\gamma}^{\#}$ E_γ‡ Mult. E_i(level) \mathbf{J}_i^{π} \mathbf{E}_{f} J_{f}^{π} Comments 401.1[@] 6 $47/2^{(-)}$ 5526.6+x 45/2⁽⁻⁾ <1 5927.8+x 401.1[@] 6 $49/2^{(-)}$ 5927.8+x 47/2⁽⁻⁾ $<\!1$ 6328.9+x 403.2 6 < 14721.9+x $43/2^{-}$ 4318.9+x 41/2⁻ 404.5 6 3.5 4 $25/2^{-}$ 1697.8+x 21/2-E2 2102.2+x $R(ang)=1.14\ 2,\ A_2=+0.18\ 2.$ 414.3 3 96 5 $21/2^+$ E2 861.1+x 446.8+x 17/2⁺ $R(ang)=1.29 2, A_2=+0.26 1.$ $31/2^{(-)}$ 2827.7+x 27/2⁽⁻⁾ 418.9 6 3246.3+x < 1 $19/2^{(-)}$ 421.8 6 <1 1208.0+x786.2+x (15/2⁻) $25/2^+$ 422.1 6 <1 1909.5+x 1487.8+x 21/2+ E2 R(ang)=1.44 6, $A_2=+0.19$ 4. $51/2^{(-)}$ 6328.9+x 49/2⁽⁻⁾ 427.9 6 6756.4+x <1 429.2 6 5519.6+x $47/2^{-}$ 5090.8+x 45/2+ R(ang)=0.82 5. E1 <1 436.1 6 1.90 19 2102.2+x $25/2^{-}$ 1665.8+x 21/2-441.2 6 4721.9+x $43/2^{-}$ 4280.9+x 41/2+ E1 $R(ang)=0.96 3, A_2=+0.03 3.$ <1 450.3[@] 6 10548.8+x $71/2^{-}$ 10098.4+x 69/2- E_{γ} : placement shown from 75/2⁻ to 73/2⁻ in table $<\!1$ M1+E2 II of 2006Ev02, but placed from $71/2^-$ to $69/2^-$ in authors' figure 3. Since it seems to fit in both places, this γ has been included with both levels. R(ang)=0.69 7, $A_2=-0.27$ 5. Note that R(ang) and A₂ values are the same as for 450.8 γ . It is possible that these values are common for 450.3+450.8 doublet. 450.3[@] 6 <1 11488.0+x $75/2^{-}$ 11038.4+x 73/2 450.8 6 E1 6348.5+x $51/2^{-}$ 5897.3+x 49/2+ R(ang)=0.69 7, A₂=-0.27 5. Note that R(ang) and <1 A₂ values are the same as for 450.3γ . It is possible that these values are common for 450.3+450.8 doublet. 453.9 6 2387.0+x 27/2-E2 2.0 2 2841.0+x $31/2^{-}$ R(ang)=1.13 6. 