		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 132, 1 (2016)	4-Dec-2015

Parent: ¹⁵⁷Ho: E=0.0; $J^{\pi}=7/2^{-}$; $T_{1/2}=12.6 \text{ min } 2$; $Q(\varepsilon)=2593 \ 24$; $\%\varepsilon+\%\beta^{+} \text{ decay}=100.0$

The decay scheme is that of 1984Af01, which includes several levels not in the schemes of 1972To05, 1977AnYX, and 1972Vy02. The data are from these four references.

For these studies, 157 Ho was produced by Dy(p,xn), 149 Sm(12 C,4n) 157 Er followed by ε decay, and p spallation of Ta with

chemical or isotope separation. γ 's measured with Ge detectors, ce measured with Si(Au) detectors and magnetic spectrometers, and β + with plastic scintillator. $\gamma\gamma$, $\gamma\beta$ +, and γ ce coincidences and lifetimes measured.

Experimental methods:

1965GrZZ: produced by p spallation of Ta. ce spectra measured in magnetic spectrograph.

1972NeZI: abstract; no data.

1972Ki21: produced by Dy(p,xn) with isotope separation. $T_{1/2}(61)$ measured by counting ce in magnetic spectrometers.

1972PaYV: progress report; no data; see 1972To05.

1972To05: produced by Dy(p,xn) with isotope separation. γ singles and $\gamma\gamma$ coincidences measured with Ge detectors, ce measured with Si(Au) detector, and β + with plastic scintillator. Reports E_{γ} , I_{γ} , I_{ce} , $\alpha_{K}(exp)$, $\gamma\gamma$ coincidences, β + endpoint from $\gamma\beta$ + coincidences, and parent $T_{1/2}$.

1972ToYX: thesis version of the material in 1972To05.

1972Vy02: produced by ¹⁴⁹Sm(¹²C,4n)¹⁵⁷Er with $E(^{12}C) = 81$ MeV followed by ε decay. For some samples the Ho was chemically separated from the Er. γ singles and $\gamma\gamma$ coincidences measured with Ge detectors and ce with Si(Au) detector. 1977AnYX: produced by ¹⁴⁹Sm(¹²C,4n)¹⁵⁷Er followed by ε decay. γ 's measured with Ge detectors.

1979AbZZ: abstract of lifetime measurements.

1984Af01: produced by spallation of Ta target with 660 MeV p with isotope separation and some samples chemically separated. γ singles and $\gamma\gamma$ coincidences were measured with Ge detectors and ce singles and γ -ce coincidences measured with magnetic spectrometer.

1984GaZS: conference abstract with decay scheme drawing. Data not used.

¹⁵⁷Dy Levels

Additional information 1.

E(level) [†]	$J^{\pi \ddagger \#}$	T _{1/2}	Comments
0.0 ^{<i>a</i>}	3/2-		Additional information 2.
61.141 ^{<i>a</i>} 13	5/2-	0.3 ns	T _{1/2} : From 1980Al07 (and 1979AlZO). Others: 90 ps 30 from cey coincidences (preliminary value of 1979AbZZ) and ≤ 0.8 ns from ce-ce coincidences (1972Ki21).
147.723 ^{<i>a</i>} 9	7/2-	≤0.3 ns	T _{1/2} : From 1980Al07 (and 1979AlZO). Others: \leq 50 ps from ce γ coincidences (preliminary value of 1979AbZZ).
161.99 [@] f 3	9/2+		
188.035 ^f 16	$5/2^{+}$	1.1 ns	T _{1/2} : from 1980Al07.
199.34 ^{@b}	$11/2^{-}$		
211.174 ^f 18	7/2+		
234.652 ^c 20	$(3/2)^+$		
257.577 ^a 18	9/2-		
273.72? 7			
341.118 ^{<i>a</i>} 14	5/2-	≤0.3 ns	$T_{1/2}$: quoted by 1980Al07.
400.92 ^{<i>wa</i>} 10	$11/2^{-}$		
401.17 ^{⁽⁰⁾} 7			
405.66? ^{&} 5	$(5/2)^+$		J^{π} : Possible E1, 121 γ from 5/2 ⁻ ,7/2 ⁻ level in 1972To05 but placement not confirmed by 1984Af01.
419.929 ^d 22	7/2-		

¹⁵⁷Ho ε decay **1984Af01,1972To05,1977AnYX** (continued)

¹⁵⁷Dy Levels (continued)

E(level) [†]	J ^{π‡#}	Comments
428.43 [@] 7		
455.91 [@] 11		E(level): Level given in 1984Af01 as 457.2, but γ energies there are not consistent with that value.
508.23 5	7/2-,5/2-	
518.56 ^d 10	9/2-	
526.92 6	5/2-,7/2-	
611.22 [@] 7	$(7/2, 9/2)^{-}$	
628.87 <mark>8</mark> 7	3/2-	
688.11 <mark>8</mark> 10	$(7/2)^{-}$	
896.57 ^e 4	$(5/2)^{-}$	
990.12 ^e 6	7/2-	
1211.13 5	5/2-,7/2-	
1380.24 11	$(5/2,7/2^{-})$	
±		

 † From least-squares fit to γ energies with questionable $\gamma's$ excluded.

[‡] From ¹⁵⁷Dy Adopted Levels.

[#] The first three members of the 3/2[532] band were originally assigned to levels at 401.1, 455, and 526 keV, but are assigned in ¹⁵⁷Dy Adopted Levels to other levels.

[@] Level reported only by 1984Af01.

& Level reported by 1972To05, but not confirmed by 1984Af01.

^a Band(A): 3/2[521] band.

^b Band(B): 11/2[505] band.

^c Band(C): $K^{\pi} = 3/2^+$ band based on 3/2[402] + 3/2[651] states.

^d Band(D): 5/2[523] band.

^e Band(E): 5/2[512] band.

^f Band(F): Positive-parity band with mixture of 3/2[651], 5/2[642], and 1/2[660].

^g Band(G): $K^{\pi} = 3/2^{-}$ band, quadrupole vibration based on g.s.

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ #	Ie#	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger \#}$	Comments
(1213 24)	1380.24		1.1 2	5.99 9	1.1 2	εK=0.8303 3; εL=0.13094 18; εM+=0.03876 6
(1382 24)	1211.13	0.0029 10	4.7 5	5.48 5	4.7 5	av Eβ=177 11; εK=0.8312; εL=0.12984 15; εM+=0.03838 6
(1603 24)	990.12	0.015 3	3.3 3	5.77 5	3.3 3	av Eβ=275 11; εK=0.8294 5; εL=0.12836 19; εM+=0.03789 6
(1696 24)	896.57	0.093 20	12 2	5.26 8	12 2	av Eβ=316 11; εK=0.8270 8; εL=0.12758 22; εM+=0.03764 7
(2085 24)	508.23	0.24 4	6.0 8	5.74 6	6.2 8	av Eβ=487 11; εK=0.8025 25; εL=0.1225 5; εM+=0.03610 13
(2173 24)	419.929	0.40 5	7.6 9	5.67 5	8.0 9	av Eβ=525 11; εK=0.793 3; εL=0.1209 5; εM+=0.03560 15
2202 50	341.118	3.5 4	53 5	4.86 4	56 5	av Eβ=560 11; εK=0.783 4; εL=0.1192 6; εM+=0.03510 17
(2431 24)	161.99	0.56 24	5.3 23	5.93 19	5.9 25	av $E\beta$ =639 <i>11</i> ; ε K=0.757 <i>4</i> ; ε L=0.1148 7; ε M+=0.03379 <i>20</i>
(2532 24)	61.141	<0.8	<6	>5.9	<7	av $E\beta$ =684 <i>11</i> ; ε K=0.739 <i>5</i> ; ε L=0.1120 <i>8</i> ; ε M+=0.03295 <i>21</i>

