147 Sm(14 N,5n γ), 144 Sm(19 F,2p5n) 1985Ko30,1995Su12 | History | | | | | | | | | |-----------------|-------------|----------------------|------------------------|--|--|--|--|--| | Туре | Author | Citation | Literature Cutoff Date | | | | | | | Full Evaluation | C. W. Reich | NDS 113, 2537 (2012) | 1-Mar-2012 | | | | | | #### Additional information 1. 1995Su12: ¹⁴⁴Sm(¹⁹F,2p5n). 1.0 mg/cm² ¹⁴⁴Sm target, form and isotopic composition not given. *γ* radiation was studied using five HPGE BGO Compton-suppressed detectors and a 14-element ball of BGO detectors. Singles *γ*-ray spectra were collected at E(¹⁹F)=85, 90, 95 and 100 MeV to measure the excitation function. At 105 MeV, a *γγ* BGO coincidence experiment was carried out. In addition to ¹⁵⁶Tm, the nuclides ¹⁵⁹Lu, ¹⁵⁸Yb and ¹⁵⁹Yb were produced with appreciable intensity in this experiment. 1985Ko30: self-supporting, isotopically enriched targets. The data are from either ¹⁴⁴Sm(¹⁴N,2n*γ*) or ¹⁴⁷Sm(¹⁴N,5n*γ*), with E(¹⁴N)=80-120 MeV. The *γ* measurement system consisted of three Ge and 14 NaI(Tl) detectors. These data are from a brief comment; and the order of the *γ* transitions is tentative. ### ¹⁵⁶Tm Levels The level scheme reported by 1995Su12 is more extensive than that of 1985Ko30. Where they overlap, they are in agreement. | E(level) | $J^{\pi \dagger}$ | T _{1/2} | Comments | | | |-----------------------|-------------------|------------------|---|--|--| | 0+x | | | | | | | 203.6+x [‡] | (11-) | ≈400 ns | $T_{1/2}$: value shown on the level scheme of 1985Ko30, but further details regarding it are not | | | | 4 | | | given. | | | | 771.2+x [‡] | (13^{-}) | | | | | | 1366.0+x [‡] | (15^{-}) | | | | | | 1725.7+x [‡] | (16^{-}) | | | | | | 2056.6+x [‡] | (17^{-}) | | | | | | 2335.6+x [‡] | (18^{-}) | | | | | | 2535.0+x [‡] | (19^{-}) | | | | | | 3234+x [‡] | (21^{-}) | | | | | | 3407+x [‡] | (22^{-}) | | | | | | 3978+x [‡] | (23^{-}) | | | | | | 4773+x [‡] | (25^{-}) | | | | | [†] Values proposed by 1995Su12. These values are based on the assumption that this is a decoupled $(\pi h_{11/2})(\nu i_{13/2})$ band, by analogy with bands of similar character in a number of doubly odd nuclides in this mass region. #### γ (156Tm) | E_{γ}^{\dagger} | $E_i(level)$ | \mathbf{J}_i^{π} | \mathbb{E}_f | \mathbf{J}_f^{π} | Comments | |------------------------|--------------|----------------------|----------------|----------------------|---| | 173 | 3407+x | (22^{-}) | 3234+x | (21-) | | | 199.4 | 2535.0+x | (19^{-}) | 2335.6+x | (18^{-}) | | | 203.6 | 203.6+x | (11^{-}) | 0+x | | | | 330.9 | 2056.6+x | (17^{-}) | 1725.7+x | (16^{-}) | | | 359.7 | 1725.7+x | (16^{-}) | 1366.0+x | (15^{-}) | | | 479 | 2535.0+x | (19^{-}) | 2056.6+x | (17^{-}) | E_{γ} : γ not reported by 1985Ko30. | | 567.6 | 771.2+x | (13^{-}) | 203.6+x | (11^{-}) | | | 594.8 | 1366.0+x | (15^{-}) | 771.2+x | (13^{-}) | | | 609.9 | 2335.6+x | (18^{-}) | 1725.7+x | (16-) | | | | | | | | | ^{\ddagger} Band(A): Possible (π 7/2[523])(ν 1/2[660]) band. This configuration was proposed by 1995Su12, based on a consistency with the systematics for the neighboring isotone and isotopes. From this, 1995Su12 suggest K^{π} =4⁻ for the band and "I₀"=11⁻ for the 400-ns isomeric state. # $^{147} Sm(^{14} N, 5n\gamma), ^{144} Sm(^{19} F, 2p5n) \qquad \textbf{1985Ko30,1995Su12} \ (continued)$ ### $\gamma(^{156}\text{Tm})$ (continued) $^{^{\}dagger}$ Values quoted to tenths of a keV are those reported by 1985Ko30. Others are from 1995Su12. # 147 Sm(14 N,5n γ), 144 Sm(19 F,2p5n) 1985Ko30,1995Su12 #### Level Scheme # $^{147}Sm(^{14}N,5n\gamma),^{144}Sm(^{19}F,2p5n) \\ \hspace*{1.5cm} \textbf{1985Ko30,1995Su12}$ Band(A): Possible (π 7/2[523])(ν 1/2[660]) band $$^{156}_{69}\mathrm{Tm}_{87}$$