467.6 6 7157.6+x $55/2^{-}$ 6689.2+x 53/2+ E1 R(ang)=0.58 4, A₂=-0.19 4. <1 468.7 6 7947.5+x $59/2^{-}$ 7479.3+x 57/2-< 1473.7 6 <1 5519.6+x $47/2^{-}$ 5046.5+x 45/2 M1+E2 R(ang)=0.78 9. 17.9 9 R(ang)=1.34 1, A₂=+0.28 1. 478.3 3 2580.4+x $29/2^{-}$ 2102.2+x 25/2-E2 $55/2^{-}$ 6676.0+x 53/2-M1+E2 R(ang)=0.92 11. 481.5 6 7157.6+x <1 486.2 6 3507.4+x $33/2^{(-)}$ 3021.1+x 29/2⁽⁻⁾ <1 1.20 12 489.2 6 1697.8+x $21/2^{-}$ 1208.0+x 19/2⁽⁻⁾ M1+E2 $R(ang)=0.64 5, A_2=-0.34 6.$ 2792.7+x $29/2^{-}$ 2299.9+x 25/2-492.6 6 <1 500.9 6 6348.5+x $51/2^{-}$ 5846.8+x 49/2-< 1513.1 6 1.60 16 1073.1+x $17/2^{-}$ 560.0+x 13/2-513.63 32.5 16 3093.9+x $33/2^{-}$ 2580.4+x 29/2-E2 $R(ang)=1.20 I, A_2=+0.19 I.$ 514.5^{*a*} 6 3.9^{*a*} 4 $29/2^{+}$ 1909.5+x 25/2+ 2424.1+x E2 $R(ang)=1.18 2, A_2=+0.12 2.$ <1^{*a*} 514.5^{*a*} 6 8786.1+x $63/2^{-}$ 8271.1+x 61/2-521.2 6 1909.5 + x $25/2^{+}$ 1388.1+x 25/2+ <1 527.1 3 91 5 861.1+x 21/2+ E2 $R(ang)=1.23 I, A_2=+0.12 I.$ 1388.1+x $25/2^+$ 528.5 6 2.20 22 4006.5+x $39/2^{-}$ 3477.8+x 37/2+ 530.3 6 <1 3422.7+x $(33/2^{-})$ $2892.4 + x (29/2^{-})$ $23/2^{(-)}$ 1208.0+x 19/2⁽⁻⁾ 1.20 12 533.5 6 1740.8+x 3377.4+x $35/2^{-}$ 2841.0+x 31/2-E2 536.2 6 8.18 $R(ang)=1.21 3, A_2=+0.50 2.$ 544.2 6 3336.9+x $(33/2^{-})$ 2792.7+x 29/2-<1 $35/2^{(-)}$ 3246.3+x 31/2⁽⁻⁾ 545.8 6 3792.1+x <1 $35/2^{(-)}$ 3122.1+x 31/2⁽⁻⁾ 3679.2+x 556.8 6 < 1570.8 6 5.96 2580.4+x $29/2^{-}$ 2009.9+x 29/2+ 3093.9+x 33/2-574.3 3 30.4 15 3668.0+x $37/2^{-}$ E2 $R(ang)=1.38 I, A_2=+0.35 2.$ 592.2 6 4099.7 + x $37/2^{(-)}$ 3507.4+x 33/2⁽⁻⁾ <1 3.3^{*a*} 3 592.5^{*a*} 6 $21/2^{-}$ 1073.1+x 17/2-1665.8 + x592.5^a 6 <1^{*a*} 2892.4+x $(29/2^{-})$ 2299.9+x 25/2- $71/2^+$ 597.1 6 4.6 5 10825.2+x 10227.8+x 69/2+ M1+E2 $R(ang)=0.95 \ I, \ A_2=-0.27 \ J.$