¹⁵⁷Ho ε decay **1984Af01,1972To05,1977AnYX** (continued)

ε, β^+ radiations (continued)

- [†] Deduced from γ intensity balances with the questionable γ 's omitted. Branch to ground state assumed to be 0% since transition is 2nd forbidden with expected log ft > 11.0; and therefore, expected I($\varepsilon + \beta +$) to ground state is < 0.0001%.
- [‡] There are many unplaced γ 's and several have intensities of over 0.2%. Therefore, $I(\varepsilon+\beta+)$ values of $\leq 1\%$ are considered unreliable and have not been included in the data set. These values are 0.3% 9 for 188 level, 0.7% 12 for 211, 0.23% 19 for 234, 0.31% 4 for 273, 0.17% 4 for 400.9, 0.16% 13 for 401.1, 0.34% 9 for 428, 0.40% 18 for 518, 0.81% 14 for 527, 0.90% 11 for 611, 0.33% 6 for 628, and 0.86% 12 for 688. For the same reason, the negative values have been omitted; these are -2% 4 for 147 level, -0.4% 4 for 257, and -0.27% 12 for 455.

[#] Absolute intensity per 100 decays.

¹⁵⁷Ho ε decay **1984Af01,1972To05,1977AnYX** (continued)

 $\gamma(^{157}\text{Dy})$

I γ normalization: calculated by evaluator to give the sum of γ transition intensities to the ground state to be 100%. This assumes that the electron-capture and β + decay to the ground state is negligible. This condition is reasonable since this 2nd forbidden branch is expected to have log *ft* of >11.0 and a corresponding intensity of <0.0001%.

 ΔE : Additional information 5.

4

E_{γ}^{\dagger}	Ι _γ #@ j	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. <mark>&</mark>	δ ^{ai}	$\alpha^{\boldsymbol{h}}$	$I_{(\gamma+ce)}$ <i>j</i>	Comments
14.23 5	47 7	161.99	9/2+	147.723	7/2-	E1		11.53 20		α (L)=8.99 16; α (M)=2.05 4 α (N)=0.441 8; α (O)=0.0456 8; α (P)=0.001028 17 α (M ₁₋₃)exp=1.35 51, α (M _{4.5})exp =0.30 13 (1984Af01).
23.11 5		211.174	7/2+	188.035	5/2+	M1+E2		9.8×10 ² 96	30 6	ce(L)/(γ +ce)=0.77 51; ce(M)/(γ +ce)=0.18 23 ce(N)/(γ +ce)=0.041 55; ce(O)/(γ +ce)=0.0048 65; ce(P)/(γ +ce)=6.1×10 ⁻⁶ 68 α (L)=7.6×10 ² 74; α (M)=1.8×10 ² 18 α (N)=40 39; α (O)=4.7 45; α (P)=0.0060 33 α (L ₂)exp ≥ 2.3, α (L ₃)exp ≥ 2.7, α (M)exp ≥ 1.3 (1984Af01). I _{γ} : Measured value is ≤ 3. From I(γ +ce) and α =80-1980 one deduces 0.01 ≤ I _{γ} ≤ 0.44. Mult.: 1984Af01 give $\delta \approx$ 0.23 and thus $\alpha \approx$ 127; however, the data presented are, in fact, compatable with any E2 content from 2.5% to 100%; therefore, α can range from about 80 to 1980. I _{(α} (α): Deduced by evaluator from ce data (1984Af01).
26.07 4		188.035	5/2+	161.99	9/2+	E2		1059 <i>17</i>	135 20	ce(L)/(γ+ce)=0.770 9; ce(M)/(γ+ce)=0.183 4 ce(N)/(γ+ce)=0.0408 9; ce(O)/(γ+ce)=0.00476 11; ce(P)/(γ+ce)=1.39×10 ⁻⁶ 4 α(L)=817 13; α(M)=194 4 α(N)=43.3 7; α(O)=5.05 8; α(P)=0.001477 24 α(L ₂)exp ≥ 19, α(L ₃)exp ≥ 23, α(M)exp ≥ 10 (1984Af01). I _γ : Measured value is ≤ 2 (1984Af01). From I _γ (1+α)(26) and α, one deduces 0.12. Mult.: The experimental L subshell ratios would allow a large M1 content, but the J ^π require pure E2. I _(γ+ce) : Deduced by evaluator from ce data (1984Af01).
37.36 ¹ 8	≤10	199.34	11/2-	161.99	9/2+	(E1) ^g		0.804 13		$\begin{array}{l} \alpha(L)=0.629 \ 10; \ \alpha(M)=0.1392 \ 22 \\ \alpha(N)=0.0310 \ 5; \ \alpha(O)=0.00387 \ 6; \ \alpha(P)=0.0001278 \ 19 \\ \alpha(L_1)\exp \ge 0.33 \ (1984Af01). \end{array}$
49.15 <i>4</i>	36 9	211.174	7/2+	161.99	9/2+	M1+E2	0.14 4	3.8 6		$\begin{array}{l} \alpha(L)=3.0 4; \alpha(M)=0.67 10 \\ \alpha(N)=0.154 22; \alpha(O)=0.021 3; \alpha(P)=0.000976 17 \\ \alpha(L_2)\exp=2.2 9 (1984Af01). \\ I_{\gamma}: \text{From table 2 of } 1984Af01; \text{table 1 of same article} \\ \text{gives } 13 4. \end{array}$

From ENSDF

				15	⁷ Ho ε d	ecay 1984	Af01,197	2To05,1977	AnYX (continued)
						<u> </u>	(¹⁵⁷ Dy) (c	continued)	
${\rm E_{\gamma}}^{\dagger}$	Ι _γ #@ <i>j</i>	E_i (level)	\mathbf{J}_i^π	E_f	J_f^{π}	Mult.&	δ ^{ai}	$\alpha^{\boldsymbol{h}}$	Comments
51.7 ^{<i>l</i>} 1		199.34	11/2-	147.723	7/2-	(E2) ^g		36.3 7	$\begin{array}{l} \alpha(\text{L}){=}27.9 \; 5; \; \alpha(\text{M}){=}6.70 \; 12 \\ \alpha(\text{N}){=}1.50 \; 3; \; \alpha(\text{O}){=}0.176 \; 3; \; \alpha(\text{P}){=}0.000187 \; 3 \\ \text{I}_{\gamma}{:} \; \gamma \; \text{peak obscured by x-ray line.} \\ \text{I}_{(\gamma+ce)}{:} \; \text{From intensity of } \text{M}_2{+}\text{M}_3 \; \text{ce line} = 13 \; 2 \; (1984\text{Af01}), \\ \text{I}(\gamma+\text{ce}){=}73. \end{array}$
55.6 ¹ 61.11 2	235 24	455.91 61.141	5/2-	401.17 0.0	3/2-	M1+E2	0.20 2	10.25 16	E _γ : γ shown in decay scheme of 1984Af01, but not in γ list. $\alpha(K)=8.10 \ I3; \ \alpha(L)=1.67 \ 9; \ \alpha(M)=0.377 \ 22$ $\alpha(N)=0.086 \ 5; \ \alpha(O)=0.0119 \ 6; \ \alpha(P)=0.000509 \ 8$ $\alpha(L)\exp=2.18 \ (1972To02).$ $\alpha(K)\exp=9.1 \ I3, \ \alpha(L_{1+2})\exp=1.64 \ 25, \ \alpha(L_3)\exp=0.30 \ 4$ (1984Af01).
x67.4 1 71.1 1	1.6 4	526.92	5/2-,7/2-	455.91		M1(+E2)		8.2 19	I _γ : very weak (1972To05) and < 3 (1984Af01). α (K)=3.8 <i>16</i> ; α (L)=3.4 <i>27</i> ; α (M)=0.81 <i>64</i> α (N)=0.18 <i>15</i> ; α (O)=0.022 <i>17</i> ; α (P)=2.2×10 ⁻⁴ <i>12</i>
78.89 <i>5</i>	2.3 5	419.929	7/2-	341.118	5/2-	M1,E2		5.7 10	$\alpha(L_1)\exp=1.29\ 65\ (1984Af01).$ $\alpha(K)=2.9\ 11;\ \alpha(L)=2.1\ 16;\ \alpha(M)=0.51\ 38$ $\alpha(N)=0.114\ 84;\ \alpha(O)=0.0140\ 96;\ \alpha(P)=1.65\times10^{-4}\ 85$
86.55 2	256 26	147.723	7/2-	61.141	5/2-	M1+E2	0.19 2	3.66	α (K)exp=4.2 <i>18</i> (1984Af01). α (K)=3.00 5; α (L)=0.518 <i>16</i> ; α (M)=0.115 <i>4</i> α (N)=0.0265 9; α (O)=0.00376 <i>11</i> ; α (P)=0.000186 <i>3</i> α (K)exp=3.2 (1972To02). α (K)exp=3.2 (0.90 α (L)) = 0.52.8 (1084Af01)
98.7 1	4 2	518.56	9/2-	419.929	7/2-	M1(+E2)		2.67 19	$\alpha(K)\exp=2.90\ 80,\ \alpha(L_{1+2})\exp=0.52\ 8\ (1984A101).$ $\alpha(K)=1.63\ 47;\ \alpha(L)=0.80\ 50;\ \alpha(M)=0.19\ 13$ $\alpha(N)=0.043\ 27;\ \alpha(O)=0.0053\ 31;\ \alpha(P)=8.9\times10^{-5}\ 42$ $\alpha(L_{1})\exp=0.60\ 35\ (1984A161)$
106.48 4	40 4	341.118	5/2-	234.652	(3/2)+	E1		0.261	$\alpha(L) \exp[-0.00 55 (1904A101)].$ $\alpha(K) = 0.218 3; \alpha(L) = 0.0336 5; \alpha(M) = 0.00736 11$ $\alpha(N) = 0.001671 24; \alpha(O) = 0.000229 4; \alpha(P) = 1.015 \times 10^{-5} 15$ $\alpha(L) \exp[-0.12 (1084A f 01)]$
109.86 2	28 3	257.577	9/2-	147.723	7/2-	M1+E2		1.87 5	$\alpha(L) \exp[50.12] (1934A101).$ $\alpha(K) = 1.21 \ 33; \ \alpha(L) = 0.51 \ 29; \ \alpha(M) = 0.120 \ 71$ $\alpha(N) = 0.027 \ 16; \ \alpha(O) = 0.0034 \ 18; \ \alpha(P) = 6.6 \times 10^{-5} \ 30$ $\alpha(K) \exp[-1.02] (1972T002).$
^x 121.0 ^C 1	13 3					E1		0.185	α(K)exp=1.75 37 (1984A101). α(K)=0.1553 22; α(L)=0.0235 4; α(M)=0.00515 8 α(N)=0.001172 17; α(O)=0.0001615 23; α(P)=7.36×10-6 11 E1 γ ray measured and placed by 1972To05 at 406 level but not confirmed by 1984Af01. α(K)exp≤0.18 (1972To02). (K)
125.76 5	4.6 8	526.92	5/2-,7/2-	401.17		E2		1.175	$\alpha(\mathbf{K})\exp \leq 0.18 (1984A101).$ $\alpha(\mathbf{K})=0.612 \ 9; \ \alpha(\mathbf{L})=0.434 \ 7; \ \alpha(\mathbf{M})=0.1034 \ 15$ $\alpha(\mathbf{N})=0.0232 \ 4; \ \alpha(\mathbf{O})=0.00283 \ 4; \ \alpha(\mathbf{P})=2.62\times 10^{-5} \ 4$ $\alpha(\mathbf{K})\exp = 0.52 \ 26 \ (1984A101)$
126.95 4	13 2	188.035	5/2+	61.141	5/2-	E1		0.1629	$\alpha(K) = 0.1367 \ 20; \ \alpha(L) = 0.0206 \ 3; \ \alpha(M) = 0.00451 \ 7 \ \alpha(N) = 0.001027 \ 15; \ \alpha(O) = 0.0001418 \ 20; \ \alpha(P) = 6.52 \times 10^{-6} \ 10$