$\gamma(^{157}\text{Er})$ (continued)

Eγ [‡]	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [†]	Comments
601.2 6	6.3 6	3024.8+x	$33/2^{+}$	2424.1+x	$29/2^{+}$	(E2)	$R(ang)=0.95$ 3, $A_2=-0.02$ 2.
601.2 6	<1	11426.7+x		10825.2 + x	$71/2^+$	()	
607.1 6	2.7.3	2348.5+x	$27/2^{(-)}$	1740.8+x	$23/2^{(-)}$		
612.9 6	<1	3949.8+x	$(37/2^{-})$	3336.9+x	$(33/2^{-})$		
618.3 6	<1	4041.0+x	$(37/2^{-})$	3422.7+x	$(33/2^{-})$		
621.7 3	68 <i>3</i>	2009.9+x	$29/2^{+}$	1388.1+x	$25/2^+$	E2	$R(ang)=1.34$ 2, $A_2=+0.24$ 1.
624.9 6	1.0 1	1697.8+x	21/2-	1073.1+x	17/2-		
627.4 6	<1	1487.8+x	$21/2^{+}$	861.1+x	$21/2^+$		
629.3 <i>3</i>	12.7 6	4006.5+x	39/2-	3377.4+x	35/2-	E2	$R(ang)=1.42 \ 3, \ A_2=+0.37 \ 1.$
632.8 6	2.10 21	4312.0+x	$39/2^{(-)}$	3679.2+x	$35/2^{(-)}$	E2	R(ang)=1.24 11.
633.8 6	<1	2299.9+x	$25/2^{-}$	1665.8+x	$21/2^{-}$		
639.5 6	<1	4431.5+x	$39/2^{(-)}$	3792.1+x	$35/2^{(-)}$	E2	$R(ang)=1.5 4, A_2=+0.29 2.$
650.2 6	4.1 4	14047.0+x	$87/2^{-}$	13397.0+x	83/2-	E2	$R(ang)=1.38 I, A_2=+0.34 I.$
650.9 <i>3</i>	36.8 18	4318.9+x	41/2-	3668.0+x	37/2-	E2	$R(ang)=1.35 I, A_2=+0.33 I.$
664.4 6	9.5 10	3377.4+x	35/2-	2712.7+x	$33/2^{+}$	E1	$R(ang)=0.70 \ I, \ A_2=-0.32 \ 2.$
671.1 6	1.70 17	12473.6+x	79/2-	11802.9+x	77/2-	M1+E2	$R(ang)=0.31 \ I, A_2=-0.87 \ 2.$
676.2 6	<1	4626.0+x	$(41/2^{-})$	3949.8+x	$(37/2^{-})$		
678.6 6	8.3 8	3703.5+x	37/2+	3024.8+x	33/2+	E2	$R(ang)=1.43 \ I3, A_2=+0.26 \ 2.$
679.3 6	<1	4779.1+x	$41/2^{(-)}$	4099.7+x	37/2(-)		
695.7 6	<1	1142.8+x	$1^{7}/2^{+}$	446.8+x	$1'/2^+$	50	
702.8 3	48.1 24	2712.7+x	$\frac{33}{2}$	2009.9+x	$\frac{29}{2}$	E2	$R(ang)=1.34\ 2,\ A_2=+0.31\ 1.$
/03./ 0	<1	4/44./+X	(41/2)	4041.0+x	(37/2)		
705.3.0	1.80 18	5017.3+x	43/2	4312.0+x	39/2		
715 4 2	0.8 /	2102.2+X	25/2	1388.1+X	25/2	EO	P(-n-) = 1 = 22 + A = + 0 = 24 = 2
713.4 3	20.2 10	4/21.9+X	43/2	4006.5+X	$\frac{39}{2}$	E2	$R(ang)=1.52 I, A_2=+0.54 Z.$
/18.0.0	<1	5149.4 + X	43/2	4431.5+X	39/2	E2	P(ang) = 1.59.5 A = $10.22.2$
722.40	1.0 <i>I</i> 36 1 <i>I</i> 8	$5046.5 \pm x$	11/2	11000.0+x 1318.0+x	$\frac{15}{2}$	E2 E2	$R(alig) = 1.36$ J, $A_2 = \pm 0.35$ Z. $P(ang) = 1.42$ J, $A_2 = \pm 0.37$ Z