S

					¹⁵⁷ Ho	ε decay	1984Af01,	1972To05,1977AnYX (continued)
							<u>γ(¹⁵⁷Dy</u>	(continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\#@j}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult.&	α^{h}	Comments
129.95 2	39 4	341.118	5/2-	211.174	7/2+	E1	0.1530	α (K)exp=1.8, whence M1+E2 γ (1972To02, not ADOPTED). α (K)exp=0.20 7 (1984Af01). α (K)=0.1284 18; α (L)=0.0193 3; α (M)=0.00423 6 α (N)=0.000963 14; α (O)=0.0001331 19; α (P)=6.15×10 ⁻⁶ 9 α (K)exp=0.13 4 (1984Af01).
131.9 <i>I</i> 143.5 ^{<i>f</i>} 5 147.73 <i>I</i>	4 <i>I</i> 3.5 <i>I</i> 2 90 9	400.92 147.723	11/2 ⁻ 7/2 ⁻	257.577 0.0	9/2 ⁻ 3/2 ⁻	(E2)	0.665	α (K)=0.387 6; α (L)=0.214 3; α (M)=0.0508 8 α (N)=0.01143 16; α (O)=0.001408 20; α (P)=1.718×10 ⁻⁵ 24 α (K)exp=0.41 (1972To02).
150.05 2	37 4	211.174	7/2+	61.141	5/2-	E1	0.1042	α (K)exp=0.38 5 (1984Af01). α (K)=0.0876 <i>I</i> 3; α (L)=0.01299 <i>I</i> 9; α (M)=0.00284 <i>4</i> α (N)=0.000648 9; α (O)=9.02×10 ⁻⁵ <i>I</i> 3; α (P)=4.28×10 ⁻⁶ 6 α (K)exp≤0.09 (1972To02).
153.09 <i>1</i>	135 14	341.118	5/2-	188.035	5/2+	E1	0.0987	α (K)exp=0.063 25 (1984Af01). α (K)=0.0830 12; α (L)=0.01229 18; α (M)=0.00269 4 α (N)=0.000614 9; α (O)=8.55×10 ⁻⁵ 12; α (P)=4.06×10 ⁻⁶ 6 α (K)exp=0.10 (1972To02).
162.35 2	62 6	419.929	7/2-	257.577	9/2-	M1(+E2)	0.54 7	$\alpha(K)\exp=0.081\ 19\ (1984A101).$ $\alpha(K)=0.40\ 11;\ \alpha(L)=0.109\ 35;\ \alpha(M)=0.0251\ 87$ $\alpha(N)=0.0057\ 19;\ \alpha(O)=7.5\times10^{-4}\ 20;\ \alpha(P)=2.25\times10^{-5}\ 92$ $\alpha(K)\exp=0.66\ (1972To02).$
^x 163.9 2	16 2					E2+(M1)	0.53 7	$\alpha(K)\exp=0.53\ 13\ (1984A101).$ $\alpha(K)=0.39\ 11;\ \alpha(L)=0.105\ 33;\ \alpha(M)=0.0242\ 83$ $\alpha(N)=0.0055\ 18;\ \alpha(O)=7.2\times10^{-4}\ 19;\ \alpha(P)=2.20\times10^{-5}\ 90$ $\alpha(K)\exp=0.48\ (1972To02).$
173.52 2	29 <i>3</i>	234.652	(3/2)+	61.141	5/2-	E1	0.0707	$\alpha(K)\exp=0.33\ 12\ (1984A101).$ $\alpha(K)=0.0596\ 9;\ \alpha(L)=0.00873\ 13;\ \alpha(M)=0.00191\ 3$ $\alpha(N)=0.000436\ 7;\ \alpha(O)=6.11\times10^{-5}\ 9;\ \alpha(P)=2.96\times10^{-6}\ 5$ $\alpha(K)\exp\leq0.06\ (1972To02).$
188.05 4	184 <i>18</i>	188.035	5/2+	0.0	3/2-	E1	0.0572	α (K)exp=0.12 6 (1984Af01). α (K)=0.0482 7; α (L)=0.00702 10; α (M)=0.001535 22 α (N)=0.000351 5; α (O)=4.93×10 ⁻⁵ 7; α (P)=2.42×10 ⁻⁶ 4 α (K)exp=0.046 (1972To02).
193.41 <i>4</i>	320 <i>32</i>	341.118	5/2-	147.723	7/2-	M1	0.372	α (K)exp=0.045 & (1984A101). α (K)=0.314 5; α (L)=0.0457 7; α (M)=0.01004 <i>I4</i> α (N)=0.00232 4; α (O)=0.000340 5; α (P)=1.95×10 ⁻⁵ 3 α (K)exp=0.38 (1972To02).
196.41 <i>4</i>	29 <i>3</i>	257.577	9/2-	61.141	5/2-	E2	0.251	$\alpha(K)\exp=0.35\ 5\ (1984Af01).$ $\alpha(K)=0.1674\ 24;\ \alpha(L)=0.0646\ 9;\ \alpha(M)=0.01515\ 22$ $\alpha(N)=0.00342\ 5;\ \alpha(O)=0.000432\ 6;\ \alpha(P)=7.96\times10^{-6}\ 12$ $\alpha(K)\exp=0.15\ (1972To02).$ $\alpha(K)\exp=0.13\ 4\ (1984Af01).$

From ENSDF

				¹⁵⁷ H e	ο ε deca	ay 1984A	f01,1972To	05,1977AnYX (continued)
						$\gamma(^1$	⁵⁷ Dy) (conti	nued)
E_{γ}^{\dagger}	Ι _γ #@ <i>j</i>	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult.&	$\alpha^{\boldsymbol{h}}$	Comments
208.70 6	56 6	419.929	7/2-	211.174	7/2+	E1	0.0435	$ α(K)=0.0367 6; α(L)=0.00531 8; α(M)=0.001160 17 α(N)=0.000266 4; α(O)=3.74×10-5 6; α(P)=1.87×10-6 3 α(K)exp=0.05 (1972To02). α(K)exp=0.044 13 (1984Af01). E_{\gamma}: This is placement of 1972To05; 1977AnYX suggest alternate placement from 897 level.$
$210.5^{f} 5^{x}$	3.5 <i>10</i> 6.9 7	611.22	(7/2,9/2) ⁻	400.92	11/2-	(E1)	0.0359	α (K)=0.0304 5; α (L)=0.00437 7; α (M)=0.000954 14 α (N)=0.000218 4; α (O)=3.09×10 ⁻⁵ 5; α (P)=1.556×10 ⁻⁶ 23
^x 227.4 2	12.5 12					(E1)	0.0348	α (K)exp=0.05 (1972To02). α (K)=0.0294 5; α (L)=0.00423 6; α (M)=0.000923 14 α (N)=0.000211 3; α (O)=2.99×10 ⁻⁵ 5; α (P)=1.509×10 ⁻⁶ 22 α (K)exp=0.023 (1972To02)
234.61 5	45 5	234.652	(3/2)+	0.0	3/2-	E1	0.0321	α (K)exp=0.025 (19721002). α (K)=0.0271 4; α (L)=0.00389 6; α (M)=0.000850 12 α (N)=0.000195 3; α (O)=2.76×10 ⁻⁵ 4; α (P)=1.397×10 ⁻⁶ 20 α (K)exp=0.05 (1972To02). α (K)exp=0.036 14 (1984Af01).
251.5 ^f 5 253.2 <i>I</i>	7 <i>3</i> 7.2 2	508.23 400.92	7/2 ⁻ ,5/2 ⁻ 11/2 ⁻	257.577 147.723	9/2 ⁻ 7/2 ⁻			α (K)exp≤0.15, whence M1 or E1 (1972To02; however 253 γ placed by 1972To02 at 527 level was relocated by 1984Af01 at 401 level). α (K)exp=0.003 42 (1984Af01)
^x 257.88 5	50 5					E1	0.0252	$\alpha(K) \exp[-0.053 + 2 \text{ (1)-04.101)}.$ $\alpha(K) = 0.0213 3; \alpha(L) = 0.00304 5; \alpha(M) = 0.000664 10$ $\alpha(N) = 0.0001521 22; \alpha(O) = 2.16 \times 10^{-5} 3; \alpha(P) = 1.108 \times 10^{-6} 16$ $\alpha(K) \exp[-0.023 (1972T002 - their placement at 406 level was changed to unpleted by 1984Af01).$ $\alpha(K) \exp[-0.019 8 (1984Af01).$
$260.7^{f} 2$	2.7 9 24 12	518.56	9/2-	257.577	9/2-			
269.3^{kl} 1	8.3 ^k 8	455.91		188.035	5/2+			E_{γ} : Very poor energy fit.
269.3 ^{<i>k</i>} 1 272.17 8	8.3 ^K 8 189 <i>19</i>	526.92 419.929	5/2 ⁻ ,7/2 ⁻ 7/2 ⁻	257.577 147.723	9/2 ⁻ 7/2 ⁻	M1+E2	0.117 <i>30</i>	α (K)=0.094 30; α (L)=0.0179 3; α (M)=0.00404 14 α (N)=0.000925 23; α (O)=0.000128 6; α (P)=5.5×10 ⁻⁶ 22 α (K)exp=0.10 (1972To02). α (K)exp=0.120 26 (1984Af01).
273.8 ¹ 2 279.97 1	13.5 <i>14</i> 1000 <i>50</i>	273.72? 341.118	5/2-	0.0 61.141	3/2 ⁻ 5/2 ⁻	M1	0.1359	$\alpha(K)=0.1147 \ 16; \ \alpha(L)=0.01655 \ 24; \ \alpha(M)=0.00363 \ 5 \\ \alpha(N)=0.000840 \ 12; \ \alpha(O)=0.0001231 \ 18; \ \alpha(P)=7.09\times10^{-6} \ 10 \\ \alpha(K)\exp=0.12 \ (1972To02). \\ \alpha(K)\exp=0.123 \ 13 \ (1984Af01). \\ I_{\gamma}: The four references use different conventions on the uncertainty for this$
297.00 10	35 4	508.23	7/2 ⁻ ,5/2 ⁻	211.174	7/2+	E1	0.01764	reference γ . The evaluator has arbitrarily assigned a 5% uncertainty. $\alpha(K)=0.01494\ 21;\ \alpha(L)=0.00211\ 3;\ \alpha(M)=0.000461\ 7$

From ENSDF

				¹⁵⁷ H	$\mathbf{Io} \ \varepsilon \ \mathbf{decay}$	1984Af01,	,1972To05,1	977AnYX (continued)
						γ (¹⁵⁷ D)	y) (continued	<u>l)</u>
E_{γ}^{\dagger}	I_{γ} #@j	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. <mark>&</mark>	α^{h}	Comments
320.2 1	80 20	508.23	7/2 ⁻ ,5/2 ⁻	188.035	5/2+	E1	0.01464	$\begin{aligned} &\alpha(\text{N})=0.0001058 \ 15; \ \alpha(\text{O})=1.509\times10^{-5} \ 22; \ \alpha(\text{P})=7.87\times10^{-7} \ 11 \\ &\alpha(\text{K})\exp=0.015 \ (1972\text{To}02). \\ &\alpha(\text{K})\exp\leq0.027 \ (1984\text{Af}01). \\ &\alpha(\text{K})=0.01241 \ 18; \ \alpha(\text{L})=0.001747 \ 25; \ \alpha(\text{M})=0.000381 \ 6 \\ &\alpha(\text{N})=8.75\times10^{-5} \ 13; \ \alpha(\text{O})=1.251\times10^{-5} \ 18; \ \alpha(\text{P})=6.58\times10^{-7} \ 10 \\ &\alpha(\text{K})\exp\leq0.014 \ (1972\text{To}02). \\ &\alpha(\text{K})\exp\leq0.028 \ (1984\text{Af}01). \end{aligned}$
340.5 ^{<i>f</i>} 5 341.16 6	15 5 770 77	401.17 341.118	5/2-	61.141 0.0	5/2 ⁻ 3/2 ⁻	M1,E2	0.062 19	$\alpha(K)=0.051 \ 18; \ \alpha(L)=0.0088 \ 9; \ \alpha(M)=0.00197 \ 16$ $\alpha(N)=0.00045 \ 4; \ \alpha(O)=6.4\times10^{-5} \ 9; \ \alpha(P)=3.0\times10^{-6} \ 12$ $\alpha(K)\exp=0.068 \ (1972To02).$ $\alpha(K)\exp=0.062 \ 9 \ (1984Af01).$
347.1 2 353.80 <i>10</i>	4 2 9.6 10	688.11 611.22	(7/2) ⁻ (7/2,9/2) ⁻	341.118 257.577	5/2 ⁻ 9/2 ⁻	E2,M1	0.056 17	$\alpha(K)=0.046 \ 16; \ \alpha(L)=0.0079 \ 10; \ \alpha(M)=0.00177 \ 17 \ \alpha(N)=0.00041 \ 5; \ \alpha(O)=5.7\times10^{-5} \ 9; \ \alpha(P)=2.7\times10^{-6} \ 11$
358.75 10	31 6	419.929	7/2-	61.141	5/2-	M1,E2	0.054 17	α (K)exp=0.042 (1972To02). α (K)=0.044 <i>15</i> ; α (L)=0.0076 <i>10</i> ; α (M)=0.00169 <i>18</i> α (N)=0.00039 <i>5</i> ; α (O)=5.5×10 ⁻⁵ <i>9</i> ; α (P)=2.6×10 ⁻⁶ <i>11</i> α (K)exp=0.059 (1972To02, for pure M1).
360.54 10	26 3	508.23	7/2 ⁻ ,5/2 ⁻	147.723	7/2-	M1,E2	0.053 16	α (K)exp=0.044 18 (1984Af01). α (K)=0.044 15; α (L)=0.0075 10; α (M)=0.00167 18 α (N)=0.00038 5; α (O)=5.4×10 ⁻⁵ 9; α (P)=2.6×10 ⁻⁶ 11 α (K)exp=0.058 (1972To02, for pure M1). α (K)exp=0.044 18 (1984Af01)
^x 365.1 1	53							$\alpha(\mathbf{K})\exp=0.044\ 18\ (1984A101).$
367.2 1	14 <i>3</i>	428.43		61.141	5/2-			
377.7 ^{dl} 1	0.3 1	896.57	$(5/2)^{-}$	518.56	9/2-			
379.12 8	6.6 7	526.92	5/2-,7/2-	147.723	7/2-	(M1+E0)		Mult.: Assigned M1+E0 by 1977AnYX from $\alpha_{\rm K}(\exp)=0.59$ 16 compared to $\alpha_{\rm K}(M1)=0.060$, but 1972To05 report this ce line contains other contributions and do not report an $\alpha_{\rm K}(\exp)$.
388.4 1	20 2	896.57	(5/2) ⁻	508.23	7/2-,5/2-	M1+E2	0.044 14	$\alpha(K)=0.036 \ 13; \ \alpha(L)=0.0060 \ 9; \ \alpha(M)=0.00134 \ 18 \ \alpha(N)=0.00031 \ 5; \ \alpha(O)=4.4\times10^{-5} \ 8; \ \alpha(P)=2.12\times10^{-6} \ 85 \ \alpha(K)=2.00031 \ (19727502)$
394.2 1	3.0 8	628.87	3/2-	234.652	$(3/2)^+$			u(K)exp=0.055 (19721002).
395.6 ^f 3	2.9 7	455.91		61.141	5/2-			
400.2 2	8.2 8	611.22	(7/2,9/2)-	211.174	7/2+	E1	0.00856	α (K)=0.00727 <i>11</i> ; α (L)=0.001010 <i>15</i> ; α (M)=0.000220 <i>3</i> α (N)=5.06×10 ⁻⁵ <i>8</i> ; α (O)=7.28×10 ⁻⁶ <i>11</i> ; α (P)=3.91×10 ⁻⁷ <i>6</i> α (K)exp=0.052 (1972To02). α (K)exp≤0.015 (1984Af01).
401.6 ^{<i>f</i>} 3 ×405.9 2	2.0 6 3.4 5	401.17		0.0	3/2-			α (K)=0.02134; α (L)=0.00304; α (M)=0.00066; α (N+)=0.00018 α (K)exp=0.03 (1972To02, whence M1 or E1). α (K)exp \leq 0.09 (1984Af01).