73796	586	4441.0 + x	$\frac{43}{2}$ $41/2^+$	4310.9+x 3703.5+x	41/2 37/2 ⁺	E2 F2	$R(ang) = 1.42$ 1, $A_2 = \pm 0.37$ 2. $R(ang) = 1.37$ 4 $A_2 = \pm 0.34$ 3
739.0.6	<1	12166.1 + x	77/2+	114267 + x	5112	112	$R(ang) = 1.5777, R_2 = 10.575.$
74776	<1	5526 6+x	$45/2^{(-)}$	4779 1+x	$41/2^{(-)}$		
750.3 6	3.3.3	5191.6+x	$45/2^+$	4441.0+x	$41/2^+$	E2	$R(ang)=1.32.3$, $A_2=+0.26.3$.
751.2 6	<1	5377.2+x	$(45/2^{-})$	4626.0+x	$(41/2^{-})$		((ang) 1102 0, 112 10120 01
753.96	1.0 1	15818.1+x	93/2+	15064.2+x	89/2+	E2	$R(ang)=1.44$ 6, $A_2=+0.60$ 4.
761.2 6	<1	2426.7+x	25/2-	1665.8+x	21/2-		
761.3 6	<1	1208.0+x	$19/2^{(-)}$	446.8+x	$17/2^{+}$		
764.1 6	2.10 21	11802.9+x	77/2-	11038.4+x	73/2-	E2	$R(ang)=1.37 2, A_2=+0.35 1.$
764.9 <i>3</i>	39.9 20	3477.8+x	$37/2^{+}$	2712.7+x	$33/2^{+}$	E2	$R(ang)=1.21 2, A_2=+0.31 1.$
770.4 6	<1	15064.2+x	89/2+	14293.6+x	85/2+	E2	
778.3 6	<1	5927.8+x	$47/2^{(-)}$	5149.4+x	$43/2^{(-)}$	E2	$R(ang)=1.53 \ 14, \ A_2=+0.31 \ 2.$
780.76	2.5 3	5798.0+x	$47/2^{(-)}$	5017.3+x	$43/2^{(-)}$	E2	R(ang)=1.24 7.
782.1 6	5.1 5	5973.9+x	49/2+	5191.6+x	$45/2^{+}$	E2	$R(ang)=1.15 \ 3, \ A_2=+0.31 \ 2.$
789.7 3	13.1 7	7947.5+x	59/2-	7157.6+x	55/2-	E2	$R(ang)=1.28 I, A_2=+0.32 I.$
791.6 3	35.1 18	6689.2+x	53/2+	5897.3+x	49/2+	E2	$R(ang)=1.34\ 2,\ A_2=+0.19\ 1.$
791.9 3	21.1 11	82/1.1+x	61/2	7479.3+x	57/2-	E2	$R(ang)=1.30 I, A_2=+0.26 I.$
/9/.93	17.29	5519.6+x	4//2	4/21.9+x	43/2	E2 E2	R(ang) = 1.2/2.
800.5 5	37.0 19	5840.8+X	49/2	5040.5+X	45/2	E2	$R(ang)=1.54 \ 5, \ A_2=+0.50 \ 1.$
802.5 0	<1	6328.9+X	$(49/2^{-})$	5520.0+X	$45/2^{(1)}$		
802.70	<1 51 3	1280 0 + v	(49/2)	3311.2+X 3/77 8	(43/2) $37/2^+$	F2	R(ang) = 1.35 l
803.0.3	20.8.10	4200.9+X 7470 3±v	+1/2 57/2 ⁻	3477.0+X 6676.0±v	53/2-	E2 E2	R(ang) = 1.55 I. $R(ang) = 1.34 J. \Delta_2 = \pm 0.30 J.$
806.2.3	47 4 24	5897 3+x	$\frac{37/2}{49/2^+}$	$5090.8 \pm v$	$45/2^+$	E2	$R(ang)=1.575, R_2=\pm0.501.$ R(ang)=1.29.2
809.1 3	13.2.7	7157 6+x	55/2-	6348 5+x	$51/2^{-}$	E2	$R(ang) = 1.25 I$, $A_2 = +0.38 P$
809.6.3	47.4 24	5090.8 + x	$45/2^+$	4280.9 + x	$41/2^+$	E2	R(ang) = 1.29 2.
813.9 6	1.10 11	14853.5+x	89/2-	14039.6+x	85/2-	E2	$R(ang)=1.27 4, A_2=+0.58 4.$