 ∞

From ENSDF

Т

				¹⁵⁷ H	οε decay	1984Af01,1	972To05,197	7AnYX (continued)
						<u>γ(¹⁵⁷Dy)</u>	(continued)	
${\rm E_{\gamma}}^{\dagger}$	Ι _γ #@ <i>j</i>	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^π	Mult.&	$\alpha^{\boldsymbol{h}}$	Comments
^x 416.5 2 420.0 <i>I</i>	2.2 7 12.2 <i>1</i> 2	419.929	7/2-	0.0	3/2-	E2	0.0242	α (K)=0.0191 <i>3</i> ; α (L)=0.00395 <i>6</i> ; α (M)=0.000897 <i>13</i> α (N)=0.000205 <i>3</i> ; α (O)=2.78×10 ⁻⁵ <i>4</i> ; α (P)=1.049×10 ⁻⁶ <i>15</i> α (K)exp=0.014 (1972To02).
428.2 2 430.3 2	7.6 <i>15</i> 6.4 <i>18</i>	428.43 688.11	(7/2)-	0.0 257.577	3/2 ⁻ 9/2 ⁻	(M1)	0.0437	α (K)=0.0370 6; α (L)=0.00527 8; α (M)=0.001153 17 α (N)=0.000267 4; α (O)=3.92×10 ⁻⁵ 6; α (P)=2.27×10 ⁻⁶ 4 α (K)exp=0.051 (1972To02, whence M1 (or E1)).
$447.3^{f} 5$ x449.6 2	4 2 9.8 <i>13</i>	508.23	7/2 ⁻ ,5/2 ⁻	61.141	5/2-	M1,E2	0.0296 95	α (K)=0.0245 86; α (L)=0.0039 8; α (M)=0.00087 16 α (N)=0.00020 4; α (O)=2.9×10 ⁻⁵ 7; α (P)=1.45×10 ⁻⁶ 57 α (K)exp=0.029 (1972To02).
463.3 ^k 1	14.3 ^k 14	611.22	(7/2,9/2)-	147.723	7/2-			Mult.: Assigned M1 which is suitable for both placements.
463.3 ^k 1	14.3 ^k 14	990.12	7/2-	526.92	5/2-,7/2-			Mult.: Assigned M1 which is suitable for both placements. $\alpha(K)\exp=0.047$ (1972To02).
466.1 2	7.4 10	526.92	5/2-,7/2-	61.141	5/2-	M1	0.0356	$\alpha(K)=0.0301\ 5;\ \alpha(L)=0.00427\ 6;\ \alpha(M)=0.000936\ 14$ $\alpha(N)=0.000216\ 3;\ \alpha(O)=3.18\times10^{-5}\ 5;\ \alpha(P)=1.84\times10^{-6}\ 3$ $\alpha(K)\exp=0.045\ (1972To02).$
468.0 <i>1</i> 476.7 <i>1</i>	6.7 <i>10</i> 24.3 <i>24</i>	896.57 896.57	$(5/2)^-$ $(5/2)^-$	428.43 419.929	7/2-	M1,E2	0.0254 82	$\alpha(K)=0.0211\ 74;\ \alpha(L)=0.0033\ 7;\ \alpha(M)=0.00074\ 15$ $\alpha(N)=0.00017\ 4;\ \alpha(O)=2.4\times10^{-5}\ 6;\ \alpha(P)=1.25\times10^{-6}\ 49$ $\alpha(K)=n=0\ 023\ (1972T002)$
508.3 2	132 13	508.23	7/2 ⁻ ,5/2 ⁻	0.0	3/2-	E2(+M1)	0.0215 70	$\alpha(K) = 0.0179 \ 63; \ \alpha(L) = 0.0028 \ 7; \ \alpha(M) = 0.00062 \ 13$ $\alpha(N) = 0.00014 \ 3; \ \alpha(O) = 2.0 \times 10^{-5} \ 5; \ \alpha(P) = 1.06 \times 10^{-6} \ 41$ $\alpha(K) \exp = 0.012 \ (1972To02).$
522.8 ¹ 1	5.9 9	1211.13	5/2-,7/2-	688.11	$(7/2)^{-}$			
527.4 6	2.0	526.92	$5/2^{-},7/2^{-}$	0.0	$3/2^{-}$			$\alpha(K) = 0.025 (1072T_{0}02)$ where $M1 + E2$ or $E1$
550.1 2	8.2 25	611.22	$(7/2)^{-}$	61.141	5/2 ⁻			$\alpha(K) \exp = 0.023$ (1972To02, whence M1+E2 of E1). $\alpha(K) \exp = 0.028$ (1972To02, whence M1+E2 or E1).
555.5 2	130 13	896.57	(5/2) ⁻	341.118	5/2-	M1	0.0227	$\alpha(K)=0.0193 \ 3; \ \alpha(L)=0.00272 \ 4; \ \alpha(M)=0.000594 \ 9 \ \alpha(N)=0.0001375 \ 20; \ \alpha(O)=2.02\times10^{-5} \ 3; \ \alpha(P)=1.174\times10^{-6} \ 17 \ \alpha(K)\exp=0.033 \ (1972To02).$
567.7 2	7.5 15	628.87	3/2-	61.141	5/2-			α (K)exp=0.014 (1972To02, whence E1 or E2).
570.2 1	26 5	990.12	7/2-	419.929	7/2-	M1	0.0213	$\alpha(K)=0.0180 \ 3; \ \alpha(L)=0.00254 \ 4; \ \alpha(M)=0.000556 \ 8 \ \alpha(N)=0.0001286 \ 18; \ \alpha(O)=1.89\times10^{-5} \ 3; \ \alpha(P)=1.099\times10^{-6} \ 16 \ \alpha(K)\exp=0.031 \ (1972To02).$
582.2 <i>1</i> ^x 597.5 <i>3</i>	4.4 <i>16</i> 6 <i>3</i>	1211.13	5/2-,7/2-	628.87	3/2-	(M1)	0.0189	α (K)exp=0.011 (1972To02, no multipolarity deduced). α (K)=0.01602 23; α (L)=0.00226 4; α (M)=0.000493 7 α (N)=0.0001141 16; α (O)=1.677×10 ⁻⁵ 24; α (P)=9.76×10 ⁻⁷ 14
								α (K)exp=0.017 (1972To02 no multipolarity ADOPTED).
600.4^{f} 5 x610.2 2	5.6 <i>14</i> 6.4 <i>25</i>	1211.13	5/2-,7/2-	611.22	(7/2,9/2)-			α (K)exp=0.047 (1972To02).