$\gamma(^{157}\text{Er})$ (continued)

E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [†]	Comments
817.3 6	<1	8289.0+x	$(59/2^{-})$	7471.7+x	$(55/2^{-})$		
827.8 6	<1	7471.7+x	$(55/2^{-})$	6643.9+x	$51/2^{(-)}$		
828 2 6	<1	6756.4 + x	$51/2^{(-)}$	5927 8+x	$47/2^{(-)}$		
829.2.3	36.8.18	6348.5 + x	$51/2^{-}$	5519.6+x	$47/2^{-}$	E2	$R(ang) = 1.24.2$, $A_2 = +0.26.1$
829.5.3	35.4 18	6676.0+x	53/2-	5846.8+x	$49/2^{-}$	E2	$R(ang) = 1.26 I, A_2 = +0.30 I,$
830.8 6	8.0.8	2841.0+x	$31/2^{-}$	2009.9 + x	$29/2^+$	22	R(ung) = 1.20 + 1.12 + 0.30 + 1.12
833.3 3	27.4 14	7522.5 + x	$57/2^+$	6689.2+x	$53/2^+$	E2	$R(ang)=1.33$ 2. $A_2=+0.23$ 1.
833.3 3	27.4 14	10227.8+x	$69/2^{+}$	9394.4+x	$65/2^{+}$	E2	$R(ang)=1.33\ 2,\ A_2=+0.23\ 1.$
834.2 6	<1	4312.0+x	$39/2^{(-)}$	3477.8+x	$37/2^+$		
837.1 6	2.6 3	1697.8+x	$21/2^{-}$	861.1+x	$21/2^+$	E1	$R(ang)=1.15 4$, $A_2=-0.15 2$.
838.7 <i>3</i>	10.6 5	8786.1+x	$63/2^{-}$	7947.5+x	59/2-	E2	$R(ang)=1.24 I, A_2=+0.19 I.$
844.3 6	<1	7024.2+x	$(53/2^{-})$	6179.9+x	$(49/2^{-})$		
845.9 6	1.0 1	6643.9+x	$51/2^{(-)}$	5798.0+x	$47/2^{(-)}$		
846.2 6	<1	7175.1+x	$53/2^{(-)}$	6328.9+x	$49/2^{(-)}$		
855.8 6	1.90 19	6829.9+x	$53/2^{+}$	5973.9+x	$49/2^{+}$	E2	$R(ang)=1.35$ 8, $A_2=+0.44$ 3.
859.4 6	3.9 4	12166.1+x	$77/2^{+}$	11306.8+x	$73/2^{+}$	E2	$R(ang)=1.29$ 9, $A_2=+0.82$ 6.
867.9 6	9.9 10	9654.1+x	$67/2^{-}$	8786.1+x	$63/2^{-}$	E2	$R(ang)=1.47 I, A_2=+0.41 2.$
874.7 <i>3</i>	20.8 10	9145.8+x	$65/2^{-}$	8271.1+x	$61/2^{-}$	E2	$R(ang)=1.40 I, A_2=+0.40 I.$
879.2 6	<1	1740.8+x	$23/2^{(-)}$	861.1+x	$21/2^{+}$		
883.2 6	4.0 4	5973.9+x	$49/2^{+}$	5090.8+x	$45/2^{+}$	E2	$R(ang)=1.45$ 5, $A_2=+0.58$ 4.
892.0 6	<1	11717.2+x	$(75/2^+)$	10825.2+x	$71/2^+$		
892.7 6	8.5 9	13059.0+x	81/2+	12166.1+x	77/2+	E2	$R(ang)=1.31 4$, $A_2=+0.37 2$.
894.7 6	7.7 8	10548.8+x	$71/2^{-}$	9654.1+x	$67/2^{-}$	E2	$R(ang)=1.34$ 2, $A_2=+0.28$ 1.
905.6 6	<1	8080.7+x	$57/2^{(-)}$	7175.1+x	$53/2^{(-)}$		
907.2 6	<1	16394.0+x		15486.5+x	89/2-		
914.9 <i>3</i>	16.3 8	8437.5+x	$61/2^+$	7522.5+x	57/2+	E2	$R(ang)=1.22 \ 3, \ A_2=+0.34 \ 2.$
920.3 6	1.10 11	14039.6+x	85/2-	13119.3+x	$81/2^{-}$	E2	$R(ang)=1.43 2, A_2=+0.38 2.$
923.7 6	3.6 4	13397.0+x	83/2-	12473.6+x	79/2-	E2	$R(ang)=1.51 \ I, A_2=+0.36 \ 2.$
924.5 ^{&} 6	2.30 ^{&} 23	8724.2+x	61/2+	7799.7+x	57/2+	E2	I_{γ} : quoted intensity of 2.3 is assumed to be the
							$R(ang)=1.65.3$ $A_2=\pm0.44.2$ for 924.5 doublet
024 5 & 6	220^{4}	0649.7	65/0+	9724 2 L w	$61/2^{+}$	E2	$R(ang) = 1.65.3, R_2 = +0.44.2$ for the doublet
924.5 0	2.30 23	9048.7+X	03/2 52/2+	0/24.2+X	$\frac{01/2}{40/2^+}$	E2	$R(ang)=1.05 5, R_2=+0.44 2$ for the doublet.
932.70	10.5	11/88 O + x	75/2 75/2-	10548 8 L V	49/2 71/2-	E2	$P(ang) = 1.23 I \Lambda_{a} = +0.33 I$
94036	2 20 22	11400.0+x 11038.4+x	73/2-	$10040.0\pm x$ $10098.4\pm x$	69/2 ⁻	E2 F2	$R(ang) = 1.55 T, R_2 = \pm 0.55 Z.$ $R(ang) = 1.42 T \Delta_2 = \pm 0.37 Z$
952.9.6	505	$10098.4 \pm x$	$69/2^{-}$	$9145 8 \pm x$	$65/2^{-}$	E2 F2	$R(ang) = 1.42 I, R_2 = +0.37 Z.$ $R(ang) = 1.31 I, \Delta_2 = +0.34 Z.$
956.9.3	14.8.7	9394.4 + x	$65/2^+$	8437 5+x	$\frac{61/2^{+}}{61/2^{+}}$	E2 F2	$R(ang) = 1.31 4$ $A_2 = +0.44 2$
960.5.6	202	$2348.5 \pm x$	$27/2^{(-)}$	$1388 1 \pm x$	$25/2^+$	112	$R(ung) = 1.51^{-1}, R_2 = 10.11^{-2}$
96176	<1	$1142 \ 8+x$	$\frac{27}{2}$	1300.1 + x 181 1+x	$13/2^+$		
966.9.6	2 10 21	$3679.2 \pm x$	35/2(-)	$2712.7 \pm x$	33/2+	(F1)	R(ang) = 0.79.9
969.8.6	<1	77997 + x	57/2+	6829.9 + x	$53/2^+$	F_2	R(ang)=0.777. $R(ang)=1.31.7$ $A_2=+0.34.6$
98236	202	11080.6+x	73/2-	10098.4 + x	$69/2^{-}$	E2 F2	$R(ang) = 1.517, R_2 = +0.510$
985.7.6	3.54	12473.6+x	$79/2^{-}$	11488.0+x	75/2-	E2	$R(ang) = 1.29 2, A_2 = +0.25 2.$
991.3.6	<1	3703.5+x	$37/2^+$	2712.7 + x	$33/2^+$	22	$R(ang) = 1.29 - 2, T_2 = 0.23 - 2.$
998.7 6	1.20 12	2387.0+x	$27/2^{-}$	1388.1 + x	$25/2^+$	E1	$R(ang)=0.47$ 3, $A_2=-0.23$ 2.
1014.0 6	<1	13353.5 + x	, _	12339.5 + x	/-		
1014.6 6	1.30 13	3024.8+x	$33/2^{+}$	2009.9+x	$29/2^{+}$	E2	$R(ang)=1.485, A_2=+0.165.$
1017.4 6	<1	15064.2+x	$89/2^{+}$	14047.0+x	87/2-	E1	$R(ang)=0.79$ 4, $A_2=-0.28$ 3.
1032.7 6	1.90 19	12339.5+x	,	11306.8+x	73/2+		
1036.7 6	2.9 3	2424.1+x	$29/2^{+}$	1388.1+x	$25/2^+$	E2	$R(ang)=1.36 4, A_2=+0.19 4.$
1038.1 6	<1	12934.9+x	$(79/2^+)$	11896.8+x	75/2+		
1038.5 6	<1	2426.7+x	25/2-	1388.1+x	$25/2^+$		
1040.8 6	1.20 12	1487.8+x	$21/2^+$	446.8+x	$17/2^{+}$		
1045.5 6	<1	17231.3+x		16185.8+x	91/2-		