				1:	57 Ho ε deca	y 1984 A	401,1972To0	5,1977AnYX (continued)
						$\gamma(^1$	⁵⁷ Dy) (contin	ued)
E_{γ}^{\dagger}	I_{γ} #@j	E _i (level)	${f J}^\pi_i$	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.&	α^{h}	Comments
626.8 ¹ 3	8 2	688.11	(7/2)-	61.141	5/2-			α (K)exp=0.022 (1972To02, no multipolarity ADOPTED). E _{γ} ,I _{γ} : 1977AnYX report intensity for γ at 626.6 keV, 1972To05 assert that their peak at 627.0 is a multiplet, and 1984Af01 give I _{γ} \leq 5 for 627.0 line.
628.2 5	8.0	628.87	3/2-	0.0	3/2-			Mult.: Assigned (M1+E0) by 1977AnYX, I_{γ} in question. E _{γ} , I_{γ} : From 1977AnYX, 1984Af01 do not report this γ line and 1972To05
648.8 <i>4</i>	14 <i>3</i>	990.12	7/2-	341.118	5/2-	(M1)	0.01537	$\alpha(K)=0.01303 \ I9; \ \alpha(L)=0.00183 \ 3; \ \alpha(M)=0.000400 \ 6 \ \alpha(N)=9.25\times10^{-5} \ I3; \ \alpha(O)=1.360\times10^{-5} \ 20; \ \alpha(P)=7.93\times10^{-7} \ I2 \ \alpha(K)\exp=0.011 \ (1972To02)$
661.9 <i>1</i>	14 2	896.57	(5/2)-	234.652	(3/2)+	E1	0.00281	$\alpha(\text{K}) \approx p=0.011 \text{ (F}(21002)).$ $\alpha(\text{K}) = 0.00240 \ 4; \ \alpha(\text{L}) = 0.000324 \ 5; \ \alpha(\text{M}) = 7.05 \times 10^{-5} \ 10$ $\alpha(\text{N}) = 1.624 \times 10^{-5} \ 23; \ \alpha(\text{O}) = 2.36 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 1.322 \times 10^{-7} \ 19$ $\alpha(\text{K}) \approx \text{N} \approx 0.0035 \ (1972\text{ To} 02).$
685.4 2	36 5	896.57	(5/2)-	211.174	7/2+	(E1)	0.00261	$\alpha(\mathbf{K}) = 0.0223 \ 4; \ \alpha(\mathbf{L}) = 0.000301 \ 5; \ \alpha(\mathbf{M}) = 6.55 \times 10^{-5} \ 10$
688.1 2	21 3	688.11	(7/2)-	0.0	3/2-	E2	0.00691	$\alpha(N)=1.508\times10^{-5} 22; \ \alpha(O)=2.19\times10^{-5} 3; \ \alpha(P)=1.252\times10^{-1} 18$ $\alpha(K)=0.00570 \ 8; \ \alpha(L)=0.000941 \ 14; \ \alpha(M)=0.000209 \ 3$ $\alpha(N)=4.81\times10^{-5} \ 7; \ \alpha(O)=6.79\times10^{-6} \ 10; \ \alpha(P)=3.26\times10^{-7} \ 5$ $\alpha(K)\exp=0.0063 \ (1972To02).$
703.0 ¹ 2	8.5 14	1211.13	5/2-,7/2-	508.23	7/2-,5/2-	M1,E2	0.0096 <i>30</i>	$\alpha(K)=0.0081\ 27;\ \alpha(L)=0.00119\ 31;\ \alpha(M)=0.00026\ 7$ $\alpha(N)=6.0\times10^{-5}\ 15;\ \alpha(O)=8.8\times10^{-6}\ 24;\ \alpha(P)=4.8\times10^{-7}\ 17$ $\alpha(K)\exp=0.012\ (1972To02).$
708.6 1	60 <i>6</i>	896.57	(5/2)-	188.035	5/2+	E1	0.00244	$\begin{aligned} \alpha(\mathbf{K}) = 0.00208 \ 3; \ \alpha(\mathbf{L}) = 0.000281 \ 4; \ \alpha(\mathbf{M}) = 6.11 \times 10^{-5} \ 9 \\ \alpha(\mathbf{N}) = 1.407 \times 10^{-5} \ 20; \ \alpha(\mathbf{O}) = 2.05 \times 10^{-6} \ 3; \ \alpha(\mathbf{P}) = 1.152 \times 10^{-7} \ 17 \\ \alpha(\mathbf{K}) = 0.0016 \ (19727b02). \end{aligned}$
749.0 2	9 <i>3</i>	896.57	(5/2)-	147.723	7/2-	(M1)	0.01076	$\alpha(K) = 0.00913 \ I3; \ \alpha(L) = 0.001275 \ I8; \ \alpha(M) = 0.000278 \ 4 \\ \alpha(N) = 6.44 \times 10^{-5} \ 9; \ \alpha(O) = 9.48 \times 10^{-6} \ I4; \ \alpha(P) = 5.54 \times 10^{-7} \ 8 \\ \alpha(K) = n = 0.012 \ (1972T_002)$
779.0 2	20.4 22	990.12	7/2-	211.174	7/2+	E1	0.00202	$\alpha(K)=0.001723\ 25;\ \alpha(L)=0.000231\ 4;\ \alpha(M)=5.02\times10^{-5}\ 7$ $\alpha(N)=1.158\times10^{-5}\ 17;\ \alpha(O)=1.686\times10^{-6}\ 24;\ \alpha(P)=9.56\times10^{-8}\ 14$ $\alpha(K)\exp=0.002\ (1972To02).$
791.0 2	11.2 22	1211.13	5/2-,7/2-	419.929	7/2-	M1,E2	0.0072 22	$\alpha(K)=0.0061 \ 19; \ \alpha(L)=8.9\times10^{-4} \ 23; \ \alpha(M)=0.00019 \ 5$ $\alpha(N)=4.5\times10^{-5} \ 12; \ \alpha(O)=6.5\times10^{-6} \ 18; \ \alpha(P)=3.6\times10^{-7} \ 13$ $\alpha(K)\exp=0.008 \ (1972To02).$
801.7 f 4	2.1 7	990.12	7/2-	188.035	5/2+			
828.1 2	26 3	990.12	7/2-	161.99	9/2+	(E1)	0.00179	α (K)=0.001528 22; α (L)=0.000204 3; α (M)=4.44×10 ⁻⁵ 7 α (N)=1.024×10 ⁻⁵ 15; α (O)=1.492×10 ⁻⁶ 21; α (P)=8.49×10 ⁻⁸ 12 α (K)exp=0.002 (1972To02).
835.30 10	47 5	896.57	(5/2)-	61.141	5/2-	M1,E2	0.0063 19	$\alpha(K)=0.0054 \ 17; \ \alpha(L)=7.8\times10^{-4} \ 20; \ \alpha(M)=0.00017 \ 5 \\ \alpha(N)=3.93\times10^{-5} \ 99; \ \alpha(O)=5.7\times10^{-6} \ 16; \ \alpha(P)=3.2\times10^{-7} \ 11 \\ \alpha(K)\exp=0.0057 \ (1972To02).$
842.4 3	11 3	990.12	7/2-	147.723	7/2-	M1,E2	0.0062 19	$\alpha(K)=0.0052 \ 16; \ \alpha(L)=7.6\times10^{-4} \ 20; \ \alpha(M)=0.00017 \ 5$ $\alpha(N)=3.84\times10^{-5} \ 97; \ \alpha(O)=5.6\times10^{-6} \ 15; \ \alpha(P)=3.1\times10^{-7} \ 11$ $\alpha(K)\exp=0.011 \ (1972To02).$