$\gamma(^{157}\text{Er})$ (continued)

Eγ‡	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
1048.1 6	2.10 21	1909.5+x	25/2+	861.1+x	21/2+	E2	$R(ang)=1.42$ 6, $A_2=+0.05$ 5.
1049.0 6	<1	13915.3+x	== (=)	12866.3+x	79/2-		
1071.6 6	<1	11896.8+x	75/2+	10825.2 + x	71/2+	E2	$R(ang)=1.39 \ 8, \ A_2=+0.38 \ 6.$
10/9.1 6	4.4 4	11306.8+x	73/2*	10227.8+x	69/2 ⁺	E2	$R(ang)=1.374, A_2=+0.393.$
1083.4 6	<1	16394.0+x	70 /0±	15311.0+x	89/2-	50	
1111.6.6	<1	11339.4+x	73/2*	10227.8+x	69/2+	E2	$R(ang)=1.24 \ I0, \ A_2=+0.39 \ 7.$
1111.8 6	<1	3122.1+x	$31/2^{(-)}$	2009.9+x	29/2+	(E1)	R(ang)=0.74 11.
1125.6 6	<1	12206.2+x	77/2-	11080.6+x	73/2-	E2	$R(ang)=1.425, A_2=+0.234.$
1232.8 6	<1	13439.0+x	81/2-	12206.2+x	11/2-	E2	$R(ang)=1.30 \ I0, \ A_2=+0.8 \ I.$
1233.8 6	<1	11461.6+x	05/0+	10227.8+x	69/2	50	
1234.4 6	<1	14293.6+x	85/21	13059.0+x	81/2	E2	$R(ang)=1.40 \ I0, \ A_2=+0.49 \ 8.$
1236.0 6	<1	3246.3+x	$31/2^{(-)}$	2009.9+x	29/2+	(E1)	$R(ang)=0.84$ 7, $A_2=-0.25$ 8.
1264.3 6	<1	15311.0+x	89/2-	14047.0+x	87/2-	M1+E2	$R(ang)=0.84$ 6, $A_2=0.0$ 6.
1264.9 6	<1	32/4.5+x	(31/2)	2009.9+x	29/2		
1293.2.6	<1	12331.6+x	01/0-	11038.4+x	73/2-	50	
1316.3.0	1.20 12	13119.3+x	81/2	11802.9+x	11/2	E2	$R(ang)=1.36$ 3, $A_2=+0.32$ 2.
13/8.3 0	<1	12866.3+X	19/2	11488.0+X	15/2	E2	$R(ang)=1.58 \ I0, \ A_2=+0.31 \ I.$
138/.10	<1	12467.7+X		11080.6+X	13/2		
1420.0 0	<1	162/4.1+X		14853.5+X	89/2		
1435.1 0	<1	1/333.2+X	en/2-	10122.1+X 14047.0+x	91/2	M1 + E2	$P(apz) = 2.26 I_{2}^{2}$
1439.1 0	<1	13480.3+X	$\frac{09}{2}$	14047.0+X	01/2 25/2+	MII + EZ	R(ang) = 2.50 I J.
1440.1 0	<1	2827.7+X	21/2	1388.1+X	23/2	(EI) E2	R(ang)=0.89 14. P(ang)=1.21 17
1432.8 0	<1	14311.0+X 17208.2+x	05/2 ⁺	15039.0+X	$\frac{01}{2^+}$	E_{1} M1 \pm E2	R(ang) = 1.51 T/. P(ang) = 0.80 20
1480.2 0 1494.7 6	<1	17298.3+x 16348.2+x	93/2	13818.1+x 14853.5+x	93/2 89/2 ⁻	MIT+E2	$R(alig) = 0.89 \ 20.$
1499.7 <mark>b</mark> 6	<1	19056.9+x		17555.2+x	·		
1538.4 6	<1	15585.4+x	89/2-	14047.0+x	$87/2^{-}$	M1+E2	R(ang)=1.75 24.
1556.3 6	<1	16409.8+x	93/2-	14853.5+x	89/2-	E2	R(ang)=1.4 4.
1581.6 6	<1	15628.6+x	91/2-	14047.0+x	$87/2^{-}$	E2	R(ang)=1.22 13.
1635.7 6	<1	17453.8+x		15818.1+x	$93/2^{+}$		
1695.2 6	<1	17513.3+x		15818.1+x	93/2+		
1701.0 6	<1	17519.1+x		15818.1+x	$93/2^{+}$		
1706.4 6	<1	16559.9+x	93/2-	14853.5+x	89/2-	E2	R(ang)=1.49 17.
1710.9 6	<1	2572.4+x	$23/2^{(-)}$	861.1+x	$21/2^{+}$		E_{γ} : 31/2 ⁽⁻⁾ to 29/2 ⁺ stated in table I of 2006Ev02
							is incorrect, it should be $23/2^{(-)}$ to $21/2^+$ as in authors' figure 2.
1714.8 6	<1	15761.8+x		14047.0+x	$87/2^{-}$		
1780.2 6	<1	15827.2+x		14047.0+x	$87/2^{-}$		
1914.9 6	<1	15961.9+x	91/2-	14047.0+x	$87/2^{-}$	E2	R(ang)=1.41 23.
2075.1 6	<1	16122.1+x	91/2-	14047.0+x	$87/2^{-}$	E2	R(ang)=1.45 11.
2102.6 6	<1	16956.1+x	93/2-	14853.5+x	89/2-	E2	R(ang)=1.48 14.
2125.4 6	<1	17943.5+x		15818.1+x	$93/2^{+}$		
2138.8 6	<1	16185.8+x	91/2-	14047.0+x	87/2-	E2	R(ang)=1.46 13.
2166 ^b 1	<1	17654.4+x		15486.5+x	$89/2^{-}$		
2204.5 6	<1	19502.8+x		17298.3+x	$95/2^+$		
2408.7 6	<1	16455.7+x		14047.0+x	87/2-		

[†] Based on angular correlation measurements and angular intensity ratio measurements, $R(ang)=I\gamma(35^{\circ} \text{ or } 145^{\circ})/I\gamma(90^{\circ})$, with typical values: ≈ 0.77 for $\Delta J=1$, dipole and ≈ 1.33 for $\Delta J=2$, quadrupole as described in 2006Ev02. They adopted E2 for (pure) quadrupole transitions, M1+E2 for mixed dipole transitions, and E1 for pure dipole transitions (while in the absence of specific measurements for determining the electric or magnetic character some other arguments based on theory or systematics were also tacitly taken into account especially for dipole transitions), which are also shown here. See the Adopted Levels, Gammas dataset

114 Cd(48 Ca,5n γ) 2006Ev02,2004Ev01 (continued)

$\gamma(^{157}\text{Er})$ (continued)

for the finally adopted values of this level scheme.

- [‡] Uncertainty of 0.3 keV assigned to γ rays with I γ >10 and 0.6 keV for all the others, except 1 keV for E γ 's stated to nearest keV, based on a general comment by 2006Ev02.
- [#] Uncertainty of 5% assigned to γ rays with I γ >10 and 10% for all the others, based on a general comment by 2006Ev02.
- [@] Multiply placed.
- [&] Multiply placed with undivided intensity.
- ^a Multiply placed with intensity suitably divided.
 ^b Placement of transition in the level scheme is uncertain.

Level Scheme (continued)

¹⁵⁷₆₈Er₈₉

Level Scheme (continued)

¹⁵⁷₆₈Er₈₉

	- 92	4
61/2 +	+	8724.2+x
	92	4
57/2+		7799.7+x
	97	0
53/2+		6829.9+x
40/2+	85	5072 0 LV
47/4	1	3973.9 + X
	78	2
45/2+		5191.6+x
	75	a
41/2+	15	4441.0+x
37/2+	73	8 3703.5+x
	1	•
33/2+	67	⁹ 3024.8+x
		•
29/2 +	60	¹ 2424.1+x
	-	
25/2+	51	4 1000 5+v
25/2+	51	⁴ 1909.5+x
25/2+ 21/2+	51 42	⁴ 1909.5+x ² 1487.8+x

Band(D): *v*3/2[651]⊗γ

vibration

9648.7+x

65/2

¹⁵⁷₆₈Er₈₉

¹⁵⁷₆₈Er₈₉

¹⁵⁷₆₈Er₈₉