				¹⁵⁷ H	lo ɛ de	cay 198	4Af01,1972T	005,1977AnYX (continued)
						<u>)</u>	v(¹⁵⁷ Dy) (con	tinued)
${\rm E}_{\gamma}^{\dagger}$	Ι _γ #@j	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	$\alpha^{\boldsymbol{h}}$	Comments
870.1 <i>1</i>	39 4	1211.13	5/2-,7/2-	341.118	5/2-	M1	0.00744	α (K)=0.00632 9; α (L)=0.000878 13; α (M)=0.000192 3 α (N)=4.44×10 ⁻⁵ 7; α (O)=6.53×10 ⁻⁶ 10; α (P)=3.82×10 ⁻⁷ 6 α (K)exp=0.0071 (1972To02).
896.6 1	176 18	896.57	(5/2)-	0.0	3/2-	M1,E2	0.0054 16	$\alpha(K)=0.0045 \ I4; \ \alpha(L)=6.5\times10^{-4} \ I7; \ \alpha(M)=0.00014 \ 4 \ \alpha(N)=3.3\times10^{-5} \ 9; \ \alpha(O)=4.8\times10^{-6} \ I3; \ \alpha(P)=2.70\times10^{-7} \ 86 \ \alpha(K)=0.0041 \ (1972T_{0}O)$
928.9 1	26 3	990.12	7/2-	61.141	5/2-	M1,E2	0.0049 14	$\alpha(K) = 0.0041 (19721002).$ $\alpha(K) = 0.0042 12; \ \alpha(L) = 0.00060 15; \ \alpha(M) = 0.00013 4$ $\alpha(N) = 3.0 \times 10^{-5} 8; \ \alpha(O) = 4.4 \times 10^{-6} 12; \ \alpha(P) = 2.49 \times 10^{-7} 78$ $\alpha(K) = 0.0045 (19721002).$
^x 936.4 3	7.0 10							
x946.2 2 x954.9 2 x963.0 2	8.6 9 3.8 8 5.3 10							I_{γ} : from 1972To05; other ≤ 1.2 (1984Af01).
^x 969.0 2	3.7 7							I_{γ} : from 1972To05; other: ≤ 1.5 (1984Af01).
^x 1037.2 ^e 2	5.7 10	1200.24		241 110	5 /Q-			
1039.0 4	4.1 15	1380.24	(5/2,7/2)	341.118	5/2			
x1053 7 3	2.013 377							
1063.3 3	5.6 10	1211.13	$5/2^{-}.7/2^{-}$	147.723	$7/2^{-}$			
^x 1072.6 4	2.6 11		-1) 1					I_{γ} : From 1972To05 and 1977AnYX; other: ≤ 1.5 (1984Af01).
^x 1082.1 3	4.9 10							
^x 1090.2 3	2.6 6							
1150.0 <i>1</i>	36 4	1211.13	5/2-,7/2-	61.141	5/2-	M1,E2	0.0030 8	$\alpha(K)=0.00258\ 65;\ \alpha(L)=0.00036\ 9;\ \alpha(M)=7.9\times10^{-5}\ 18$ $\alpha(N)=1.8\times10^{-5}\ 5;\ \alpha(O)=2.7\times10^{-6}\ 7;\ \alpha(P)=1.53\times10^{-7}\ 42;$ $\alpha(IPF)=1.70\times10^{-6}\ 13$
^x 1158.8 2	2.6 10							
1169.9 <i>3</i>	9.8 25	1380.24	$(5/2,7/2^{-})$	211.174	7/2+			
[*] 11/2.2 2 1101 0 2	3.9 11 6 7 14	1280.24	(5/2 - 2/2 -)	100 025	5/2+			
r1202 1d 2	0.7 14	1300.24	(3/2, 7/2)	100.055	5/2			
1202.14 2 1211.1 <i>1</i>	3.2 0 103 <i>10</i>	1211.13	5/2-,7/2-	0.0	3/2-	M1,E2	0.0027 7	$\alpha(K)=0.0023\ 6;\ \alpha(L)=0.00032\ 8;\ \alpha(M)=7.0\times10^{-5}\ 16$ $\alpha(N)=1.6\times10^{-5}\ 4;\ \alpha(O)=2.4\times10^{-6}\ 6;\ \alpha(P)=1.36\times10^{-7}\ 36;$ $\alpha(PE)=7.0\times10^{-6}\ 6$
1232.6 <i>4</i> ^x 1239.7 ^d 2	3.5 <i>10</i> 2.8 6	1380.24	(5/2,7/2 ⁻)	147.723	7/2-			$\alpha(K) \exp = 0.0024 \ (1972 To 02).$
^x 1274.8 3 ^x 1298.3 2 ^x 1302.9 2 1319.0 3 ^x 1332.5 ^d 2 ^x 1349.8 3	6.1 <i>14</i> 3.9 8 5.6 <i>14</i> 7.9 <i>15</i> 2.4 <i>5</i> 5.0 <i>14</i>	1380.24	(5/2,7/2 ⁻)	61.141	5/2-			I_{γ} : from 1972To05; other: ≤ 1.7 (1984Af01). I_{γ} : from 1972To05 and 1984Af01; other: 12.8 22 (1977AnYX). Additional information 3.

 $^{157}_{66}\mathrm{Dy}_{91}\text{--}11$

From ENSDF

 $^{157}_{66}\mathrm{Dy}_{91}$ -11

					¹⁵⁷ H e	<i>ε</i> decay 1984Af01,1972To05,1977AnYX (continued)
						γ ⁽¹⁵⁷ Dy) (continued)
E_{γ}^{\dagger}	Ι _γ #@j	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Comments
x1358.9 2 1380.2 2 x1395.0 ^d 2 x1406.5 2 x1406.5 2 x1400.9 2 x1490.9 2 x1510.4 2 x1521.9 2 x1563.7 ^d 2 x1763.7 5 x1788.6 2	3.2 <i>I0</i> 14 <i>3</i> 1.8 <i>4</i> 6.4 <i>21</i> 14 <i>3</i> 1.9 2.4 1.7 2.9 2.2 <i>11</i> 3.5 <i>13</i>	1380.24	. (5/2,7/2 ⁻)	0.0	3/2-	Additional information 4.
 otherwis Additio Average Althoug evaluato From 12 Normalic consiste From 14 γ report γ repor	se. nal informa α of values of α h some γ is r has assign 7^{7} Dy Adopt zation of α nt, unless n 984Af01. ed only by ed only by ed only by ed only by ed only by α only by	tion 5. of 1984Af0 ntensity valued this 10% ed γ radiati K(exp) by 1 oted; these 1972Vy02. 1972To05 a 1972To05 a 1972To05. 1977AnYX 1984Af01. quoted in 1 tion 6. was assum ity per 100 th undivided tion in the level scher	1, 1972To05, ues are quote δ value, or a ons, but base 1984Af01 ass are based on and 1977AnY C. 1984Af01. ted δ =1.00 for decays, mult d intensity. level scheme ne.	a 1977/ ed with larger ed on a umes 2 ce dat (X sug or E2/N iply by is unc	AnYX, a an univalue : ssignm 280 γ i a from gests i 41, $\delta =$ γ 0.023 certain.	and 1972Vy02. certainty of 2-3%, the general spread of the values suggests a minimum uncertainty of 10%. The indicated by the measurement uncertainty or the spread in values. ents in this ¹⁵⁷ Ho ε decay from 1984Af01 and/or 1972To05 from subshell ratios or $\alpha_{\rm K}(\exp)$ values. s pure M1, while that of 1972To05 assumes 326 γ in ¹⁵⁷ Tb is E1. Assignments of 1977AnYX are 1972To05. See also 1972Vy02. t is ¹⁵⁹ Ho contaminant.

 $^{157}_{66}\mathrm{Dy}_{91}$ -12

 $^{157}_{66}Dy_{91}$

 $^{157}_{66}\text{Dy}_{91}$

¹⁵⁷Ho ε decay _____1984Af01,1972To05,1977AnYX (continued)

Band(G): $K^{\pi}=3/2^{-}$ band, quadrupole vibration based on g.s

(7/2)- 688.11

3/2- 628.87

 $^{157}_{66} Dy_{91}$